用于制备均匀地真空沉积有纳米金属、合金和陶瓷颗粒的粉末的方法和装置的制作方法

文档序号:5268447阅读:402来源:国知局

专利名称::用于制备均匀地真空沉积有纳米金属、合金和陶瓷颗粒的粉末的方法和装置的制作方法
技术领域
:本发明涉及制备粉末的方法和装置,其中,利用真空沉积法在作为基底的粉末的表面上均匀地真空沉积纳米金属、合金和陶瓷颗粒。更具体而言,本发明涉及制备沉积有纳米颗粒的粉末的方法和装置,其中,利用物理和化学真空沉积法,在粉末基底的表面上均匀地形成纳米颗粒。
背景技术
:当颗粒变小而具有纳米尺寸(100nm以下)时,纳米颗粒具有与现有的微米单位的颗粒不同的新的机械性质、化学性质、电性质、磁性质和光学性质。这是在表面面积与单位体积的比率增大至极端时显现出来的现象。一个由现有的微米尺寸的颗粒不能获得的新的应用领域通过利用这样的量子尺寸效应正在稳定的发展,其学术及技术方面日益受到关注。作为用于制备纳米颗粒的常用典型方法,可以举出机械研磨法、流体沉淀法、喷雾法、溶胶-凝胶法和电爆法。不过,传统的纳米颗粒制备方法的缺点在于,这些方法各自需要数个工序或者有限的用于制备纳米颗粒的材料。在利用传统方法制造的纳米颗粒中,易于发生颗粒间的聚结,由此导致尺寸不均。为防止该现象而使用诸如表面活性剂或分散剂等添加剂时,产生的缺点是制得的纳米颗粒含有大量的杂质,从而造成纳米颗粒的纯度劣化。作为制备高纯度纳米颗粒的方法,典型方法是利用干式沉积法在真空中使金属或陶瓷蒸发,然后浓縮并收集冷壁上蒸发的金属或陶瓷。不过,该方法并不适于纳米颗粒的大量生产,而且极难控制纳米颗粒的尺寸和均匀性。为了克服传统方法的缺点,本申请人提供一种通过利用韩国专利申请第10-2004-0013826中的真空沉积法在作为基底的粉末上沉积纳米颗粒的方法。该方法解决了由于利用真空沉积法在粉末上直接沉积纳米颗粒所导致的纳米颗粒之间发生聚结的缺陷,并具有获得纯度极高的纳米颗粒的优点。而且,通过在功能性粉末上沉积具有不同功能的纳米颗粒可以制备多功能粉末。在由该申请人所提供的传统方法中,分别地逐步进行将金属或陶瓷沉积在静止状态下的粉末基底上的步骤和将沉积有金属或陶瓷的粉末混合的步骤,并重复实施这些步骤多次,由此在该粉末的表面上形成具有理想尺寸的纳米颗粒。不过,该传统方法的不利之处在于纳米颗粒的尺寸不均一,且在整个粉末上不能连续的形成。而且,该传统方法的缺点还在于,分别进行沉积步骤和混合步骤导致制备过程复杂,制备时间延长,难以增大纳米颗粒的含量,不易进行大规模生产。对该传统方法的缺点的详细描述如下。图1是显示在氧化铝粉末上提供的传统纳米银颗粒的扫描电子显微照片。如图1所示,可以看出形成了2nm以下的较小的纳米银颗粒,此外还形成了20nm以上的纳米银颗粒,从而导致纳米颗粒的尺寸不均一。这源于下述事实由于沉积纳米颗粒时粉末处于静止状态,因而来自沉积源的颗粒随粉末的形状或位置的不同而具有不同的量,并且当与沉积源接触的时间长于形成理想尺寸的纳米颗粒所需的时间时,纳米颗粒的尺寸随意增大。因此,在静止状态下沉积纳米颗粒所用的时间受限,并且,在沉积后进行混合过程,然后再一次实施在静止状态下的纳米颗粒的沉积过程。因此,在具有较早形成的纳米颗粒的粉末中,当沉积时间延长时,导致颗粒间发生聚结,且纳米颗粒增大至微米尺寸或更大的尺寸并丧失纳米特征。因此,将沉积时间限制到发生聚结之前,由此,在将纳米颗粒的含量增大至应用所需的程度时存在问题。这个原因造成的缺点是,图2的传统搅拌器为平底式而非现有的桶式,并且它在一个平面上搅拌粉末,在这样的传统搅拌器中进行搅拌时,粉末没有被完全遮盖,在搅拌前就已经曝露于沉积区的粉末再次曝露于沉积区。这是难以实现本发明的主要目的的主要原因,即难以在粉末的表面上均匀地生成纳米颗粒的主要原因。
发明内容[技术问题]本发明涉及制备粉末的方法和装置,所述粉末上均匀地真空沉积有纳米金属、合金和陶瓷颗粒。该方法和装置基本上避免了由于现有技术的局限和缺点所致的一个或一个以上的问题。本发明的一个目的是提供这样的方法和装置为了克服沉积与搅拌分别进行的传统方法的缺点,通过使用有效的搅拌工具同时进行沉积和搅拌,从而制备沉积有尺寸非常均匀的纳米金属、合金和陶瓷颗粒的粉末。本发明的另一方面是提供用于制备沉积有纳米颗粒的粉末的方法和装置,其中,即使在制备纳米颗粒时延长用于增大该纳米颗粒含量的沉积时间,也能够防止出现纳米颗粒的聚结现象,从而保持了纳米特性。为了获得这些和其他优点,根据本发明所具体化和概括描述的目的,本发明提供通过使用真空沉积法将诸如金属、合金和陶瓷等纳米颗粒均匀地沉积在粉末基底的表面上的方法和装置。本发明所制得的沉积有纳米颗粒的粉末不仅具有其自身的功能,而且还具有提供被沉积的纳米颗粒的功能的特点。因此,该粉末可应用于不同工业领域,并且能够比传统粉末产生更大的附加值。具体而言,本发明涉及一种方法,其中,使用相比于粉末尺寸具有足够深度的桶式搅拌器,在三维空间搅拌粉末,从而使得曝露于沉积区的时间最小化,并使已经形成有纳米颗粒的粉末再次曝露于沉积区之前的时间延长,以使相比于传统搅拌器而言粉末基底的运动最大化,由此抑制早期形成的纳米颗粒与来自沉积源的新颗粒之间的聚结,从而最大限度地形成纳米颗粒。换言之,传统技术所遵循的理念是,通过控制静止状态下的曝露时间来形成纳米颗粒。与此相反,本发明是完全新型的方法,其中纳米颗粒在动态下形成,因此纳米颗粒的尺寸受到搅拌速度的极大影响。而且在传统技术中,暴露于平面的粉末的量受限,因而导致可被一次处理的粉末的量受限。然而,在本发明中,使用具有较大深度的桶式搅拌器同时进行搅拌和沉积,因此甚至可以解决大规模生产问题。'.本发明提供了通过使用真空沉积法在粉末型基底的表面上制备具有优异的尺寸均一性的纳米金属、合金和陶瓷颗粒的装置和技术。本发明的优点在于通过使用真空沉积法获得高纯度,并且没有观察到由于在粉末基底上进行纳米沉积而导致的纳米颗粒之间常见的聚结现象,由此使纳米效应最大化。可以采用各种真空沉积法,诸如金属、合金和陶瓷等大部分材料可形成为所述纳米颗粒。由于不存在化学处理因而制造过程可以高度简化。通过调节可单独控制的工艺变量,如溅射功率、真空度和搅拌速度,可以制备具有优异再现性的产物。除了现有的粉末基底的功能之外,还增添了纳米颗粒的功能,因此能够制备多功能粉末。可以预期这将适用于下列不同领域能量转换领域、燃料电池和用于氮化合物分解目的的催化剂领域,以及需要抗菌和消毒的日常用品、废水处理和光学催化剂领域。图1是描述根据传统技术形成于氧化铝粉末上的纳米银颗粒的SEM照片;图2是描述传统工艺的粉末搅拌装置和纳米颗粒制备装置的概念视图3是描述本发明的纳米颗粒沉积用制备装置的示意图;图4是描述本发明的搅拌单元的示意性透视图;图5是描述根据本发明的示例性实施方式沉积于氧化铝粉末上的纳米银颗粒的SEM照片;图6是描述根据本发明的示例性实施方式沉积在氧化铝粉末上的纳米银颗粒的化学状态的XPS分析结果图7A是描述沉积前的氧化铝粉末的表面的SEM照片,图7B是描8述利用本发明示例性实施方式最大化的沉积量和沉积时间所观察的氧化铝粉末的表面的SEM照片;图8A是描述未沉积纳米颗粒的氧化铝粉末的表面的化学组成分析结果的照片和图,图8B是描述本发明的示例性实施方式的沉积有纳米颗粒的氧化铝粉末的表面的化学组成分析结果的照片和图9是插述XPS测定结果的曲线,根据本发明的示例性实施方式,通过测定沉积在氧化铝粉末上的纳米银颗粒的银含量与沉积时间的关系而获得该曲线;图10A10E是一些实际照片,它们分别描述延长图9所示的同一沉积时间时的沉积有纳米银颗粒的氧化铝粉末;图11A是描述未添加纳米银颗粒的肥皂样品的抗菌测试结果的照片,图11B是描述本发明的另一示例性实施方式的肥皂样品的抗菌测试结果的照片,图IIB的肥皂样品中混合有沉积有纳米银颗粒的糖;禾口图12A12F分别是描述形成有纳米颗粒的糖、盐、活性炭、A1203、砂和PE(聚乙烯)碎屑的粉末样品的实际照片。具体实施例方式以下将参考附图对本发明的优选实施方式进行详细说明。图3是描述根据本发明的用于沉积纳米颗粒的装置的示意图,而图4是描述根据本发明的搅拌单元的示意性透视图。本发明的制备装置利用真空沉积法在作为基底的粉末的表面上沉积诸如金属、合金和陶瓷等纳米颗粒,所述装置包括用于形成并保持真空的真空室l;与该真空室l的一个外侧连接的高真空泵2和低真空泵3;包括用于盛装粉末的桶4和用于搅拌粉末的叶轮6的搅拌单元;用于真空沉积诸如金属、合金和陶瓷等材料的沉积单元8;用于对粉末进行预处理的加热单元9;用于从粉末中除去水分的冷阱10;和用于防止粉末在搅拌时扩散至搅拌单元外部的护罩7。桶4由诸如不锈钢等材料形成,该材料具有优异的耐磨损性和耐腐蚀性,且对人体无害。冷却剂循环通道5安装在桶4的外侧。该冷却剂9循环通道5供应冷却剂并抵消由沉积单元所产生的热量,由此最大限度地防止耐热性较弱的粉末受热而损坏。如图4所示,叶轮6在其圆周表面优选包括多个翼片6a,从而使得粉末能够在桶4的内部均匀混合。叶轮6按一个方向旋转,并由耐磨损性、耐腐蚀性和耐热性优异且对人体无害的材料构成。其中,通常可以使用不锈钢材料。根据粉末的种类可选择不同形状的叶轮6。对叶轮6进行成形加工,以使粉末能够最大程度地均匀混合。沉积单元8可以使用现有的已知真空沉积法,如物理气相沉积法(PVD)或化学气相沉积法(CVD),其中采用使用DC/RF/MF等电源的磁控溅射器、使用离子枪的离子束溅射器和使用电阻加热或电子束的热蒸发器。其中,DC/RF/MF磁控溅射器最容易使用。真空室1可以选择不同的材料,以使其较少的向外排气并耐受较高的压力。真空室1通常可以使用不锈钢材料。在本发明中,真空泵包括低真空泵3和高真空泵2。根据所要求的工作真空度,该真空泵仅仅使用低真空泵3,或组合使用低真空泵3与高真空泵2。低真空泵3可以采用活塞泵、旋转式泵、加压泵和干式泵。高真空泵可以釆用油扩散泵、涡轮泵和低温泵。桶或真空沉积单元的个数可以依据生产量的不同而不同。为了快速工作,低真空泵3或高真空泵2可以多个一起使用,由此使个数最优化。图5是描述根据本发明的示例性实施方式沉积于氧化铝粉末上的纳米银颗粒的扫描电子显微镜(SEM)照片。可以看出,与图1相比,纳米颗粒的尺寸均一,在5nm至10nm之间。该纳米颗粒的均一性得到改善是因为它们在桶内得到连续有效的搅拌,由此使得粉末表面的曝露时间恒定,因而均匀地控制银原子的沉积个数。在表面上形成具有预定尺寸的临界核的沉积颗粒以稳态提供。利用曝露时间可以控制成簇的沉积原子的个数,因此可以控制形成的纳米颗粒的尺寸。图6是描述利用本发明的装置沉积在氧化铝粉末上的纳米银颗粒的化学状态的X射线光电子能谱(XPS)分析结果图。XPS分析基于银的3d峰进行,比较并分析沉积于玻璃基底上的银膜的化学状态以供对照。随着银沉积时间由150分钟增至990分钟,搅拌氧化铝粉末以制得纳米银颗粒,该纳米银颗粒的XPSAg3d峰的位置即使在沉积时间延长时也保持不变,并且与沉积在玻璃上的银膜的峰的位置不同。与此相反,峰的强度和面积逐渐增大。这表示银的沉积量增大。沉积时间延长时,峰的强度和面积增大而峰的位置不变。这表示尽管沉积时间延长,但沉积于氧化铝粉末上的纳米银颗粒的尺寸并未增大,且小纳米颗粒型的纳米银颗粒的数目增大。因此,这表明即使总的来说沉积时间延长,但搅拌粉末时沉积的纳米银颗粒仍然保持极小的纳米颗粒型而非膜型。这是因为,有效地搅拌粉末可以縮短静止状态的粉末与沉积源的接触时间,且粉末的连续运动导致形成新的纳米颗粒而不是使纳米颗粒长大。纳米颗粒的尺寸与从沉积源蒸发的纳米颗粒的量密切相关。沉积时间延长时,可以调节纳米颗粒的尺寸和量。图7A是描述沉积前的氧化铝粉末的表面的SEM照片,图7B是描述利用本发明示例性实施方式最大化的沉积量和沉积时间所观察的氧化铝粉末的表面的SEM照片。如根据本发明的示例性实施方式的图7B所示,观察到纳米银颗粒的尺寸生长,且其尺寸为约1020nm。在图5和6中观察到,当沉积时间在预定时间范围内时,有可能生长尺寸为约10nm以下的纳米颗粒。当沉积量和沉积时间最大化时,也有可能增大该纳米颗粒的尺寸,并生长尺寸为约200nm的纳米颗粒。不过,可以看出,即使该纳米颗粒的尺寸变大,整个粒径的分布仍然非常稳定。图8A是描述未沉积纳米颗粒的氧化铝粉末的表面的化学组成分析结果的照片和图,图8B是描述本发明的示例性实施方式的沉积有纳米颗粒的氧化铝粉末的表面的化学组成分析结果的照片和图。在图8A中可以看出,在没有沉积纳米颗粒的氧化铝粉末部分未观察到银(Ag)。相反,在图8B中可以看出,在纳米颗粒部分观察到银,而且氧化铝粉末表面上的颗粒是利用真空沉积形成的纳米银颗粒。图9是描述XPS测定结果的曲线,根据本发明的示例性实施方式,通过测定沉积在氧化铝粉末上的纳米银颗粒的银含量与沉积时间的关系而获得该曲线。可以看出,沉积在氧化铝粉末上的银的含量随沉积时间而逐渐地单调增加。这表明可以简单地改变沉积时间,从而能够容易地控制纳米颗粒的理想含量。图10A10E是一些实际照片,它们分别描述延长图9所示的同一沉积时间时的沉积有纳米银颗粒的氧化铝粉末。如这些图所示,纳米银颗粒的含量增大时,氧化铝粉末的颜色逐渐变深。这是随着含量增大导致纳米银颗粒的尺寸变大而产生的结果。尽管沉积时间长,但沉积有纳米银颗粒的氧化铝粉末略带黄色。这是具有200nm以下的小尺寸的纳米Ag颗粒的典型颜色。颜色的变化也与图5的SEM结果严格一致。如上所述,本发明提供利用真空沉积法在粉末基底上制备具有优异的尺寸均匀性的纳米金属、合金和陶瓷颗粒的方法,并确定了根据本发明制得的纳米颗粒的特点。实施例下面将对本发明的实施例进行详细描述。不过,下列的实施方式仅是示例性的,而非意在限制本发明的范围。[实施例l]:纳米银沉积于盐和糖上将大约25kg干盐或干糖装入图3的桶4中,并将银靶放置在DC磁控溅射器上。在将粉末放入真空室1中后,使用真空泵形成真空状态。根据工作条件,真空度仅由低真空泵3提供或者由低真空泵3结合高真空泵2提供。初始真空度保持在约10"torr10—6torr(托)。溅射用气采用氩(Ar)气。氩气的注入量可随工作条件改变。一般说来,进行注气以保持真空度为约10"torr10^torr。在抽至所需的真空度并注入溅射用气之后,实施银靶溅射,同时旋转桶4内部的叶轮6。叶轮6的转速是可控的,溅射速度可根据输入功率控制,并通常在1W/cm2200W/cm2的范围内及该范围外。相对于盐的银含量可根据例如溅射功率、溅射时间和真空度等工作条件而变,并通常可以控制在10ppm10000ppm的范围内。纳米银颗粒的尺寸也可以根据由桶4的叶轮6的速度所决定的盐和糖的混合程度以及工作条件进行控制。这样的产品可以与需要抗菌消毒的日常用品如牙膏、肥皂和清洁剂混合使用,或者也可以单独使用。表1显示了通过与沉积有纳米银颗粒的糖混合而制得的肥皂样品的抗菌测试结果。如表1所示,可以看出,在未添加纳米银颗粒的样品(空白)中,培养24小时后,细菌的个数增多,超过了细菌的初始个数。与此相反,可以看出,在添加有纳米银颗粒的样品中,培养24小时后,观察到细菌减少了99.9。%以上,通过加入纳米银颗粒细菌被全部杀灭。图11A11B显示了表1的肥皂样品的抗菌测试结果。如前所述,可以看出,在含有纳米银颗粒的肥皂样品中的细菌的个数快速减少。由此可见,根据本发明制备的纳米银颗粒具有足够的抗菌性能。表1.抗菌测试结果<table>tableseeoriginaldocumentpage13</column></row><table>注:1.测试条件于37°C±1°C的温度摇动培养测试用细菌液体24小时,然后测定细菌的个数(摇动的次数120次/分钟)2.公知的细菌金黄色葡萄球菌(Stop/2y/ococcwm^1^)ATCC65383.使用l.Og样品进行测试。[实施例2]:纳米银沉积于活性炭上将大约20kg活性炭装入真空室内部的桶中,使用与实施例1相同的装置和工作条件使银纳米颗粒沉积在活性炭上。如果材料难以获得所需的真空度,如活性炭等多孔材料,在抽真空时,利用设置在桶上部的加热器加热,则它易于在略微更快的时间内进行抽真空。活性炭的银含量可通过改变工作条件(如溅射功率、溅射时间、叶轮转速和真空度等)进行调节,该含量可被控制在10ppm10000ppm的范围内。该产物可用于净水器用抗菌消毒过滤器。:纳米银沉积于砂上将大约20kg砂装入真空室1内部的桶4中,使用与实施例1相同的装置和工作条件使银纳米颗粒沉积在砂上。在许多情况中,砂通常含有大量水分。因此,在将砂装入真空室1内部的桶4中之前,通过干燥处理从砂中除去水分是有利的。干燥处理后仍残留的水分利用安装在桶4上部的加热器和真空室1内部的冷阱10除去。冷阱10利用致冷剂截留真空室1内部的水分,因此可略微更快地抽真空。砂的银含量可通过改变工作条件(如溅射功率、溅射时间、叶轮转速和真空度等)进行调节,该含量可被控制在10ppm10000ppm的范围内。该产物可用于类似养鸡场或畜舍等需要抗菌消毒功能的场所,也可应用于高尔夫球场。:纳米银沉积于二氧化钛(Ti02)、氧化铝(A1203)上将大约20kg诸如二氧化钛或氧化铝等陶瓷粉末装入真空室1内部的桶中,使用与实施例1相同的装置和工作条件使银纳米颗粒沉积在陶瓷粉末上。理想的是,使用尺寸为约100nm5mm的即使在真空中也不会变化的Ti02和Al203粉末。陶瓷粉末的银含量可通过改变工作条件(如溅射功率、溅射时间、叶轮转速和真空度等)进行调节,该含量可被控制在10ppm10000ppm的范围内。该产物适用于水处理、抗菌和消毒领域。:纳米银颗粒沉积于二氧化硅(Si02)上将大约20kg的二氧化硅粉末装入真空室1内部的桶4中,使用与实施例1相同的装置和工作条件沉积金属纳米颗粒。理想的是,使用尺寸如实施例4中的在真空中不会变化的SK)2粉末。该尺寸在约100nm5mm的范围内或之外。可用的金属是能够用作氮化物的催化剂的一类金属,如钒(V)、锰(Mn)、镍(Ni)和钨(W)。二氧化硅粉末的金属含量可通过改变工作条件(如溅射功率、溅射时间、叶轮转速和真空度等)进行调节,该含量可被控制在10ppm10000ppm的范围内。该产物可用作用于分解氮化物如一氧化氮(NO)的催化剂。:纳米金属和陶瓷颗粒沉积于氧化锆(Zr02)和氧化铁(Fe203)上将大约20kg氧化锆或氧化铁粉末装入真空室1内部的桶4中,使用与实施例1相同的装置和工作条件沉积纳米金属或陶瓷颗粒。沉积耙是金(Au)、钼(Pt)、钌(Ru)、锡(Sn)、钯(Pd)、镉(Cd)、MgO、CaO、Sm203和La203。该粉末的纳米颗粒含量可通过改变工作条件(如溅射功率、溅射时间、叶轮转速和真空度等)进行调节,该含量可被控制在10ppm10000ppm的范围内。该产物适于用作能量转换领域和燃料电池的催化剂,以诱导石油与液化气之间的反应。:纳米金属颗粒沉积于聚合物碎屑上将大约20kg碎屑型PE、PP(聚丙烯)、PET(聚对苯二甲酸乙二酯)和PS(聚苯乙烯)装入真空室1内部的桶4中,使用与实施例1相同的装置和工作条件沉积纳米金属颗粒。沉积靶是银(Ag)、金(Au)和铝(Al)。该粉末的纳米颗粒含量可通过改变工作条件(如溅射功率、溅射时间、叶轮转速和真空度等)进行调节,该含量可被控制在10ppm10000ppm的范围内。通常,聚合物材料的表面能较低,从而与金属的粘合强度较弱。鉴于此,在纳米颗粒沉积之前,可以对聚合物材料进行表面处理以活化其表面。表面处理方法可以采用目前公知的离子束辅助反应、直流/交流等离子体或电子束反应法。对沉积有纳米颗粒的这种碎屑进行成型加工可得到各种产品。该产物适用于需要抗菌消毒的塑料家具、包装容器或装饰材料。图12A12F显示了描述不同粉末样品的实际照片,所述粉末样品由具有纳米颗粒的糖、盐、活性炭、A1203、砂和PE碎屑形成,这些粉末样品分别记述在各个实施例中。如上所述,本发明涉及形成有纳米单位尺寸的纳米金属、合金和陶瓷颗粒的粉末的制备方法,且本发明是利用纳米效应提供各种工业适用性的技术。形成有纳米颗粒的粉末基底可以直接使用。特别是,当可溶性粉末如氯化钠(NaCl)、氢氧化钾(KOH)、聚乙烯醇、糖、阿斯巴甜、糖精和甜菊糖等用作基底时,已形成的纳米颗粒与粉末基底可使用适宜的溶剂分离。由此可获得并应用纯的纳米金属、合金或陶瓷颗粒。不过,根据需要,可以使用适宜的分散剂,以防止纳米颗粒在溶液中聚结。溶解可溶性粉末所需的溶剂采用所有的极性溶剂和非极性溶剂,极性溶剂有蒸馏水、甲醇、乙醇、异丙醇、丙酮等,非极性溶剂有己烷、苯等。可以根据可溶性粉末的种类选择并使用适宜的溶剂。作为上述的由可溶性粉末获得纳米颗粒的方法,可以有下述方法使用公知的滤纸或过滤装置过滤分散在溶液中的纳米颗粒的方法;和尽可能稀释粉末(相当于溶液中的溶质)的浓度,然后干燥被稀释溶液的方法。根据本发明,依据应用领域的特征和用途进行变形、混合、稀释和浓縮处理,形成有纳米颗粒的粉末和从该粉末上分离的纳米颗粒作为完整产品可应用于各种领域。工业实用性本发明提供通过使用真空沉积法在粉末型基底的表面上制备具有优异的尺寸均一性的纳米金属、合金和陶瓷颗粒的装置和技术。本发明的优点在于,通过使用真空沉积法获得高纯度,并且没有观察到由于在砂上进行纳米沉积而导致的纳米颗粒之间常见的聚结现象,由此使纳米效应最大化。可以采用各种真空沉积法,诸如金属、合金和陶瓷等大部分材料可形成为所述纳米颗粒。由于无需化学处理,因而制造过程可以高度简化。通过调节可单独控制的工艺变量,如溅射功率、真空度和搅拌速度,可以制备具有优异再现性的产物。除了现有的粉末基底的功能之外,还增添了纳米颗粒的功能,因此能够制备多功能粉末。可以预期这将适用于下列不同领域能量转换领域、燃料电池和用于氮化合物分解目的的催化剂领域,以及需要抗菌和消毒的日常用品、废水处理和光学催化剂领域。尽管此处参考本发明的优选实施方式对本发明进行了描述和说明,但对于本领域熟练有经验的技术人员来说显而易见的是,在不脱离本发明的精神和范围的前提下,可以对所述实施方式进行各种修正和变化。因此,本发明旨在涵盖落入所附权利要求及其等同权利要求的范围的本发明的各种修正和变化。权利要求1.一种用于制备均匀地真空沉积有纳米金属、合金和陶瓷颗粒的粉末的方法,所述方法包括同时进行真空沉积步骤和粉末搅拌步骤达预定的时间,在所述真空沉积步骤中,在作为基底的粉末的表面上真空沉积所述纳米金属、合金和陶瓷颗粒,在所述粉末搅拌步骤中,搅拌沉积有所述纳米金属、合金和陶瓷颗粒的所述粉末,以使基于纳米单位具有均匀的平均粒径的所述纳米金属、合金和陶瓷颗粒沉积在所述粉末的表面上。2.如权利要求l所述的方法,其中,所述所述纳米金属、合金和陶瓷颗粒的所述真空沉积步骤通过物理真空沉积法或化学真空沉积法实施。3.如权利要求l所述的方法,其中,所述粉末是平均粒径为100nm5mm的无机材料或有机材料,所述粉末在真空中不蒸发。4.如权利要求l所述的方法,其中,所述粉末搅拌步骤利用具有预定深度的桶式搅拌单元在三维空间搅拌所述粉末,从而,即使沉积有所述纳米颗粒的所述粉末再次曝露于沉积区,到达所述粉末上的沉积颗粒仍为独立的纳米颗粒,而不会与已有的簇聚结。5.如权利要求1所述的方法,所述方法还包括在真空沉积所述纳米颗粒的步骤和搅拌所述粉末的步骤之前干燥所述粉末的步骤。6.如权利要求1所述的方法,所述方法还包括在真空沉积所述纳米颗粒的步骤和搅拌所述粉末的步骤之前活化所述粉末的表面的步骤。7.如权利要求6所述的方法,其中,所述粉末表面的活化步骤通过离子束辅助反应法和直流/交流等离子体或电子束反应法实施。8.—种装置,所述装置利用真空沉积法在作为基底的粉末的表面上沉积纳米金属、合金和陶瓷颗粒,并制备均匀地真空沉积有纳米金属、合金和陶瓷颗粒的粉末,所述装置包括用于形成并保持真空的真空室(1);与所述真空室的一个外侧连接的高真空泵(2)和低真空泵(3);包括用于盛装所述粉末的桶(4)和用于搅拌所述粉末的叶轮(6)的搅拌单元;用于真空沉积金属、合金和陶瓷材料的沉积单元(8);用于对所述粉末进行预处理的加热单元(9);用于从所述粉末中除去水分的冷阱(10);和用于防止所述粉末在搅拌时扩散至所述搅拌单元外部的护罩(7)。9.如权利要求8所述的装置,其中,在所述桶(4)的外侧设置冷却剂循环通道(5),该冷却剂循环通道用于供应冷却剂并抵消由所述沉积单元(8)所产生的热量。10.如权利要求8所述的装置,其中,所述桶(4)、所述叶轮(6)和所述真空室(1)均由不锈钢材料形成。11.如权利要求8所述的装置,其中,所述叶轮(6)在其圆周表面具有多个翼片(6a)并按预定方向旋转,从而使得所述粉末能够在^f述桶(4)的内部均匀混合。12.如权利要求8所述的装置,其中,所述高真空泵(2)采用油扩散泵、涡轮泵和低温泵中的任一种。13.如权利要求8所述的装置,其中,所述低真空泵(3)采用活塞泵、旋转式泵、加压泵和干式泵中的任一种。14.一种用于制备包含纳米金属、合金和陶瓷颗粒的溶液的方法,所述方法包括同时进行真空沉积步骤和粉末搅拌步骤达预定的时间,在所述真空沉积步骤中,在作为基底的可溶性粉末的表面上真空沉积所述纳米金属、合金和陶瓷颗粒,在所述粉末搅拌步骤中,搅拌沉积有所述纳米金属、合金和陶瓷颗粒的所述粉末,以使基于纳米单位具有均匀的平均粒径的所述纳米金属、合金和陶瓷颗粒沉积在所述粉末的表面上;以及将所述可溶性粉末溶解在溶剂中。15.—种用于制备纳米金属、合金和陶瓷颗粒的方法,所述方法包括同时进行真空沉积步骤和粉末搅拌步骤达预定的时间,在所述真空沉积步骤中,在作为基底的可溶性粉末的表面上真空沉积所述纳米金属、合金和陶瓷颗粒,在所述粉末搅拌步骤中,搅拌沉积有所述纳米金属、合金和陶瓷颗粒的所述粉末,以使基于纳米单位具有均匀的平均粒径的所述纳米金属、合金和陶瓷颗粒沉积在所述粉末的表面上;以及将所述可溶性粉末溶解在溶剂中,并从溶液中分离出不溶解的纳米颗粒。16.如权利要求15所述的方法,其中,通过过滤从所述溶液中分离所述纳米颗粒。17.如权利要求15所述的方法,其中,稀释并干燥所述溶液,并且从所述溶液中分离所述纳米颗粒。全文摘要本发明涉及制备粉末的方法和装置,其中,利用真空沉积法,在作为基底的粉末的表面上,真空沉积具有优异的尺寸均一性的纳米金属、合金和陶瓷颗粒。特别是,本发明提供制备沉积有尺寸非常均匀的纳米金属、合金和陶瓷颗粒的粉末的方法和装置,其中,通过使用有效的搅拌工具同时进行沉积和搅拌,以克服沉积和搅拌分别进行的传统方法的缺点。本发明还提供用于制备沉积有纳米颗粒的粉末的方法和装置,其中,即使在制备纳米颗粒时延长用于增大该纳米颗粒含量的沉积时间,也可通过防止产生纳米颗粒的聚结现象来保持纳米特性。文档编号B82B3/00GK101296857SQ200680039983公开日2008年10月29日申请日期2006年10月16日优先权日2005年10月26日发明者吕运贞,周栽镐,李正焕,白永焕,赵俊植,韩荣建,高锡勤申请人:株式会社P&I
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1