专利名称:一种碳纳米管阵列的生长方法
技术领域:
本发明涉及一种碳纳米管阵列的生长方法。
背景技术:
碳纳米管是九十年代初才发现的一种新型一维纳米材料。碳纳米管的特殊结构决定了其具有特殊的性质,如高抗张强度和高热稳定性;随着碳纳米管螺旋方式的变化,碳纳米管可呈现出金属性或半导体性等。由于碳纳米管具有理想的一维结构以及在力学、电学、热学等领域优良的性质,其在材料科学、化学、物理学等交叉学科领域已展现出广阔的应用前景,包括场发射平板显示,单电子器件,原子力显微镜(Atomic Force Microscope,AFM)针尖,热传感器,光学传感器,过滤器等等。因此,实现碳纳米管的可控生长,降低碳纳米管的合成成本,是将碳纳米管推向应用的关键。
目前合成碳纳米管主要有三类方法1991年S.Iijima在Nature,354,56,Helical microtubules of graphitic carbon上公开的电弧放电法;1992年T.W.Ebbesen等人在Nature,358,220,Large-scale Synthesis of Carbon Nanotubes上公开的激光烧蚀法及1996年W.Z.Li等人在Science,274,1701,Large-Scale Synthesis of Aligned Carbon Nanotubes上公开的化学气相沉积法。
电弧放电法和激光烧蚀法不能控制碳纳米管的直径和长度,合成方法所用仪器昂贵,且碳纳米管的产量低,很难在大尺寸基片上大规模生长碳纳米管,故目前主要用于实验阶段,难以走向工业应用。
传统的化学气相沉积法是利用含碳气体作为碳源气,在多孔硅或沸石基底上生长出多壁或单壁碳纳米管,和前两种方法相比具有产量高、可控性强、与现行的集成电路工艺相兼容等优点,便于工业上进行大规模合成。但是,碳纳米管的有序性和产量通常不可兼得。
2002年2月16日公告的美国专利第6,350,488号揭示一种利用热化学气相沉积法在大尺寸基片上合成垂直排列的高纯碳纳米管的方法。所述的方法包括在基片上形成金属催化剂层;腐蚀金属催化剂层形成隔离的纳米级催化金属颗粒;利用热化学气相沉积法由每个隔离的纳米级催化金属颗粒生长碳纳米管,原位净化该碳纳米管。其中碳源气供应到热化学气相沉积设备中,碳纳米管垂直排列于基片上。
然而,该合成碳纳米管的方法尚有以下不足,其一,该方法会造成一些金属颗粒以及非晶质的碳化合物粘附于碳纳米管的表面上,因而,在合成碳纳米管后需要对碳纳米管进行净化过程,方法较为复杂,亦可能会损坏碳纳米管;其二,该方法合成温度较高,限制其工业应用的范围,不适合未来大规模生产碳纳米管的发展趋势;其三,该方法合成得到的碳纳米管为多壁碳纳米管与单壁碳纳米管的混合产物,在实际应用中(如场发射显示)不易充分发挥碳纳米管的优良性能。
因此,提供一种方法简单可控碳纳米管阵列的生长方法十分必要。
发明内容以下,将以若干实施例说明一种方法简单可控的碳纳米管阵列的生长方法。
为实现上述内容,提供一种碳纳米管阵列的生长方法,其包括以下步骤提供一基底,该基底的一表面形成有一催化剂层;将上述基底设置于一反应炉内;往反应炉内通入载气气体,并加热使得反应炉达到一预定温度;往反应炉内通入碳源气和氢气,该氢气通过一通气装置直接通入到基底附近;反应预定时间,在基底上生长得到碳纳米管阵列。
该载气包括氩气、氮气或其它惰性气体,该碳源气包括乙炔、甲烷、乙烷或乙烯。该催化剂层材料包括铁、钴、镍或者这三种物质任意组合的合金。通入载气的流量为300sccm,通入碳源气的流量为5~30sccm,通入氢气的流量为100sccm。该预定温度为600~720摄氏度,反应时间为30~60分钟,碳纳米管阵列的高度为0.1~10毫米。
与现有的热化学气相沉积法合成碳纳米管的技术相比较,本技术方案所提供的一种碳纳米管阵列的生长方法具有如下优点其一生长温度低,在600~720摄氏度均能生长碳纳米管阵列,其中在620~690摄氏度的温度范围内可生长出排列非常规整的碳纳米管阵列;其二,生长速率快,产量多,生长30~60分钟所得到得碳纳米管阵列的高度均可达到几百微米,甚至可以达到毫米量级;其三,成本低廉,载气与碳源气仅需要氩气和乙炔等廉价气体,同时,催化剂层可采用廉价的铁,使得整个生长方法的成本进一步降低,适合工业上大批量生产。
图1是本技术方案碳纳米管阵列的生长方法的流程示意图。
图2是第一实施例的化学气相沉积法制备碳纳米管阵列的装置示意图。
图3是本技术方案获得的多壁碳纳米管阵列的扫描电镜照片。
图4是本技术方案获得的多壁碳纳米管的透射电镜照片。
具体实施方式下面将结合附图及具体实施例对本技术方案进行详细说明。
请一并参阅图1和图2,本技术方案第一实施例提供一种碳纳米管阵列的生长方法。该碳纳米管阵列的生长方法包括以下步骤首先提供一基底11,并在该基底11将要生长碳纳米管的一表面均匀形成一层催化剂层13,该催化剂层13的形成可利用热沉积、电子束沉积、蒸镀或溅射法来完成。基底11材料选用硅,也可选用其它材料,如玻璃、石英等。催化剂层13材料选用铁,也可选用其它材料,如钴、镍或铁、钴、镍三种物质任意组合的合金材料等。
提供一石英舟15,将上述具有金属催化剂层13的基底11放入该石英舟15中。本实施例石英舟15包括一体成型且弯折成一定角度的两边,上述基底11设置于该石英舟15的一边上。
提供一反应炉19,该反应炉19包括一第一进气口191、一第二进气口192、一出气口193与一通气装置17,该通气装置17一端连接第二进气口192,另一端伸向反应炉19内部。将设置有基底11的石英舟15装入反应炉19内,使得基底11形成有催化剂层13的表面面向气体流动方向,且靠近通气装置17的另一端。
在常压下从反应炉19的第一进气口191通入载气气体,并通过加热装置(图未示)对反应炉19进行加热。将反应炉19的温度升高到预定温度后,分别通过第一进气口191和第二进气口192通入碳源气和氢气。本技术方案在碳纳米管生长过程中通过第一进气口持续通入载气气体,该载气气体优选为廉价气体氩气,也可选用其它气体如氮气或其它惰性气体。本技术方案的碳源气优选为廉价气体乙炔,也可选用其它碳氢化合物如甲烷、乙烷、乙烯等。本技术方案优选为通以300sccm的氩气、5~30sccm的乙炔和100sccm的氢气。反应炉温度可为600~720摄氏度,优选为620~690摄氏度。
反应预定时间后,停止通入碳源气和氢气,并停止加热,温度降低后停止通入载气。由于催化剂的作用,供应到反应炉的碳源气热解成碳单元(C=C或C)和氢气(H2)。碳单元吸附于催化剂层表面,从而生长出碳纳米管。本技术方案中,由于使用乙炔作为碳源气,生长的碳纳米管阵列为多壁碳纳米管阵列。
本技术方案通过改变例如载气与碳源气的流量、反应温度、反应时间等条件,可以控制生长得到的多壁碳纳米管的密度、直径和长度。按照上述实施例获得的多壁碳纳米管的直径为10~30纳米。由于氢气能够直接通入到基底表面的催化剂层,使得碳纳米管生长速度较快且生长高度较高。本实施例中,反应时间为30~60分钟,整个多壁碳纳米管阵列的高度为0.1~10毫米。
请一并参阅图3和图4,从本技术方案的多壁碳纳米管阵列的扫描隧道显微镜照片和透射电镜照片可以看出,多壁碳纳米管阵列生长得非常规整,整个阵列的高度为几百微米。
在本技术方案碳纳米管阵列的生长过程中,氢气能够活化催化剂层,同时降低局部碳源气浓度,使得整个碳纳米管阵列生长速度快且高度较高。本技术方案中碳纳米管阵列的高度能够达到几百微米甚至达到毫米量级。
本技术领域的技术人员应明白,虽然本技术方案所采用的热化学气相沉积设备为卧式结构,但本技术方案的方法亦可应用其它如立式、流动床式热化学气相沉积设备等。另外,本技术方案不限于采用两进气口结构,可采用多进气口结构,只需确保设置一进气口与通气装置连接通入氢气到基底形成有催化剂层的表面即可。
采用该热化学气相沉积方法还可以进行批量合成,即,可以同时在设备中装入大量基底并设计相关通气装置进行碳纳米管阵列的生长,可以进一步提高产量。在应用于基于碳纳米管阵列的场发射器件或其它电子器件时,本技术方案的方法亦可通过设计基底第一催化剂的图案来实现碳纳米管阵列的可控生长。
另外,本技术方案中揭露的碳纳米管阵列的生长时间范围与生长温度范围仅为本技术方案的较佳实施例,本技术领域的技术人员应明白,更高的生长温度亦可同样生长出该多壁碳纳米管阵列,生长时间将决定该碳纳米管阵列的高度。
与现有的热化学气相沉积法合成碳纳米管的技术相比较,本技术方案所提供的一种碳纳米管阵列的生长装置具有如下优点其一生长温度低,在600~720摄氏度均能生长碳纳米管阵列,其中在620~690摄氏度的温度范围内可生长出排列非常规整的碳纳米管阵列;其二,生长速率快,产量多,由于氢气能够直接通入到催化剂层表面活化催化剂,生长30~60分钟所得到的碳纳米管阵列的高度均可达到几百微米,甚至可以达到毫米量级;其三,成本低廉,载气与碳源气仅需要氩气和乙炔等廉价气体,同时,催化剂层可采用廉价的铁,使得整个生长方法的成本进一步降低,适合工业上大批量生产。
权利要求
1.一种碳纳米管阵列的生长方法,其包括以下步骤提供一基底,该基底的一表面沉积有一催化剂层;将上述基底设置于一反应炉内;往反应炉内通入载气气体,并加热使得反应炉达到一预定温度;往反应炉内通入碳源气和氢气,该氢气通过一通气装置直接通入到基底附近;反应预定时间,在基底上生长得到碳纳米管阵列。
2.如权利要求1所述的生长方法,其特征在于该载气包括氩气、氮气或其它惰性气体。
3.如权利要求1所述的生长方法,其特征在于该碳源气包括乙炔、甲烷、乙烷或乙烯。
4.如权利要求3所述的生长方法,其特征在于当碳源气为乙炔时,获得的碳纳米管阵列为多壁碳纳米管阵列。
5.如权利要求1所述的生长方法,其特征在于该催化剂层材料包括铁、钴、镍或者这三种物质任意组合的合金。
6.如权利要求1所述的生长方法,其特征在于通入载气的流量为300sccm。
7.如权利要求1所述的生长方法,其特征在于通入碳源气的流量为5~30sccm。
8.如权利要求1所述的生长方法,其特征在于通入氢气的流量为100sccm。
9.如权利要求1所述的生长方法,其特征在于该预定温度为600~720摄氏度。
10.如权利要求1所述的生长方法,其特征在于反应时间为30~60分钟,碳纳米管阵列的高度为0.1~10毫米。
11.如权利要求1所述的生长方法,其特征在于该碳纳米管阵列的生长是在常压下进行。
12.如权利要求1所述的生长方法,其特征在于该基底是设置于一石英舟内,该石英舟是设置于反应炉内。
13.如权利要求12所述的生长方法,其特征在于该石英舟包括一体成型且弯折成一定角度的两边。
14.如权利要求13所述的生长方法,其特征在于该基底设置于该石英舟的一边上,基底形成有催化剂层的表面面向气体流动方向,且靠近通气装置的另一端。
全文摘要
一种碳纳米管阵列的生长方法,其包括以下步骤提供一基底,该基底的一表面形成有一催化剂层;将上述基底设置于一反应炉内;往反应炉内通入载气气体,并加热使得反应炉达到一预定温度;往反应炉内通入碳源气和氢气,该氢气通过一通气装置直接通入到基底附近;反应预定时间,在基底上生长得到碳纳米管阵列。
文档编号B82B3/00GK1840471SQ200510033948
公开日2006年10月4日 申请日期2005年3月31日 优先权日2005年3月31日
发明者姜开利, 范守善 申请人:清华大学, 鸿富锦精密工业(深圳)有限公司