专利名称:用于制备纳米线结构的方法
技术领域:
本发明涉及纳米线器件的制备,尤其涉及包括从衬底沿预定方向排列并且突出的纳米线的纳米线器件。
背景技术:
近年来对半导体纳米线的兴趣在增长。与常规的平面技术相比,基于纳米线的半导体器件提供了归因于纳米线的一维属性的独一无二的特性、归因于较少的晶格匹配限制的在材料组合方面提高的灵活性以及新型器件构架的可能性。用于生长半导体纳米线的合适方法在本技术领域中是已知的,并且一个基本制程是在半导体衬底上通过粒子辅助生长或所谓的VLS(气-液-固)机制的纳米线形成,这例如在US 7,335,908中被公开。举例来说可利用化学束外延(CBE)、金属有机化学气相沉积(MOCVD)、金属有机气相外延(MOVPE)、分子束外延(MBE)、激光消融以及热蒸发方法来实现粒子辅助生长。然而,纳米线生长不限 于VLS制程,例如WO 2007/102781示出了可在不将粒子用作催化剂的情况下在半导体衬底上生长半导体纳米线。纳米线已被用于实现诸如太阳能电池、场效应晶体管、发光二极管、热电元件等器件,这些器件在许多情况下表现优于基于平面技术的常规器件。虽然具有有利的特性和性能,但纳米线器件的处理起初还是昂贵的。在这个方面的一个重要突破是已论证了用于在硅衬底上生长第III-V族半导体纳米线以及其他半导体纳米线的方法,该方法由于提供了与现有硅处理的兼容性并且可用更便宜的硅衬底取代负担不起的第III-V族衬底而是重要的。当利用上文所提及的技术生产包括生长在半导体衬底上的纳米线的半导体纳米线器件时,会经历大量的限制
-MOCVD系统是复杂的真空系统,这对器件的生产成本有显著影响;
-生长分批执行,在各个批次之间存在固有变化;
-大量纳米线在大表面上的生长引起同一批次的纳米线之间的变化;
-纳米线生长在衬底上,其需要经受住400-700°C的温度;以及 -为了沿竖直方向或任何其他方向排列纳米线,在半导体衬底上需要受控的外延生长。
发明内容
鉴于上述内容,本发明的一个目的是提供克服现有技术的上述缺点的用于生产纳米线半导体器件的替代方法。更特别地,目的是要提供这样一种纳米线,即无论它们被设置在何种衬底上,所述纳米线均具有明确限定并且受控的定向。因此,一种用于排列纳米线的方法被提供。所述方法包括提供纳米线以及在纳米线的群体上施加电场的步骤,由此所述纳米线中的电极化使这些纳米线沿所述电场排列。优选地,在所述提供和排列步骤期间使所述纳米线分散在流体(气体或液体)中。除了使线在电场中排列的极化之外,可在所述线中感生电偶极子以提供进一步的方向性并且增强所述排列。这样的偶极子可由pn结沿所述线的轴线方向感生;或由肖特基二极管在所述线的半导体区与金属区之间感生;或由压电效应感生;并且所述效应可通过在排列期间照射所述线来增强,从而在所述线的端部之间有效地感生开路光电压。由于光电二极管的开路电压仅随照度对数性地变化,因此这种光感生的偶极子的大小实质上与光照强度无关。当被排列好时,所述纳米线可以被固定,优选地与衬底接触。所述电场可被用于使所述纳米线与所述衬底或相对的表面接触。带电荷的纳米线在均勻电场中被吸引至带相反电荷的表面。在场梯度的情况下,不带电荷的纳米线被吸引至具有更高电场的区域。场梯度中的带电荷的线将经历这两种效应,或者沿相反方向或者沿相同方向。由所述线上的电荷所引起的力仅取决于所述电荷以及所述电场强度。由所述梯度所引起的力取决于场强、线尺寸以及电极化率。因此,通过沿相反方向设置所述两个力,可根据长度、尺寸以及组成来对纳米线进行分类。其自身上的梯度力也可被用于分类,在这种情况下,仅力的差异被用于沿不同方向引导线。
具有带pn结的纳米线和/或用(一个或多个)预定波长的光照射所述纳米线可以有助于排列所述纳米线和/或实现纳米线的一个或多个子群体的选择性排列。所述方法可在连续的制程中执行,诸如卷对卷制程,其中沿所述衬底以预定构造重复提供和沉积所述纳米线的群体。由于本发明,以成本高效的方式生产包括排列好的纳米线的纳米线器件而不受外延方法的局限性限制是有可能的。本发明的一个优点在于可以独立于纳米线在衬底上的沉积来生产纳米线。因而可以使用连续的制程。这简化了纳米线器件的制备并且提高了良率。采用这里所描述的方法沉积的纳米线可竖直排列,仅偏离法线小的角度,或者具有大的角度扩散。在后者的情况下,关键在于所述线具有清晰的优先方向,使得大部分线具有朝向所述衬底的相同端部。在前者的情况下,竖直排列可能更重要,而向上/向下定向可能不那么重要。在从属权利要求中限定了本发明的各实施例。当结合附图和权利要求考虑时,本发明的其他目的、优点和新颖性特征将从以下对本发明的详细说明中变得显而易见。
现在将参考附图来描述本发明的优选实施例,其中 图I示意性地示出了根据本发明的纳米线排列。图2示意性地示出了在电场梯度中对线进行分类的概念。长且细的线比较短、较粗的线更强烈地朝向更高的电场被吸引。对于合适尺寸的带电荷的线,可使由电荷所引起的力与由梯度所引起的力抵消。图3a示意性地示出了电场中的纳米线的尺寸和排列角度。图3b示出了相对于电场定向为“向上”和“向下”的纳米线的概念。图4针对具有两种不同尺寸但处于相同电场(1000 V/cm)的线比较由极化所引起的理论排列能量(绿色虚线)、光感生偶极子(红色实线)以及它们的总和(紫色点线)。较长的线(4b)的排列比较短的线(4a)的排列强,但是光感生偶极子太弱以至于并不重要。
图5针对具有相同尺寸但处于不同电场(分别为1000 V/cm和300 V/cm)的线比较了由极化所引起的理论排列能量(绿色虚线)、光感生偶极子(红色实线)以及它们的总和(紫色点线)。较高的场(5a,与4b相同)中的排列比较低的场(5b)中的排列强,但在后者的情况下,光感生偶极子足够强以主导排列并且提供优先方向。图6示出了与4a中相同的线在变化的电场中用于“向上”(红色实线)和“向下”(绿色虚线)方向的排列能量。存在大范围的场,其中“上”能量大于10 kT(即为了克服I kT的布朗转动能量),但其中“下”能量较低。对于非常细且长的线(未示出),不存在其中方向性重要的区域。图7示意性地示出了其中不同种类的线排列正在进行的状况。坐标轴不一定是线性的,并且各个状况之间的边界不应被视为如图所示那样的分明或者如图所示的那样造型
简单。 图8示出了应用本发明的一些主要方式。自然地,可以许多方式和以不同顺序来重新设置各个部分,太复杂而不在这里示意。例如,线尺寸分类可与以不同波长的光照结合并且与竖直排列串联以根据尺寸和组成两者选择性地沉积线。
具体实施例方式本发明的方法包括提供纳米线以及在纳米线上施加电场的步骤,由此纳米线中的电偶极子和/或偶极矩使纳米线沿电场排列。为了制备包括排列好的纳米线的结构,排列好的纳米线必须被固定在排列好的位置上。此外,纳米线优选地在一端或两端电连接和/或光连接。因此,排列好的纳米线优选地被沉积在衬底上。可在施加电场之前使预制的纳米线分散在流体中,并且相应地,可在施加电场之前将包含纳米线的流体涂在衬底上。如果没有另行明确说明,则为了示出本发明的原理,电场在下文中被定向为“朝上”,但并不限于此。纳米线可在被提供用于排列之前预制。可使用前面所提及的方法之一来制作半导体纳米线,其中将纳米线外延生长在衬底上。生长之后,将纳米线从它们的衬底上移除并且优选使纳米线分散在流体(气体或液体)中。还可使用基于液体溶剂的化学或气相合成来制作纳米线,其中纳米线生长自晶种粒子。在这些制程中,纳米线可以分别保持在液体或气体的剩余物中,或者可以被转移至合适的流体,该流体也可以是液体或气体。单极纳米线、具有轴向pn结的纳米线、具有径向pn结的纳米线、异质结构纳米线等可以被使用并且通常使用上文所提及的技术之一来制作。在单个制程中生长具有轴向Pn结的纳米线,其中晶种粒子包含针对一个极性的掺杂剂并且其中相反的极性在掺杂剂耗尽时被获得,或者在更复杂的制程中生长具有轴向Pn结的纳米线,其中在该制程期间显式地引入掺杂剂和源材料。在两阶段的制程中生长具有径向pn结的纳米线,其中生长条件被改变以给予径向生长,但除此之外都与具有轴向pn结的纳米线的制作相似。可或者在生长期间或者在独立的步骤中给予纳米线净电荷。举例来说,可通过下列各项中的一项或组合来实现纳米线中的电偶极子
I.电场将在任何导电的、半导电的或绝缘的纳米线中感生电极化,并且纳米线将使自身沿电场定向(图I)。a.对于单极纳米线,纳米线将沿电场定向,但对于晶种粒子端没有优选方向。b.在掺杂时具有轴向梯度的单极掺杂纳米线将被优先定向,这是因为更高度p(n)掺杂的一端将更容易带正(负)电,从而在电场中指引这端向上(向下)。2.包括p掺杂端和n掺杂端并且在它们之间形成pn结的纳米线将比单极纳米线更容易极化。a.当暴露于电场时,p掺杂端将变为带正电荷并且n掺杂端将带负电荷,并且因此纳米线将沿明确的方向定向,其中P掺杂端指向电场的方向。b.相同的效应将适用于单极掺杂的纳米线,其中肖特基二极管形成在线与其晶 种粒子之间。 3.对包含pn结的纳米线进行光照将感生强的电偶极子,其具有与电场所形成的电偶极子相同的极性,从而大大地增强了 pn结自身的效应(图I)。4.通过用不同预定波长区域中的光照射,由于不吸收光的线将具有远远更弱的偶极子,因此可选择性地排列具有不同带隙的纳米线。当用在包括排列好的纳米线的器件中时,用于排列的pn结可以是功能部分。此外,纳米线可包括不是有意用于排列的另外的功能部分。如何有效地排列线取决于其尺寸、组成、外部电场以及是否例如通过光照感生偶极子。下列一般规则适用于电场排列。给出的数字基于简化的理论模型并且不应被视为局限于一般表述的有效性。图3-7示出了这些规则。I.在简化的模型中,
a.由(感生的)偶极子所引起的排列能量(Ed)与电场按一次方成比例;
b.Ed与线直径的平方成比例但不取决于其长度;
c.由线材的极化所引起的排列能量(Ep)与电场的平方成比例;
d.Ep与线的纵横比(长度除以直径)的立方成比例。2.在一般低于100 V/cm的低电场中,排列较弱或者不存在,这意味着排列能量在kT量级或以下,kT是每根线的布朗转动的平均能量;k是波耳兹曼常数,而T是绝对温度(300K)。3.在一般高于10 kV/cm的高电场中,所有细长形的物体在不考虑方向的情况下被排列,这意味着由极化所引起的排列能量(Ep)远大于kT。4.较细且较长的物体比宽且短的物体更容易排列。5.在光照或线端部之间的电势差,即偶极子的其他源的作用下,存在其中Ed既大于EpX远大于kT的状况,从而得到具有优先方向的定向;这种效应对于较宽的线而言比对于较细的线显著(图7)。举例来说,可以通过下列各项中的一项或组合来完成排列好的纳米线的沉积
I.具有净电荷的纳米线将在电场中移动;因此,带负电荷的纳米线将朝下移动,衬底可被布置在下方。2.不带电荷的偶极子的随机扩散,这在平行板电容器之间的距离小的情况下特别有用,其中
a.可引入鞘流以防止在一侧上的沉积;b.可将衬底布置在纳米线的两侧用以沉积相反地排列的线;并且C.可使电极之间的距离小于线长度,或者通过移动板使其更靠近或者通过在包含纳米线的流体的流中进行收缩设计而迫使线接触衬底。3.带有或不带有净电荷的偶极子将在电场梯度中移动,使得线朝向更高的场被吸引。这种效应可以被用于纳米线的沉积和纳米线的分类两者(图2)。a.更长且更细的线经受由场梯度所引起的更强的力,并且将因此朝向具有更高的场的区域更快地移动。b.不同材料的电极化率不同。c.对于带电荷的线,梯度力可以被由电荷所引起的力平衡,从而允许进一步控制取决于尺寸和材料的分类。4.在图形化的衬底电极上,场梯度将影响沉积;结合波长选择性的偶极子产生, 可以根据组成和/或尺寸选择性地布置线。5.衬底后面的结构化的电极,例如钉床或脊状阵列,将产生点或条纹的图案;交替的电势将产生具有相反地定向的线的区域。6.可以通过衬底上的表面电荷的图案局部增强或抑制沉积;当带电荷的区域被来自所沉积的线的电荷中和时,可使沉积形成自限制。7.可通过热电泳来沉积线,其中悬浮在流体中的线将在热梯度中朝向温度更低的区域移动,即沉积在冷壁上和/或从热壁上被排除。8.在磁性纳米线的情况下,可用磁场容易地收集和控制纳米线。悬浮在流体流中的带电荷的纳米粒子(实际上产生电流)也受磁场影响。9.强烈聚焦的光(激光)和磁场在某些情况下可被用于例如通过光学镊子或磁阱效应来局部地捕获纳米线。10.除上述以外,诸如超声波、微波等的其他事物也可用于抑制或改进线沉积。可以使用两个相对(opposed)的电极,例如两个平行板,并且在电极之间施加电压来产生电场。所使用的衬底也可充当其中一个电极。在连续的制程中,例如采用薄条、箔片或薄片形式的衬底可以被输送到电极之间(或者如果衬底被用作一个电极,则在其中一个电极之上)并且可向电极施加脉动电压或周期电压以产生变化的电场并且因此产生排列好的纳米线的变化的定向。根据本发明,纳米线可被沉积
1.可在任何绝缘的、半导电的或金属的大体上平坦的衬底上沉积纳米线;
2.可在采用薄条、箔片或薄片形式的衬底上沉积纳米线,优选地在卷对卷制程中,其中使衬底通过沉积的点、条纹或区域,非常类似印刷机;
3.在线分散在液体中的情况下,作为胶状悬浮物,包含线的液体可被涂在衬底上,并
且
a.在液体烘干/蒸发期间排列线
b.在液体凝固/聚合期间或之前排列线
4.可在涂覆有聚合物、金属、液体或用于增强纳米线粘附和/或电接触的其他材料的衬底上沉积纳米线,其中
a.粘着材料可以非常薄,使得仅线端部被粘附;或者b.粘着材料具有与纳米线的长度相同量级的厚度;并且
C.如果纳米线分散在液体中,那么液体可包括单体以使衬底上的聚合物逐渐变厚,由此包封纳米线;
5.可在通过突出的形状、变化的粘性、表面电荷等图形化的衬底上沉积纳米线,以增强或局部抑制纳米线沉积;
6.可在功能衬底上沉积纳米线,其中纳米线意在增强或改变功能;
7.可以按由衬底后面的结构化电极或由(导电)衬底本身的结构产生的点或条纹等复杂的功能图案沉积纳米线,其中
a.纳米线的极性/方向可例如按条纹或棋盘形图案变化;并且
b.纳米线具有不同类型,并且通过以波长选择的方式感生电偶极子来分选纳米线;
8.可在衬底的两侧沉积纳米线,其中在任何一侧的线可具有不同类型并且通过不同手段来沉积,包括上文所描述的手段中的任何一种;
9.可在连续的制程中沉积纳米线,其中接触或粘附层、绝缘氧化物或聚合物等在纳米线的上游或下游沉积在衬底上。本专利申请中的术语“纳米线”意指至少一个维度小于Ium的任何细长型的结构。典型的示例包括但不限于
1.通过例如MOCVD生长、液体溶剂化学、气相生长而产生的直径为50-500nm并且长度为1-10 Pm的半导体纳米线。典型的材料为第III-V族或第III-N族半导体(GaAs、InP、GaSb, GaInN及相关合金)、硅、锗或第II-VI族半导体(ZnO、ZnS、CdS, CdSe及相关合金);
2.例如通过在阳极电镀铝制模板中的电解沉积、晶须生长、气相生长而产生的金属纳米线。这样的纳米线可由磁性金属、超导金属或普通金属制成;
3.绝缘的、高带隙半导体或高TC超导体纳米线,或者是制备的或者是自然出现的;
4.碳纳米管;或
5.生物纳米纤维,例如纤维素、蛋白质、高分子和细菌。用这种方法生产的器件如下所示,但并不限于此
I.光生伏打(PV)电池,其中光吸收和电荷分离单独发生在纳米线中,即其中纳米线包含pn结或其他整流机制。这样的PV器件包括密集填塞的纳米线阵列,其中大部分线竖向排列并且以相同极性相连。这也将包括或者从顶部起或者通过透明衬底的透明接触部,从而并联地连接所有线端部。2.发光二级管(LED),其中光发射和电荷重组单独发生在纳米线中,即其中纳米线包含Pn结或其他整流机制。这样的LED器件将包括可或者以相同极性或者以随机极性接触的纳米线阵列。在后者的情况下,该结构将充当整流器,适于与交流电压的直接连接。如果目标是产生大面积的发光表面,例如瓷砖乃至墙纸,LED阵列也将无需是极度密集的。3. PV电池,其中纳米线构成整流机制的部分,并且其他(一个或多个)部分处在衬底中;衬底例如为P型并且线为n型。这样的PV器件将用密集填塞的纳米线制成,但这里线的向上/向下定向不那么重要,并且因此处理更简单。另外,如果衬底中的载流子扩散长度足够大,则线密度可低于上述示例I中的线密度。4. LED,其中纳米线构成整流机制的部分,并且其他(一个或多个)部分处在衬底中;衬底例如为P型并且线为n型。正如上述示例2和示例3中那样,这样的LED布置缓解了对排列和密度的需要。5. PV电池,其中纳米线构成整流机制的部分,并且其他(一个或多个)部分处在沉积之后围绕线的基质中,例如P型线在n型的导电氧化物或聚合物中。这样的PV器件可在非常简单的衬底上制作。6. LED,其中纳米线构成整流机制的部分,并且其他(一个或多个)部分处在沉积之后围绕线的基质中,例如P型线在n型的导电氧化物或聚合物中。正如上述示例2-5中那样,这样的LED布置缓解了对排列和密度两者的需要。7. PV电池,其中衬底本身是光生伏打电池,并且其中纳米线被设计为吸收高于或低于衬底带隙的光,由此产生串接的光生伏打电池。串接电池的纳米线部分可根据上述示例1、3或5来制作。8.在PV电池或LED的所有上述示例中,可按例如条纹的图案设置纳米线,以允许借助于棱镜的光谱分辨的光吸收,获得多结PV功能;或者在每个条纹单独被接触的地方获 得具有可调节色温的光发射。9.在PV电池或LED的所有上述示例中,纳米线还给出具有顶表面的内在纳米结构,这对于在PV电池情况下的光吸收以及对于在LED情况下的光发射可以是有利的。10.热电池,其中纳米线的一维特性被用于改进热梯度可被用于产生电力的方式。此外,通过n型掺杂和p型掺杂的纳米线的独立区域的受控沉积,珀耳帖(Peltier)元件被形成,其可在电力向热梯度转换时被用于冷却或加热应用。11.电池,其中通过这种方法来准备一个或两个电极,并且因此该一个或两个电极用纳米线结构来构造。纳米线的小直径使其对变形不敏感并且因此对电池循环期间伴随容量变化的直径变化不敏感。12.燃料电池、电解或光解电池,其中主要材料由纳米线结构构成,这在对制程感生的变形的不敏感性、表面体积比以及与结构的制程流体交互方面给予它们超过其他材料的优点。13.微电子或数据存储器件可用从气溶胶相沉积的纳米线形成。14.用于功能材料膜在简单衬底上的生长的模板,其中排列好的纳米线为例如化合物半导体在硅上乃至在非晶表面(金属、玻璃等)上的生长提供了晶体结构。15.用于根据尺寸和/或材料对纳米线进行分类的器件,其中带电荷或不带电荷的纳米线的流通过电场梯度。更长、更细以及更易极化的线经受朝向更高的电场区域的更强的吸引力,并且可因此以使人联想到质谱仪的方式进行分类。对于带电荷的线,力可被平衡以得到更大的选择性。16.纳米复合材料,其中纳米线分散在例如聚合物基质中,从而例如得到提高的机械强度、增加的导电率、改善的透气特性等。这样的纳米复合物也可对所施加的外力敏感并且因此被用作传感器。17.场发射电子源,其中简单或异质结构设计的纳米线被沉积为阵列以用于场发
射应用。18.抗反射或滤光表面或智能窗。19.由壁虎效应所引起的、具有增强的机械粘附能力的表面。20.具有提高或降低的散热的表面。
21.化学或生物传感器。仅为了易于理解而引入所有对朝上、竖直、水平、纵向等的参考,而这不应被理解为局限于具体的定向。此外,图中的结构和坐标轴的尺寸不一定按比例绘制。虽然已结合当前被认为是最实用并且是优选的实施例描述了本发 明,但应理解的是本发明不应局限于所公开的实施例,相反地,其意在涵盖所附权利要求范围内的各种变型及等效设置。
权利要求
1.一种在纳米线结构的制备期间在衬底上排列纳米线的方法,其包括以下步骤 -提供纳米线(I)的群体;以及 -在所述纳米线(I)的群体上施加电场(E),由此所述纳米线中的电偶极子使所述纳米线沿所述电场(E)排列, 其特征在于 所述纳米线(I)的至少一个子群体中的每根纳米线包括下列各项中的一项 i) pn结,其中所述电偶极子从所述pn结的η侧向P侧形成; )肖特基二极管,其中所述电偶极子从所述肖特基二极管的η侧向P侧形成; iii)压电部分,其中通过由内在压电场所引起的电荷分离形成所述电偶极子; 并且其中每根线的带正电荷的端部沿所述电场(E)的方向受力。
2.根据权利要求I所述的方法,其中所述电场(E)通过正电荷和负电荷载流子朝向所述纳米线(I)的相对的两端的分离而在所述纳米线(I)中感生电偶极子,这对所述电偶极矩沿所述纳米线(I)被形成做出贡献。
3.根据权利要求1-2中的任何一项所述的方法,其还包括用预定波长区域中的光照射纳米线(I)的至少一个子群体,这对所述纳米线的电偶极矩的形成做出贡献。
4.根据权利要求3所述的方法,其中所述纳米线的群体(I)包括纳米线的多个子群体,每个子群体中的纳米线具有不同的带隙,并且所述方法还包括用不同波长区域中的光选择性地照射所述纳米线的群体以便选择性地排列具有不同带隙的纳米线。
5.根据权利要求1-4中的任何一项所述的方法,其中分散在流体中的纳米线被提供。
6.根据权利要求1-5中的任何一项所述的方法,其还包括将所述纳米线(I)固定在排列好的位置上。
7.根据权利要求1-6中的任何一项所述的方法,其还包括在衬底(2)上沉积所述纳米线⑴。
8.根据权利要求7所述的方法,其中纳米线的至少一个子群体中的每根纳米线携载净电荷,并且所述电场(E)对携载净电荷的纳米线施加力,由此携载净电荷的纳米线朝向所述衬底(2)迁移并且被沉积在所述衬底(2)上。
9.根据权利要求7或8所述的方法,其中所述纳米线的至少一个子群体中的每根纳米线不带电荷,并且所述电场(E)由于所述电偶极子而对所述不带电荷的纳米线施加力,由此所述不带电荷的纳米线朝向所述衬底(2)迁移并且被沉积在所述衬底(2)上。
10.根据权利要求7-9中的任何一项所述的方法,其中所述纳米线的至少一个子群体中的每根纳米线不带电荷,并且所述不带电荷的纳米线借助于扩散而朝向所述衬底(2)迁移并且沉积在所述衬底(2)上。
11.根据权利要求7-10中的任何一项所述的方法,其中所述衬底包括粘附层。
12.根据权利要求7-10中的任何一项所述的方法,其中在连续的制程中沉积所述纳米线。
13.根据权利要求12所述的方法,其中在卷对卷制程中沿所述衬底(2)以预定构造重复提供和沉积所述纳米线的群体。
14.根据权利要求7-13中的任何一项所述的方法,其还包括沉积绝缘聚合物以填充所述纳米线之间的空间。
15.根据权利要求7-14中的任何一项所述的方法,其还包括沉积电极材料,所述电极材料电连接至排列好的纳米线的与所述衬底(2)相对的一个端部。
16.根据权利要求I所述的方法,其中通过设置在所述纳米线的群体的相对侧上的第一电极和第二电极施加所述电场并且所述电极中的至少一个是有织构的。
17.根据权利要求I所述的方法,其中所述纳米线经受场梯度,由此更长且更细的线由于所述场梯度而经受更强的力并且将因此朝向具有更高的场的区域更快地移动。
18.一种用于根据尺寸和/或材料对纳米线进行分类的器件,其包括用于提供电场梯度的装置和用于使带电荷或不带电荷的纳米线的流通过所述场梯度的装置,由此更长、更细且更易极化的线经受朝向更高的电场区域的更强的吸引力并且可因此被分类。
全文摘要
本发明提供了一种用于排列纳米线的方法,该方法可被用于制作包括纳米线的器件,其中无论被设置在何种衬底上,所述纳米线均具有明确限定并且受控的定向。所述方法包括以下步骤提供纳米线(1)以及在纳米线(1)的群体上施加电场(E),由此所述纳米线的电偶极矩使所述纳米线沿所述电场(E)排列。优选地,在所述提供和排列步骤期间使所述纳米线分散在流体中。当被排列好时,所述纳米线可以被固定,优选地被沉积在衬底(2)上。可以在沉积时应用所述电场。pn结或在所述纳米线(1)中引入的任何净电荷都可有助于所述排列和沉积制程。所述方法适合几乎在任何衬底材料上进行连续处理,例如在卷对卷制程中,而不限于适合粒子辅助生长的衬底。
文档编号B82B3/00GK102770367SQ201080064565
公开日2012年11月7日 申请日期2010年12月22日 优先权日2009年12月22日
发明者J.奥尔森, K.德珀特, L.萨穆尔森, M.马格努森 申请人:昆南诺股份有限公司