多层扬声器振膜的制作方法

文档序号:5290428阅读:420来源:国知局
专利名称:多层扬声器振膜的制作方法
技术领域
本发明涉及扬声器振膜系统,尤其是涉及具有在振膜的至少一个表面上形成的连续、非均匀涂层的扬声器振膜。
背景技术
扬声器振膜具有由振膜的尺寸、硬度和密度决定的特有的共振。由铝制成的振膜具有的特有共振趋向于落在对音响性能造成消极影响的可听频率范围内。具有铝振膜的扬声器发出的声音可能对听者来说觉得刺耳,因此影响扬声器的音响质量。
一些扬声器振膜的制造包括在扬声器的一个或两个表面上通过阳极化形成一个氧化物层,以增加构造的硬度。增加的硬度引起构造的共振频率的升高,这样扩展了扬声器的可用带宽,使频率响应曲线变得平滑。结果,振膜以及扬声器的音响性能可被改善。
阳极化可能引起扬声器铝振膜的削弱,因为振膜表面的铝在这一过程中被消耗,导致更薄、更不牢固的振膜结构。在扬声器圆锥形结构上将音圈连接到振膜上的圆筒形或“颈状”区域,该脆弱性可能特别地成为问题,这是因为在该区域圆锥体的结构承受最大的应力。一些扬声器振膜包括用于振膜结构的较厚的铝基底。但是较厚基底的使用增加圆锥体的总质量,可能对圆锥体的音响性能造成不利的影响。
在阳极化处理的过程中,形成振膜的铝工件成为还包含阴极和电解液的电化电池中的阳极。当电流通过电池时,在铝工件上形成氧化铝层。传统的阳极化处理可能以金属表面的1到3A/dm2的电流密度操作。在这些值的情况下,阳极/阴极界面的电阻抗显著地大于阳极与阴极之间电解液的电阻抗。该阻抗随着涂层厚度的增加而增加。这样,具有较薄涂层的阳极的任何区域将对电流具有较小的阻抗。结果,在该区域的电流密度将增大,引起氧化物形成速度的提高,直到涂层厚度与工件的剩余部分的厚度相匹配。这样,以这些值进行的阳极化处理可能是自动变平,可产生厚度基本均匀的涂层。
不均匀厚度的涂层的形成在扬声器振膜的制造中可能是有用的,尤其是,在扬声器圆锥体的制造中是有用的。较厚的涂层可在振膜的圆锥形区域形成,较薄的涂层可在振膜的圆筒形区域形成。这些不均匀层的形成包括以两个分开的步骤执行涂层形成的过程。例如,一个圆锥体被阳极化,以在圆锥体的圆筒形或颈状区域形成一个薄层。然后,在希望较薄层的区域运用适当的漆、石蜡或机械接触屏蔽设备,可屏蔽圆锥体的圆筒形或颈状区域。然后进一步阳极化圆锥体未被屏蔽的区域,直到该区域被涂覆为所希望的厚度。这样,圆筒形区域的涂层厚度小于圆锥体的圆锥形区域的厚度,在两个涂层厚度的结合处或过渡区域具有一个“台阶”,其作用就象一个应力集中源,引起使用中的圆锥体的疲劳破坏。
因此,需要一种扬声器振膜,其具有可变厚度的连续涂层、更具完整性的结构和改进的性能,并能够被有效率经济地批量生产。

发明内容
本发明提供了扬声器振膜,尤其是,具有厚度变化的连续涂层的扬声器振膜。具体来说,本发明涉及包括以单个涂层形成步骤形成的非均匀厚度的连续涂层的扬声器振膜。在本申请中,扬声器振膜可以是包括扬声器圆锥体的任何扬声器振膜形状。
扬声器振膜包括一个圆锥形区域和一个圆筒形区域。振膜包括在其表面上形成的连续的非均匀涂层。该涂层在振膜的一个区域可以比其在另一个区域较厚,并从振膜的一个区域的最大值向其另一个区域的最小值逐渐变薄。厚度变化的连续涂层可形成在振膜的圆锥形和圆筒形部分的内、外表面之一或两者上。在振膜的内、外两个表面形成的涂层可以是同样的结构、厚度,并逐渐变薄,或者它们可以不同。
涂层可以是在振膜的一个或多个表面上阳极化形成的氧化物层。许多不同类型的非均匀涂层都是可能的。例如,涂层可以从圆锥形区域的边缘通过圆筒形区域连续地逐渐变薄。涂层可以从圆锥形区域表面上的一点到圆筒形区域表面上的一点逐渐变薄,如从振膜的圆锥形区域到圆筒形区域的过渡区域。涂层也可以在圆锥形区域中逐渐变薄,但在圆筒形区域中是均匀的。另外,圆锥形区域表面的部分涂层可包括均匀厚度的一个区域和一个变薄区域,圆筒形区域表面的部分涂层可以是均匀的厚度或厚度逐渐变薄。
为形成阳极化涂层,扬声器振膜作为阳极被连接到一个电化电池,该电池至少具有一个阴极和电解液。绝缘材料构成的非接触性屏蔽罩可以位于阴极与被阳极化的振膜表面之间。一种电解液,如硫酸或其它适当的电解液被引入到电池中。电流通过电池,在振膜表面上形成涂层。电池可以在高电流密度和各种温度下操作。例如,电池可以在约10A/dm2与300A/dm2的电流密度和0到100℃的温度下操作。可以控制电流密度在阳极/阴极界面的分布,已获得各种厚度的连续涂层。
在阳极/阴极界面的电流密度分布可以通过改变阴极与被涂覆的振膜的各个区域之间的电阻抗而进行控制,使得具有较高阻抗的区域比具有较小阻抗的区域流过的电流少。因此,电阻抗和电流密度分布可以通过改变阴极和阳极之间的电流路径长度来控制,或通过改变电流通路长度的截面面积或其组合来控制。
形成非均匀的涂层不需要对要被涂覆的扬声器振膜的任何部分进行的物理屏蔽,电压或电流的变化,不同电解液的使用或涂覆过程的中断。在不同厚度区域之间的结合处不会形成脆弱的区域,涂层可在单个步骤形成,而不需要中断过程和调节接触屏蔽,因而使得可以有效经济地批量生产扬声器振膜。
对于本领域技术人员来说,通过参考下面的图表和详细描述,本发明的的其它系统、方法、特点和优势将是或将变得一目了然。需要指出的是,所有这些另外的系统、方法特点和优势都包括在该描述中,也就是在本发明的范围内,并由以下的权利要求所保护。


参考下文中的附图和描述,将可以更好地理解本发明。这些图表中的部件并非是按照一定比例绘制,重点是在于解释本发明的原理。另外,在这些图表中,相同的附图标记指明所有不同视图中的相应部分。
图1是一个扬声器的一个截面图。
图2是一个扬声器振膜的截面图。
图3描述包括一个屏蔽罩和一个扬声器振膜的电化电池。
图4是包括逐渐变薄的涂层和包括连接到振膜的圆顶的扬声器振膜的截面图。
图5是包括逐渐变薄的涂层和包括连接到音圈架的圆顶的扬声器振膜的截面图。
图6是一个扬声器振膜的截面图,该扬声器振膜包括在振膜圆锥形区域逐渐变薄的涂层和在圆筒形区域的均匀涂层。
图7是一个扬声器振膜的截面图,该扬声器振膜包括在振膜圆锥形区域逐渐变薄的涂层和在圆筒形区域的均匀涂层,并进一步包括一个圆顶。
图8是是一个阳极氧化电池的电路图。
图9是一个扬声器振膜的截面图,该扬声器振膜包括在圆顶内部和外部具有不同厚度涂层的圆锥形区域。
图10示出包括两个屏蔽罩、两个阴极和一个扬声器振膜的电化电池。
图11是一个扬声器振膜的截面图,该扬声器振膜包括在振膜的内、外表面上逐渐变薄的涂层。
图12是一个扬声器振膜的截面图,该扬声器振膜在一个表面上具有逐渐变薄的涂层,在另一个表面上具有均匀的涂层。
图13利用图10中的电化电池进行涂覆的扬声器振膜的局部截面图。
图14示出包括两个屏蔽罩、两个阴极和一个扬声器振膜的电化电池。
图15是利用图14中的装置进行涂覆的扬声器振膜的局部截面图。
图16示出一个局部的电化电池,它包括具有穿孔的非接触性屏蔽罩。
图17是说明电化电池操作的一个工艺流程图。
图18是说明电化电池操作的一个工艺流程图。
具体实施例方式
本发明涉及涂布有可变厚度涂层的扬声器。尤其是,本发明包括具有连续涂层的扬声器振膜,该涂层从振膜的一个区域的第一厚度向振膜的第二个区域的第二厚度逐渐变薄。涂层增加了振膜的硬度,引起振膜特有共振频率向上移动,因而扩展了扬声器的有用带宽,结果改善了其音响性能。涂层可以在单个涂覆步骤中作为单个连续的可变厚度层在振膜上形成,而不需要中断涂覆过程,并不需要与振膜表面有物理接触。
图1是一个扬声器的截面图。扬声器100包括一个扬声器振膜102,一个圆顶104,和一个音圈106。音圈106包括架子108和绕组110。扬声器振膜102是在底盘112内由包围物(surround)114和支架116提供的一个悬架系统来支撑。
在图1中,扬声器振膜102包括一个扬声器圆锥体。该圆锥体包括一个颈状或大体圆筒形的区域120和大体是圆锥形的区域122。音圈架108可被连接到圆筒形区域120,并由粘合剂或其它连接装置来固定在位置上。可选地,圆顶104可连接到音圈架108(图5)。图2是扬声器圆锥体102的一个截面图,示出了圆锥形区域122和圆筒形区域120。
在图1中,音圈绕组110可位于一个磁性系统124提供的磁场内。当交流电通过音圈绕组110时,音圈106在磁场中前后移动,因而引起扬声器圆锥体112以交流电的频率振动,并发出声音。包围物114和支架116允许扬声器圆锥体102在有限频率范围上的有限幅度范围内在正、负两个方向上运动。
在图1中,主要负责从扬声器100发射声音的扬声器振膜102的区域被称作振膜102的音响区域。该区域可包括圆顶104的连接点126与振膜102的外围128之间的振膜的圆锥形区域122。在圆顶104被连接到音圈架108的地方,该音响区域可扩展到圆锥形区域122的整个区域。
扬声器振膜102可由任何适当的材料制成,如可阳极化的材料,包括铝、钛、镁、铝合金、钛合金、镁合金、或其任何的组合。扬声器振膜102的圆锥形区域122和圆筒形区域120的表面可被提供有一层电镀层。在圆顶104被连接到圆锥形区域122的扬声器振膜中,圆顶104也可包括一层电镀层。振膜表面上的该涂层形成为连续的涂层,在具有不同厚度的涂层的任何部分之间不存在“台阶”。例如,该涂层包括从振膜的圆锥形区段122的外围128通过振膜的圆筒形部分120的一个连续涂层。在阳极化过程中,非均匀的、连续的涂层是在单个步骤中形成的,并且没有利用接触屏蔽罩。
本方法用来在扬声器振膜上形成涂层,其中振膜的一个区域中的涂层比其另一个区域中的厚,并且从振膜表面上一点的最大值向其另一点的最小值逐渐变薄。可采用任何适当的涂覆技术来在振膜表面上形成非均匀的连续涂层。
涂层可由任何适当的材料形成,包括碳化物、硼化物、氮化物或氧化物。当振膜102是一种可阳极化的材料时,涂层可由氧化层形成。氧化层可通过阳极氧化过程在振膜的表面上形成。例如,涂层可通过Keronite工艺形成。
通过阳极化而形成非均匀连续涂层采用了包括电解液和阴极的电化电池。将要被涂覆的振膜是作为该电化电池的阳极被连接。电池的阴极可由铝、石墨、不锈钢或其它已知的可用材料而制成。可使用任何适当的电解液,包括各种酸,如硫酸、草酸、磷酸、酸混合物或酸和盐的混合物。当使用硫酸时,电解液的浓度可以是硫酸约100g/l到约400g/l,铝约1g/l到约30g/l。在一个示例中,电解液的浓度可以是硫酸约200g/l到约300g/l,铝约2g/l到约20g/l。电池可以在从约0到约100℃的电解液温度下操作。电解液可被加热到高于室温的温度,例如从约30到约80℃。在进一步的示例中电解液被加热到约40到60℃的温度。在另一个例子中,电解液被加热到约45到55℃的温度。温度的增加有助于相对于电解液/阳极界面的阻抗的电解液阻抗的增加。
在阳极化过程中,电流流过电池,电解液流过扬声器振膜的表面形成在扬声器振膜上的一个氧化层。流过基底的电解液从基底的表面清除了该过程产生的热量。通过电解液电池的出入口,电解液被抽动来经过电解液电池。电解液经过振膜表面的速度是约10到1000米/分钟。例如,电解液经过振膜表面的速度是约100到200米/分钟。在另一个例子中,电解液经过振膜表面的速度是约120米/分钟。
控制电池内的电流密度分布,使得在振膜的一个区域上氧化层的形成要快于振膜的另一个区域上氧化层的形成。在阳极化处理中电池是以高于传统所采用的电流密度下操作的,如至少5A/dm2的电流密度,例如从约10A/dm2到300A/dm2。电池可在从60A/dm2到约200A/dm2的平均电流密度下操作。在一个例子中,电池可在从约80A/dm2到约150A/dm2的平均电流密度下操作。在另一个例子中,电池可在从约90A/dm2到约100A/dm2的平均电流密度下操作。
通过高于传统采用的电流密度操作电池,电解液内的电压降落与其电解液/阳极界面相比可被增大。这样,阳极表面上的电流密度相关于其截面区域发生变化,这取决于阳极和阴极之间的电流通路长度。电流通路长度是电荷从阴极到达阳极的特定区域必须经过的距离。一般来说,阳极和阴极之间的距离越大,电流通路长度越大。在电流通路长度最小时,沿基底的电流密度可能是最大的,而当电流通路长度最大时,电流密度最小。这样,当电池是在高于传统所采用的电流密度下操作时,阳极基底的电流密度可通过改变阴极与阳极基底的各个区域之间的电流通路长度来控制。在局部电流密度较大的区域,氧化层形成得最快,而在局部电流密度较低的区域,氧化层形成得最慢。因而,在给定的期限内,氧化层的厚度在基底上将有所变化。
一个非接触屏蔽罩可位于阴极与将要被阳极化的基底之间,以改变阴极与阳极基底之间的电流通路长度。非接触屏蔽罩是不与要被阳极化的基底存在物理接触的一个屏蔽罩。这样,阳极基底上由屏蔽罩遮蔽的区域的电流密度可被降低,导致该区域氧化物形成速度的降低。通过改变非接触屏蔽罩的尺寸、形状、几何形状、位置和/或成分,氧化层厚度的变化可被有选择地控制。
该屏蔽罩可由任何适当绝缘材料制成。例如,屏蔽罩可由绝缘聚合物材料形成,如聚丙烯。该屏蔽罩可包括金属或其它导电材料。屏蔽罩的导电部分可连接到阴极上。导电材料的作用是改变电流分布和改变涂层厚度的分布。
屏蔽罩与将要被阳极化的基底之间的距离可以是约0.1mm到约20mm。例如,屏蔽罩与将要被阳极化的基底之间的距离可以从约0.1mm到约5mm。屏蔽罩与将要被阳极化的基底之间的距离取决于各种因素,包括基底的尺寸和形状。屏蔽罩的形状也取决于基底的形状。当要被阳极化的基底是一个扬声器圆锥形时,屏蔽罩的形状可相应地是圆锥形。
当用于在圆锥形扬声器振膜的表面上产生一个氧化层时,氧化物涂层在振膜上的形成可以被可变地控制,来产生厚度变化并具有逐渐变薄区域的单个连续涂层,如下文的详细描述。涂层可在振膜的一个或两个表面上形成。
当在振膜的内外两个表面上形成涂层时,每个涂层是通过将每个单独的电源连接到振膜的内外表面而分别形成。例如,一个电源可被连接到内表面和阴极,而第二个电源被连接到外表面和不同的阴极。通过在不同的电流密度下操作两个电池,内、外表面上的涂层可独立地被改变。可选择地,两个电池可在相同的条件下操作。为每个内、外表面而使用单独的阴极和电源可用于改善对于在这些表面上形成涂层的控制。
振膜内外两个表面上的涂层也可在单个的阳极化步骤中形成。采用单个阴极、单个电源和两个或多个屏蔽罩的电池可用于实现两个涂层的阳极化。通过利用不同结构的屏蔽罩或通过屏蔽罩的不同的定位,也可改变内外表面的涂层。
图3表示一个在基底上,尤其是扬声器振膜102上,形成一个连续的非均匀涂层的装置。装置200包括外壳202、阴极204、入口206和出口208。基底,即扬声器振膜102作为阳极。装置200被提供有电解液210。屏蔽罩212位于与振膜102的表面隔开的非接触位置。如图所示,屏蔽罩212形状是圆锥形,但是,其它形状也是可以的,这取决于基底的形状和所希望涂层的厚度。
电解液210通过入口206和出口208被抽动流过装置200。电解液流动经过由屏蔽罩212和振膜内表面215所界定的通道213和214,如箭头“a”所示。电解液可流过振膜102的内表面215。一个电源(未标出)可连接到形成为电化电池的阴极和阳极的阴极204和振膜102的内表面215。如上所述,电池可在选择的电流密度和温度下操作。例如,电池可以在90A/dm2的平均电流密度和45到55℃的温度下操作。在电解液210内的电压降落大于在阴极/阳极(振膜)界面的电压降落。因而,基于阴极204和振膜内表面215之间的电流通路长度,沿振膜102的电流密度可以变化。
由于屏蔽罩212的相对尺寸、几何形状和位置,阴极204与振膜102的内表面215之间的距离从振膜102的圆锥形区域122的外围128处的最小值向振膜102的颈状或圆筒形区域120的最大值逐渐变化。电流通路长度以相应的方式逐渐变化。因此,振膜102的内表面215上的局部电流密度以相反的方式逐渐变化,即从外围128处的最大值向颈状或圆筒形区域120处的最小值变化。由于在局部电流密度最大的地方涂层的形成速度最高,涂层的形成速度是从外围128处的最大值向颈状或圆筒形区域120处的最小值逐渐变化。通过该过程产生的涂覆的扬声器振膜被表示在图4-图7中。
图4-图7表示在扬声器振膜上形成的各种涂层132。如图4-图7所示,振膜102的内表面130可被提供有涂层132。在图4和图7中,圆顶104被连接到圆锥形区域122中的涂层132的表面。在图5中,圆顶104被连接到音圈架108。图4-图5示出了振膜102的内表面130上的涂层132,它从振膜102的圆锥形区域122的外围128处的最大厚度向振膜102的颈状或圆筒形区域120处的最小厚度逐渐变薄。涂层132在圆筒形区域120处的厚度可以最小,并可以是逐渐变薄或均匀的。在图4-图5中,在圆筒形区域120的涂层134逐渐变薄。如图5所示,圆筒形区域120表面上的部分涂层134可以比圆锥形区域122上的部分涂层,至少在一部分上,是较薄的。
图6和图7示出了振膜102的内表面130上的涂层132,它从振膜102的圆锥形区域122的外围128处的最大厚度向振膜102的颈状或圆筒形区域120处的最小厚度逐渐变薄。图6-图7示出了在圆筒形区域120上厚度基本均匀的涂层。
由于局部电流密度最大的地方涂层的形成速度最高,涂层的形成速度是从从外围128的最大值向颈状或圆筒形区域120的最小值逐渐变化。这表现在图8中的电路图中。在图8中,R1-R4代表从外围到基底的中心选择的点之间的电解液的阻抗。R5-R9代表中点的阻抗。随着电流经过系统的每个元件,R1-R4之间的电压降落导致R5-R9之间电压的逐步降低(V1>V2>V3>V4>V5),并随着与V1差异的增加,引起电流密度的降低,以及相应的从R5到R9涂层厚度的逐渐减小。
在图9中,圆顶104连接到振膜102的圆锥形区域122的涂层132的表面,在圆顶104与圆锥形区域122相连的连接点126和圆锥形区域122与圆筒形区域120的结合处140之间的涂层的区域138,比连接点126之外的涂层的部分要薄。圆顶104与圆锥形区域122相连的连接点126和圆锥形区域122与圆筒形区域120的结合处140之间的涂层的区域138可包括一个渐变或轻微的倾斜。该区域138的较薄或逐渐变薄的涂层可有助于改善振膜102的结构完整性。
图10表示一个在基底的两个表面上,尤其是在扬声器振膜的内外表面318、320上,形成连续的非均匀涂层的装置。装置300包括外壳302、阴极304和306、入口308和出口310。基底,即扬声器振膜102作为阳极。装置300被提供有电解液312。屏蔽罩314和316位于与振膜102的内外表面318、320隔开的非接触的位置。在操作中,电解液312通过入口308和出口310被抽动经过装置300。电解液312流动经过由屏蔽罩314、316所界定的通道322和324,如箭头“a”所示。电解液可流动经过振膜102的内外表面318、320。一个或多个电源(未标出)可连接到阴极304、306和振膜102的内外表面318、320,其分别形成电化电池的阴极和阳极。如上所述,电池可在选择的电流密度和温度下操作。例如,电池可以在90A/dm2的平均电流密度和45到55℃的温度下操作。在电解液内的电压降落大于在阴极/阳极(振膜)界面的电压降落。因而,根据阴极和振膜表面之间的电流通路长度,可以改变沿振膜的电流密度。
由于屏蔽罩314的相对尺寸、几何形状和位置,阴极304与振膜312的内表面318之间的距离从振膜102的圆锥形区域122的外围128处的最小值向振膜102的颈状或圆筒形区域120处的最大值逐渐变化。电流通路长度以相应的方式逐渐变化。因此,振膜102的内表面318上的局部电流密度反过来从外围128处的最大值向颈状或圆筒形区域120处的最小值逐渐变化。
第二个电化电池(如在图10中所示)可在与第一个电池相同或不同的电流密度下操作。由于屏蔽罩316的相对位置和几何形状,振膜102的外表面320与阴极306之间的有效距离从振膜102的圆锥形区域122的外围128处的最小值向振膜102的颈状或圆筒形区域120处的最大值逐渐变化。如上面所解释的,在外围128处涂层的形成比在颈状或圆筒形区域120处涂层的形成速度要快。
利用该过程和图10中的装置制成的扬声器振膜示出在图11-13的截面图中,其中振膜的内外表面上的涂层都从振膜102的圆锥形区域122的外围128处的最大厚度向振膜102的颈状或圆筒形区域120处的最小厚度逐渐变薄。电化电池可在不同的电流密度下操作,以在不同厚度振膜的内外表面上形成涂层。在图11-13中,圆筒形区域120和圆锥形区域122的内表面130和外表面136都可包括连续的涂层。如图11所示,圆锥形区域122的内外表面上的涂层,从圆锥形区域122的外围128处的最大厚度向通过圆筒形区域120与圆锥形区域122的过渡区域或结合处的最小值逐渐变化,到达圆锥形区域中的均匀厚度。在图12中,圆锥形区域122内表面130上的涂层132比圆锥形区域122外表面136上的涂层133要薄。图13表示一个振膜102的截面图,其中两个表面上的涂层从外围的最大值向刚刚经过圆锥形区域122与圆筒形区域120的结合处140的最小值逐渐变薄。
图14表示可用于控制振膜102的内表面318上的涂层形成的另一个屏蔽罩400。屏蔽罩400包括一个绝缘圆锥体和围绕该圆锥体的一个导电金属环402。金属环402可被连接到阴极304。金属环402可用于引起图8中所示阻抗的相对值的畸变(distort)(通过减小R1的值),以在振膜102的外围128产生基本均匀的涂层区域。连接到阴极的导电材料,如环402,可被设置在屏蔽罩的任何部分上,以在厚度基本均匀的振膜102上产生局部增厚的区域。该过程产生的扬声器振膜102以截面形式表示图15中。从外围128到点404的内外表面318、320上的涂层132可以是一个对应于屏蔽罩中的金属环的局部增厚区域。该区域406的涂层132的厚度可以是均匀的。如图所示,在均匀区域之下的涂层408的区域可以是逐渐变薄的。
图16表示另一个屏蔽罩500。屏蔽罩500具有允许电流在阴极504和阳极/基底506之间通过的洞或穿孔502。电流量的控制可通过洞502的尺寸、形状、深度和间隔来得到。小的洞具有电流可流过的小截面,因而代表了大的阻抗值,结果涂层的生成相对较慢。反之,具有较大截面面积的较大洞拥有较低的电阻抗,允许通过较大的电流,并使得涂层快速形成。相类似的是,厚的屏蔽罩(具有较深的洞)将为电流流动提供较长的通路,导致较高的阻抗和较薄的涂层。可变化涂层区域位置的控制是通过在需要较厚或较薄涂层中定位适当大小的洞而获得。利用屏蔽罩外形、屏蔽罩的间隔和洞的间隔的类型,可得到厚度逐渐变化的涂层。
涂层可以以多种变形方式形成在内外表面上。例如,外表面上的涂层可以是相同的厚度,而内表面上涂层厚度逐渐变薄。外表面上全部或部分的涂层厚度可厚于或薄于内表面上的涂层厚度。内表面上的涂层可全部或部分地变薄,而外表面上的涂层厚度可以是相同的。另外,内表面上的涂层可以是均匀的,而外表面上的涂层全部或部分地变薄。圆顶104也可包括一个薄的涂层。
对于在扬声器振膜的圆锥形和圆筒形区域之一或二者上面逐渐变薄的一个涂层来说,圆筒形区域上的涂层厚度范围可以是从约0.1微米到约8微米。例如,厚度可以是从1到4微米。在另一个例子中,圆筒形区域上的涂层厚度范围可以是从约2微米到约3微米。圆锥形区域上的涂层厚度范围可以是从约2微米到约100微米。例如,厚度可以是从8到40微米。在另一个例子中,圆锥形区域上的涂层厚度范围可以是从约10微米到约20微米。涂层最小厚度可以是涂层最大厚度的约4%到25%。例如,在圆锥形区域外围的涂层的最大厚度是从约9到11微米,然后逐渐变薄,在圆筒形区域的涂层厚度的最小值是从约1到约3微米。
涂层的厚度可通过任何适当方法来确定,方法的选择取决于特定测量的目的。例如,为确定振膜整个表面的涂层厚度,振膜可被称重,然后剥去涂层。涂层可通过任何适当的方法剥去,包括利用一种酸来剥去,如根据英国DEF STAN 03-25的磷酸与铬酸的一种混合物。然后,被剥去涂层的振膜被称重。带有涂层的振膜与被剥去涂层的振膜之间的差别是涂层的重量。然后计算振膜的总表面面积。假定涂层成分的密度是已知的,然后可计算涂层的平均厚度。
振膜上任何特定点的涂层厚度也可通过以下方法计算,即利用千分尺测量被涂覆的振膜上感兴趣的一点或多个点的厚度,如上所述剥去振膜的涂层,然后测量被剥去涂层的振膜的厚度。两个厚度测量之间的差别是被测量点的涂层的总厚度。如果振膜在两个侧面上被涂覆,并且每一个侧面上的涂层厚度是不相同的,这时可确定一个侧面上的涂层厚度,而不用参考另一个侧面上的涂层,这是通过首先遮蔽不被测量的另一个侧面的表面,使其上的涂层不被溶解而剥去,这样千分尺读数的差别就是所要求涂层的厚度。
测量涂层厚度的其它方法包括(但不限于),使用根据BS5411 Pt.3的涡电流方法以及在涂层表面和在下面的金属表面上连续聚焦的校准显微镜。如上所述,测量方法的选择取决于这样的测量目的,特定方法可能并不适用于所有的情况。
在下面的示例中,基底上提供有变化厚度的涂层。如图17所示的工艺流程图,一个金属基底作为电化电池700的阳极而被连接,电解液被抽入电池702中,电流流经电池704。电池内的电流密度分布可通过改变电流706的电流通路长度来控制,在基底708上形成连续的非均匀涂层。进一步如图18所示,非接触的屏蔽罩设置在阴极与阳极/基底705之间。
这些例子是示例性的,只用于说明的目的而提出。这些示例并不是用来限制本发明。
示例1如图17所示,一个直径为100毫米的铝圆盘被连接作为电池的阳极。具有一个10毫米中心孔的一个75毫米的聚丙烯圆盘被用作屏蔽罩。屏蔽罩与圆盘基底之间的距离是3毫米。50℃的硫酸电解液以3立方米/小时的速度通过屏蔽罩的中心孔被抽入电池中。铝圆盘以90A/dm2的电流密度被阳极化。20秒后,在圆盘的上表面形成氧化物涂层。涂层的厚度从圆盘外围的20微米的最大值向圆盘中心的2微米的最小值逐渐变薄。
示例2重复示例1中的程序,利用一个直径为100毫米的铝圆盘作为阳极。20秒后,在圆盘的上表面形成氧化层。圆盘外围的氧化层厚度(10微米)是均匀的。该均匀区域宽15毫米。圆盘剩余部分的氧化层逐渐变薄,在圆盘中心区域达到最小值2微米。
示例3重复示例1和2中的程序,使用直径为50毫米并由直径为100毫米的铝环直接围绕的聚丙烯圆盘制成的屏蔽罩。屏蔽罩的铝部分被连接到阴极。20秒后,在圆盘的上表面形成一个氧化层。圆盘外围的氧化层具有10微米的均匀厚度。该均匀区域是15毫米宽。圆盘剩余部分的氧化层逐渐变薄到圆盘中心的2微米的最小值。
示例4如图1所示,直径为75毫米的一个铝圆锥体被连接作为第一个电化电池的阳极。一个直径为65毫米的聚丙烯圆锥体被用作屏蔽罩。圆锥体与屏蔽罩之间的距离保持在3毫米,但由于圆锥体的松软性和酸的剧烈流动,可能发生距离上的轻微变化。硫酸电解液(50℃的)以3立方米/小时的速度被抽入电池中。铝圆锥体以90A/dm2的平均电流密度被阳极化。20秒后,在圆锥体的表面上形成一个氧化层。氧化层的厚度从圆锥体外围的20微米的最大值向圆锥体颈状(中心)的2微米的最小值逐渐变薄。
示例5如图1所示,直径为75毫米的一个铝圆锥体被连接作为第一个电化电池的阳极。屏蔽罩是由直径为65毫米的圆锥体制成,它具有聚丙烯圆锥体部分和由铝形成的外围部分。外围部分是10毫米宽,被电连接到阴极上。屏蔽罩与铝之间的距离是3毫米,但由于圆锥体的松软性和酸的剧烈流动,可能发生距离上的轻微变化。硫酸电解液(50℃的)以3立方米/小时的速度被抽入电池中。铝圆锥体以90A/dm2的平均电流密度被阳极化。20秒后,在圆锥体的表面上形成一个氧化层。从外围到圆锥体直径约为35毫米处,氧化层的厚度基本上是恒定的10微米,然后逐渐变薄到圆锥体的颈状(中心)的2微米的最小值。
示例6
对包括等级为1200的铝(aluminum grade 1200)圆盘的两个基底进行阳极化。圆盘直径是100毫米,厚度为2毫米。采用的电解液是约175g/l硫酸和25g/l铝。电池是在48-52℃下操作,通过电池的流速是3立方米/小时。阳极化时间是22秒。屏蔽罩A是直径为69毫米的聚丙烯平面圆盘。屏蔽罩B是一个类似的结构,只是包括一个连接到电池阴极的铝环的5毫米外周,屏蔽罩C是类似的形式,但由铝制成,并连接在阴极上,屏蔽罩C实际上不提供遮蔽作用。在每个样本上做6次涂层厚度的测量,基本上是从中心到圆盘的边缘平均分布(从在中心的参考点1到靠近边缘的参考点6)。涂层厚度的测量是利用BS5411 Pt.3的涡电流方法。结果如下表1所示表1

采用屏蔽罩A和B的过程产生逐渐变薄的涂层。在本示例中,电流密度的增加增大了最大值与最小值之间的厚度比。减小屏蔽罩与基底之间的间隔增大了最大值与最小值之间的厚度比。在屏蔽罩的外围放置金属环并把屏蔽罩连接到阴极产生了厚度大致均匀的相应环状涂层,并且在环的里边涂层急剧变薄。这种效果在较高的电流密度下更显著。采用屏蔽罩C的处理不会导致变薄。
示例7重复示例6的程序,只是屏蔽罩D包括一个17毫米厚的结构,该结构具有在样本中心的近似双‘X’形式的直径渐变的圆洞。涂层厚度的测量是在各个点进行的。涂层厚度的测量是利用BS5411 Pt.3的涡电流方法。结果是如表2所示表2

在本示例中,屏蔽罩中的洞的尺寸的增加导致样本相应区域中涂层厚度的增加。减小屏蔽罩与基底之间的间隔造成样本上具有不同涂层厚度的区域之间的急剧的厚度变化。电流密度的增加造成基底上不同涂层厚度的区域之间的急剧的厚度变化。
示例8两个可商业上制造的120毫米和75毫米的扬声器圆锥体分别被阳极化。120毫米的圆锥体被如图10所示地屏蔽。75毫米圆锥体被如图14所示地屏蔽。在47到51℃时电解液浓度大约为250g/l和5g/l铝。平均的电流密度是90A/dm2。在每个圆锥体做5次涂层厚度的测量,基本上从圆锥体颈状的结合处(参考点1)到圆锥形部分的外围(参考点2)平均分布。涂层厚度是通过千分尺方法来测量。结果是如下表3和4所示表3(120毫米圆锥体)


表4(75毫米圆锥体)

示例8第三个可商业制造的75毫米扬声器圆锥体利用一个屏蔽罩被阳极化,该屏蔽罩是由直径为1.5毫米的洞在80毫米节距圆直径的同心环处被穿透。屏蔽罩与圆锥体表面间隔大约1毫米。在每个圆锥体做6次涂层厚度的测量,基本上从圆锥体颈状的结合处(参考点1)到圆锥形部分的外围(参考点2)平均分布。涂层厚度是通过千分尺方法来测量。结果如下表5所示表4(穿孔的屏蔽罩)

*外围(测量点6)的较厚涂层被认为是由于电池中的电流泄露造成的。
本发明的扬声器振膜可被安装在任何扬声器中,包括超低音扬声器、低音扬声器、中音扬声器。该振膜也适于用在汽车的扬声器中。
尽管已经描述了本发明的各种实施例,对于本领域技术人员来说,在本发明的范围内可能有许多其它的实施例和实现方式。因此,本发明的范围以所附的权利要求及其等同文件为准。
权利要求
1.一种具有音响区域的扬声器振膜,该扬声器振膜包括具有内外表面的第一区域;第一区域的径向上向内的第二区域,其具有内外表面;在所述第一和第二区域的至少一个表面上形成的涂层;其中所述涂层从第一区域上的最大值向第二区域上的最小值逐渐变薄。
2.如权利要求1所述的扬声器振膜,其中所述涂层包括一个连续的层。
3.如权利要求2所述的扬声器振膜,其中所述振膜至少部分地是由铝、钛、镁、铝合金、钛合金、镁合金、或其组合制成。
4.如权利要求3所述的扬声器振膜,其中所述涂层是由碳化物、硼化物、氮化物或氧化物形成。
5.如权利要求4所述的扬声器振膜,其中所述涂层在第二区域上具有从约0.1微米到约8微米的厚度,在第一区域上具有从约2微米到约100微米的厚度。
6.如权利要求4所述的扬声器振膜,其中所述涂层是阳极化处理而形成的氧化层。
7.如权利要求1所述的扬声器振膜,其中所述第一区域基本上是圆锥形。
8.如权利要求7所述的扬声器振膜,其中所述第二区域基本上是圆筒形。
9.如权利要求8所述的扬声器振膜,其中所述第一区域包括振膜音响区域的至少一部分。
10.如权利要求1所述的扬声器振膜,其中所述第一区域上的涂层包括厚度基本均匀的第一范围和厚度不均匀的第二范围。
11.如权利要求10所述的扬声器振膜,其中所述第一区域的第二范围是逐渐变薄的。
12.如权利要求11所述的扬声器振膜,其中所述第一范围从第二范围的径向上向外。
13.如权利要求1所述的扬声器振膜,其中所述第一区域内外表面的至少一些部分是被涂覆的。
14.如权利要求13所述的扬声器振膜,其中所述第二区域内外表面的至少一些部分是被涂覆的。
15.一种扬声器振膜,包括第一区域;第二区域;所述第一区域与第二区域之间的过渡区域,和在所述第一区域、第二区域和过渡区域的至少一个主要表面上形成的连续涂层,其中所述涂层至少在过渡区域上是逐渐变薄的。
16.如权利要求16所述的扬声器振膜,其中所述第一区域的至少一部分涂层是逐渐变薄的。
17.如权利要求16所述的扬声器振膜,其中所述第二区域的涂层的厚度基本上是均匀的。
18.如权利要求16所述的扬声器振膜,其中所述第二区域的涂层是逐渐变薄的。
19.如权利要求18所述的扬声器振膜,其中所述涂层从第一区域上的最大值向第二区域上的最小值逐渐变薄。
20.如权利要求15所述的扬声器振膜,其中所述第一区域的一部分涂层是逐渐变薄的,而另一部分涂层的厚度基本上是均匀的。
21.如权利要求20所述的扬声器振膜,其中厚度基本均匀的所述涂层部分是逐渐变薄部分的径向上向外的部分。
22.如权利要求15所述的扬声器振膜,其中所述振膜至少部分地是由铝、钛、镁、铝合金、钛合金、镁合金、或其组合制成。
23.如权利要求22所述的扬声器振膜,其中所述涂层是由碳化物、硼化物、氮化物或氧化物形成。
24.如权利要求15所述的扬声器振膜,其中所述涂层在第二区域上具有从约0.1微米到约8微米的厚度,在第一区域上具有从约2微米到约100微米的厚度。
25.如权利要求23所述的扬声器振膜,其中所述涂层是阳极化处理而形成的氧化层。
26.一种扬声器振膜,包括一个圆锥形部分;一个圆筒形部分;至少在所述圆锥形部分和圆筒形部分的至少一个主要表面上形成的涂层,其中所述涂层是从圆锥形部分上的最大值向圆筒形部分上的最小值逐渐变薄。
27.如权利要求26所述的扬声器振膜,其中所述涂层是连续的。
28.如权利要求27所述的扬声器振膜,其中所述涂层是从圆锥形区域的外围处的最大值向圆筒形区域的最小值逐渐变薄。
29.如权利要求28所述的扬声器振膜,其中所述圆筒形区域的涂层的厚度是均匀的。
30.如权利要求27所述的扬声器振膜,其中在靠近圆锥形区域外围的圆锥形区域的一个范围上的涂层厚度是均匀的。
31.如权利要求27所述的扬声器振膜,其中所述连续涂层是阳极化处理而形成的氧化层。
32.如权利要求27所述的扬声器振膜,包括连接到圆锥形区域上的涂层表面的一个圆顶。
33.如权利要求32所述的扬声器振膜,其中所述圆顶外面的圆锥形区域上的涂层的厚度是均匀的,而从圆顶向内的圆锥形区域上的涂层是逐渐变薄的。
34.一个扬声器振膜,包括一个内表面;一个外表面;和设置在内表面和外表面的每一个上的连续涂层,其中内表面上的涂层是逐渐变薄的。
35.如权利要求34所述的扬声器振膜,其中所述外表面上的涂层是逐渐变薄的。
36.如权利要求35所述的扬声器振膜,其中所述外表面上的涂层是均匀的。
37.如权利要求34所述的扬声器振膜,其中所述外表面上的涂层比内表面上的涂层薄。
38.一种在基底上形成非均匀涂层的方法,包括将要被涂覆的金属基底作为电化电池的阳极来连接,该电化电池包括至少一个阴极和至少一个电解液;使电流流过所述电化电池;在所述电化电池内控制电流密度分布;和在基底表面的至少一个区域上形成涂层,其中形成涂层的速度是从基底的一个区域的第一数值向基底的另一个区域的第二数值逐渐变小。
39.如权利要求38所述的方法,其中所述基底包括扬声器振膜。
40.如权利要求38所述的方法,其中所述涂层的形成是在单个步骤中执行的。
41.如权利要求38所述的方法,其中所述涂层是连续的。
42.如权利要求38所述的方法,其中所述电流密度分布的控制包括改变阴极与要被涂覆的基底表面之间的电流通路长度。
43.如权利要求42所述的方法,包括增加阴极与要被涂覆的基底表面之间的电流通路长度。
44.如权利要求38所述的方法,包括在阴极与要被涂覆的振膜表面之间放置一个非接触屏蔽罩。
45.如权利要求44所述的方法,其中所述非接触屏蔽罩包括一种绝缘材料。
46.如权利要求44所述的方法,其中所述非接触屏蔽罩的形状基本上与基底的形状一致。
47.如权利要求46所述的方法,其中所述非接触屏蔽罩包括一个圆锥体。
48.如权利要求45所述的方法,其中所述非接触屏蔽罩进一步包括一个导电部分。
49.如权利要求48所述的方法,包括将所述导电部分连接到所述阴极。
50.如权利要求39所述的方法,包括将第一阴极连接到扬声器振膜的内表面,并将第二阴极连接到扬声器振膜的外表面,以形成第一和第二电化电池。
51.如权利要求50所述的方法,包括在第一阴极与振膜的内表面之间放置第一非接触屏蔽罩,和在第二阴极与振膜的外表面之间放置第二非接触屏蔽罩。
52.如权利要求51所述的方法,包括在振膜的内表面和外表面上形成一个涂层。
53.如权利要求52所述的方法,包括在同样条件下操作第一和第二电化电池。
54.如权利要求52所述的方法,包括在不同于第二电化电池的平均电流密度下操作第一电化电池。
55.如权利要求54所述的方法,包括以不同于振膜外表面上涂层的形成速度在振膜的内表面上形成涂层。
56.如权利要求55所述的方法,包括在振膜的内表面上形成比振膜的外表面上更厚的涂层。
57.如权利要求52所述的方法,包括在振膜的内表面上形成非均匀的涂层,而在振膜的外表面上形成均匀的涂层。
58.如权利要求57所述的方法,包括在振膜的内表面上形成逐渐变薄的涂层。
59.如权利要求44所述的方法,其中振膜表面与屏蔽罩之间的距离是从约0.1毫米到约20毫米。
60.如权利要求59所述的方法,其中振膜表面与屏蔽罩之间的距离是从约0.1毫米到约5毫米。
61.如权利要求38所述的方法,其中所述涂层包括一个氧化层。
62.如权利要求61所述的方法,包括通过阳极化处理形成所述氧化层。
63.如权利要求62所述的方法,包括在至少为5A/dm2的平均电流密度下操作所述电池。
64.如权利要求63所述的方法,包括在从约10A/dm2到约300A/dm2的平均电流密度下操作所述电池。
65.如权利要求64所述的方法,包括在从约60A/dm2到约200A/dm2的平均电流密度下操作所述电池。
66.如权利要求65所述的方法,包括在从约80A/dm2到约120A/dm2的平均电流密度下操作所述电池。
67.如权利要求66所述的方法,包括在从约90A/dm2到约100A/dm2的平均电流密度下操作所述电池。
68.如权利要求63所述的方法,包括在从约0到约100℃的温度下操作所述电池。
69.如权利要求68所述的方法,包括在从约30到约80℃的温度下操作所述电池。
70.如权利要求69所述的方法,包括在从约40到约60℃的温度下操作所述电池。
71.如权利要求70所述的方法,包括在从约45到约55℃的温度下操作所述电池。
72.如权利要求44所述的方法,其中所述非接触屏蔽罩包括至少一个穿孔。
73.一种以单个阳极化步骤在金属基底上形成非均匀的阳极氧化涂层的方法,包括将要被涂覆的基底作为电化电池的阳极来连接,该电化电池包括至少一个阴极和至少一个电解液,使电流通过所述电池,将电解液/阳极界面处的有效施加电压逐步降低,并且在基底的表面上形成非均匀的涂层,使得距离阴极较远的基底表面的一些区域被涂覆的厚度比更靠近阴极的一些区域要薄。
74.如权利要求73所述的方法,包括改变阴极与要被涂覆的基底表面之间的电流通路长度。
75.如权利要求74所述的方法,其中在基底的表面上形成的涂层厚度随着所述表面距离阴极的距离的增大而降低。
76.如权利要求75所述的方法,其中非均匀涂层是逐渐变薄的。
77.如权利要求73所述的方法,其中所述涂层包括一个连续层。
78.如权利要求73所述的方法,包括在要被涂覆的基底表面与至少一个阴极之间放置至少一个非接触屏蔽罩。
79.如权利要求73所述的方法,包括在至少为5A/dm2的平均电流密度下操作所述电池。
80.如权利要求79所述的方法,包括在从约10A/dm2到约300A/dm2的平均电流密度下操作所述电池。
81.如权利要求80所述的方法,包括在从约60A/dm2到约200A/dm2的平均电流密度下操作所述电池。
82.如权利要求81所述的方法,包括在从约80A/dm2到约120A/dm2的平均电流密度下操作所述电池。
83.如权利要求82所述的方法,包括在从约90A/dm2到约100A/dm2的平均电流密度下操作所述电池。
84.如权利要求79所述的方法,包括在从约0到约100℃的温度下操作所述电池。
85.如权利要求84所述的方法,包括在从约30到约80℃的温度下操作所述电池。
86.如权利要求85所述的方法,包括在从约40到约60℃的温度下操作所述电池。
87.如权利要求86所述的方法,包括在从约45到约55℃的温度下操作所述电池。
88.如权利要求73所述的方法,其中所述基底包括扬声器振膜。
89.一种以单个阳极化步骤在扬声器振膜的至少一个表面上形成非均匀的氧化涂层的方法,包括将要被涂覆的扬声器振膜作为电化电池的阳极来连接,该电化电池包括至少一个阴极和一个电解液,使电流通过所述电池,使电解液经过振膜的表面,逐步降低振膜/电解液界面处的有效施加电压,和在振膜的表面上形成非均匀的涂层。
90.如权利要求89所述的方法,其中所述涂层是逐渐变薄的。
91.如权利要求89所述的方法,其中所述涂层是连续的。
92.如权利要求89所述的方法,包括在至少约为5A/dm2的平均电流密度下操作所述电池。
93.如权利要求92所述的方法,包括在从约10A/dm2到约300A/dm2的平均电流密度下操作所述电池。
94.如权利要求93所述的方法,包括在从约60A/dm2到约200A/dm2的平均电流密度下操作所述电池。
95.如权利要求94所述的方法,包括在从约80A/dm2到约150A/dm2的平均电流密度下操作所述电池。
96.如权利要求93所述的方法,包括在从约90A/dm2到约100A/dm2的平均电流密度下操作所述电池。
97.如权利要求89所述的方法,包括在要被阳极化的振膜表面与一个阴极之间放置至少一个非接触屏蔽罩。
98.如权利要求97所述的方法,其中振膜表面与屏蔽罩之间的距离是从约0.1毫米到约20毫米。
99.如权利要求98所述的方法,其中振膜表面与屏蔽罩之间的距离是从约0.1毫米到约5毫米。
100.一种在金属基底上形成非均匀涂层的方法,包括连接要被涂覆的金属基底,作为电化电池的阳极,使电流经过所述电化电池,在基底表面的至少一个区域上形成一个涂层,在所述电化电池内控制电流密度分布的装置,使得形成涂层的速度是从基底的一个区域的第一数值向基底的另一个区域的第数二值逐渐变小。
101.如权利要求100所述的方法,其中控制电流密度的装置包括改变电流的通路。
102.如权利要求101所述的方法,其中控制电流密度分布的装置包括在一个阴极与基底表面之间放置至少一个非接触屏蔽罩。
103.如权利要求101所述的方法,其中控制电流密度的装置包括使至少为5A/dm2的电流经过所述电池。
104.如权利要求101所述的方法,其中控制电流密度的装置包括在从约0到约100℃的温度下操作所述电池。
105.如权利要求104所述的方法,其中控制电流密度的装置包括在从约30到约80℃的温度下操作所述电池。
106.如权利要求105所述的方法,其中控制电流密度的装置包括在约45到约55℃的温度下操作所述电池。
全文摘要
一种扬声器振膜,包括至少在振膜的一个表面上的连续涂层。该连续涂层可以是非均匀的,并从振膜的一个区域的最大值向振膜的另一个区域的最小值逐渐减小。该涂层是在单个涂覆步骤中形成的,不需要使用接触屏蔽或中断处理过程来改变处理参数。逐渐变薄的涂层是通过控制电化电池内的电流密度分布而形成的,使得该涂层的形成速度从振膜一个区域的第一数值向振膜的另一个区域的第二数值逐渐变小。
文档编号C25D9/06GK1666569SQ03816207
公开日2005年9月7日 申请日期2003年7月4日 优先权日2002年7月8日
发明者R·波尔夫瑞曼, M·哈里斯 申请人:哈曼国际工业有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1