一种650℃高效超(超)临界燃煤发电系统的制作方法

文档序号:25862463发布日期:2021-07-13 16:19阅读:259来源:国知局
一种650℃高效超(超)临界燃煤发电系统的制作方法

本发明属于火力发电领域,具体涉及一种650℃高效超(超)临界燃煤发电系统。



背景技术:

煤电是我国化石能源消耗的大型工业门类,电力用煤占我国社会总化石能源消耗的近一半,因此煤电的节能减排对我国整体节能减排事业的发展起着关键性的作用。近年来,我国的节能减排事业取得了明显的技术进步和显著的成果,年均供电煤耗降低3g/kwh。但随着节能事业步入深水区,煤电整体节能减排效果的获得越来越艰难,大幅度降低社会化石能源消耗的发展需求和技术触底的矛盾日益突显。深入节能减排,不仅是煤电企业服从国家宏观发展战略的需求,也是企业本身降本增效,提高技术密集度,焕发生机的切身利益所在。

升级燃煤发电技术,是显著提升机组发电效率、降低能耗的有效手段。过去二十余年,我国自主生产的煤电机组从亚临界、超临界逐步提升到620℃等级超超临界。650℃高参数发电技术是缓解深入节能需求与现有技术触底矛盾的关键。



技术实现要素:

本发明的目的在于克服上述不足,提供一种650℃高效超(超)临界燃煤发电系统,旨在构建650℃高效超(超)临界燃煤发电系统,尽可能减小发电能量损失,提高运行经济性。

为了达到上述目的,本发明包括低压缸、中压缸和高压缸,低压缸连接凝汽器,中压缸连接除氧器,凝汽器与除氧器间设置有四级低压加热器,除氧器下游设置有四级高压加热器,末级高压加热器连接锅炉,锅炉连接高压缸,高压缸的供热蒸汽通过第一蒸汽冷却器送入末级高压加热器中,中压缸的供热蒸汽通过第二蒸汽冷却器送入一级高压加热器中,低压加热器连接低压省煤器,低压省煤器连接末级低压加热器;

高压缸的主给水温度为310~320℃,主蒸汽压力为28mpa~32mpa,主蒸汽和再热蒸汽的温度为650℃,低压缸排汽压力为4.5kpa。

低压缸的回热蒸汽送入前三级低压加热器中。

中压缸的供热蒸汽送入末级低压加热器和除氧器中。

高压缸的供热蒸汽送入第二级高压加热器和第三级高压加热器中。

凝汽器通过凝结水泵连接一级低压加热器。

除氧器通过给水泵连接一级高压加热器。

中压缸的供热蒸汽连接给水泵汽轮机,给水泵汽轮机连接给水泵。

给水泵为单台100%bmcr容量的泵。

低压缸连接发电机。

发电机的发电机功率600mw~1000mw。

与现有技术相比,本发明采用外置蒸汽冷却器降低回热器换热损失,提高经济性,两台外置蒸汽冷却器的使用,预计降低发电煤耗0.5~0.6g/kwh;本发明采用低温省煤器利用烟气余热,提高经济性,低温省煤器的投入在80%负荷以上降低发电煤耗1.5~2.0g/kwh;本发明增加一台高压加热器,提高给水温度,降低发电煤耗0.9~1.5g/kwh;本发明采用高参数、大容量高效发电系统能耗降低,经济性提高,机组整体能耗与现有超超临界机组(25mpa/600℃/600℃)相比预计降低发电煤耗15.5~18.5g/kwh;本发明通过提升机组主参数,增加一级高压加热器,增设两台外置蒸汽冷却器,并在凝结水系统中增加低压省煤器,降低机组能耗,提高运行经济性。

附图说明

图1为本发明的系统框图;

其中,1、低压缸,2、中压缸,3、高压缸,4、凝汽器,5、除氧器,6、低压加热器,7、高压加热器,8、锅炉,9、第一蒸汽冷却器,10、第二蒸汽冷却器,11、低压省煤器,12、凝结水泵,13、给水泵,14、水泵汽轮机,15、发电机。

具体实施方式

下面结合附图对本发明做进一步说明。

参见图1,本发明包括低压缸1、中压缸2和高压缸3,低压缸1连接凝汽器4,中压缸2连接除氧器5,凝汽器4与除氧器5间设置有四级低压加热器6,除氧器5下游设置有四级高压加热器7,末级高压加热器7连接锅炉8,锅炉8连接高压缸3,高压缸3的供热蒸汽通过第一蒸汽冷却器9送入末级高压加热器中,中压缸2的供热蒸汽通过第二蒸汽冷却器10送入一级高压加热器中,低压加热器连接低压省煤器11,低压省煤器11连接末级低压加热器;低压缸1的回热蒸汽送入前三级低压加热器6中。中压缸2的供热蒸汽送入末级低压加热器和除氧器5中。高压缸3的供热蒸汽送入第二级高压加热器和第三级高压加热器中。凝汽器4通过凝结水泵12连接一级低压加热器。除氧器5通过给水泵13连接一级高压加热器。中压缸2的供热蒸汽连接给水泵汽轮机14,给水泵汽轮机14连接给水泵13。低压缸1连接发电机15。

本发明的主给水温度为310~320℃,主蒸汽压力为28mpa~32mpa,主蒸汽温度和再热蒸汽温度650℃,本系统在低压加热器中布置了低温省煤器,部分凝结水从#9低加出口与#8低价出口混合,保证混合后温度≥70℃,进入低温省煤器,经低温省煤器加热后从#7低压加热器后汇入主凝结水,加热后温度不超过140℃;本发明的主蒸汽和再热蒸汽温度提升后,进入高压加热器的回热抽汽过热度增大,为降低换热损失,在高压缸、中压缸第一段抽汽(即#1高压加热器进汽和#4高压加热器进汽)管道上设置外置式蒸汽冷却器;本发明的汽轮机设计排汽压力4.5kpa,本发明的给水泵采用汽动驱动的方式,本发明设置为一台100%bmcr容量的泵,提高效率,减小投资,本发明的发电机功率600mw~1000mw。

本发明的应用将大幅度降低机组的能耗水平,对新机的建设起到指导作用,并开辟国内现役机组综合升级改造的新方向,起到行业引领和示范的作用,并对实现我国煤电的深入节能减排具有重要意义。



技术特征:

1.一种650℃高效超(超)临界燃煤发电系统,其特征在于,包括低压缸(1)、中压缸(2)和高压缸(3),低压缸(1)连接凝汽器(4),中压缸(2)连接除氧器(5),凝汽器(4)与除氧器(5)间设置有四级低压加热器(6),除氧器(5)下游设置有四级高压加热器(7),末级高压加热器(7)连接锅炉(8),锅炉(8)连接高压缸(3),高压缸(3)的供热蒸汽通过第一蒸汽冷却器(9)送入末级高压加热器中,中压缸(2)的供热蒸汽通过第二蒸汽冷却器(10)送入一级高压加热器中,低压加热器连接低压省煤器(11),低压省煤器(11)连接末级低压加热器;

高压缸(2)的主给水温度为310~320℃,主蒸汽压力为28mpa~32mpa,主蒸汽和再热蒸汽的温度为650℃,汽轮机低压缸排汽压力为4.5kpa。

2.根据权利要求1所述的一种650℃高效超(超)临界燃煤发电系统,其特征在于,低压缸(1)的回热蒸汽送入前三级低压加热器(6)中。

3.根据权利要求1所述的一种650℃高效超(超)临界燃煤发电系统,其特征在于,中压缸(2)的供热蒸汽送入末级低压加热器和除氧器(5)中。

4.根据权利要求1所述的一种650℃高效超(超)临界燃煤发电系统,其特征在于,高压缸(3)的供热蒸汽送入第二级高压加热器和第三级高压加热器中。

5.根据权利要求1所述的一种650℃高效超(超)临界燃煤发电系统,其特征在于,凝汽器(4)通过凝结水泵(12)连接一级低压加热器。

6.根据权利要求1所述的一种650℃高效超(超)临界燃煤发电系统,其特征在于,除氧器(5)通过给水泵(13)连接一级高压加热器。

7.根据权利要求6所述的一种650℃高效超(超)临界燃煤发电系统,其特征在于,中压缸(2)的供热蒸汽连接给水泵汽轮机(14),给水泵汽轮机(14)连接给水泵(13)。

8.根据权利要求6所述的一种650℃高效超(超)临界燃煤发电系统,其特征在于,给水泵(13)为单台100%bmcr容量的泵。

9.根据权利要求1所述的一种650℃高效超(超)临界燃煤发电系统,其特征在于,低压缸(1)连接发电机(15)。

10.根据权利要求9所述的一种650℃高效超(超)临界燃煤发电系统,其特征在于,发电机(15)的发电机功率600mw~1000mw。


技术总结
本发明公开了一种650℃高效超(超)临界燃煤发电系统,本发明采用外置蒸汽冷却器降低回热器换热损失,提高经济性,两台外置蒸汽冷却器的使用,预计降低发电煤耗0.5~0.6g/kWh;本发明采用低温省煤器利用烟气余热,提高经济性,低温省煤器的投入在80%负荷以上降低发电煤耗1.5~2.0g/kWh;本发明增加一台高压加热器,提高给水温度,降低发电煤耗0.9~1.5g/kWh;本发明采用高参数、大容量高效发电系统能耗降低,经济性提高,机组整体能耗与现有超超临界机组相比预计降低发电煤耗15.5~18.5g/kWh;本发明通过提升机组主参数,增加一级高压加热器,增设两台外置蒸汽冷却器,并在凝结水系统中增加低压省煤器,降低机组能耗,提高运行经济性。

技术研发人员:居文平;许朋江;薛朝囡;王伟;马汀山;黄嘉驷
受保护的技术使用者:西安热工研究院有限公司
技术研发日:2021.05.28
技术公布日:2021.07.13
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1