专利名称:用于薄铜箔的支持层的制作方法
技术领域:
本发明涉及用于印刷电路板和软电路制造中的铜箔。更具体地说,涉及一种复合材料,包括铜箔层和支持层,以及布置在该铜箔层和支持层之间的释放层。在升高的温度下,使该释放层与反应元素接触可减少在随后的装配步骤中气泡的形成。
背景技术:
在美国专利No.6,346,335和No.6,569,543中描述了用于印刷电路板和软电路制造的复合材料。典型地由铜形成的支持层被释放层涂覆。铜箔层典型地由电解沉积形成在该释放层上。释放层和铜箔层间的粘附力足够高,使得该铜箔层不会过早地与支持层分离;但是该粘附力还足够低,这样在层压后支持层的分离不会造成铜箔层的撕裂或其他损坏。典型的释放层包括金属和非金属的混合物,其中所述金属选自由铬、镍、钛、铜、锰、铁、钴、钨、钼、钽及其混合物所组成的组中,所述非金属选自由这些金属的氧化物、磷酸盐和铬酸盐所组成的组中。一个优选的释放层是铬和氧化铬的混合物。
为了制造印刷电路,将复合材料层压到玻璃填充的环氧树脂型板上,使铜箔层与该环氧树脂板接触。在温度(典型地在180℃和250℃之间)和压力(典型地在1.38MPa和2.07MPa(200磅/平方英寸(psi)和300磅/平方英寸)之间)的共同作用下,使铜箔层粘附于环氧树脂板。随后将支持层和释放层从环氧树脂板/铜箔层组件上剥离。
为了制造软电路或高温应用设备,有时铜箔在不加压的条件下层压。铜箔层被诸如聚酰亚胺的聚合物电介质涂覆。随后干燥该涂覆的复合材料并在180℃和400℃之间固化,比如在0.1MPa(一个大气压)的压力、氮气气氛中于360℃固化30分钟。固化后,将支持层和释放层从该聚合物电介质铜箔组件上剥离。
重要的是,当从铜箔层上剥离支持层时,该铜箔层是无缺陷的。已报道的一种这样的缺陷是在先前与支持层相接触的铜箔层表面的气泡。这些气泡被认为是当气体在支持层/铜箔的界面上发展时产生的,并且随后在电介质固化工艺期间随温度升高而膨胀。典型地,气泡的直径为百分之几毫米(千分之几英寸)的量级,出现频率在每10平方分米几到几千个(每平方英寸几千个)的范围内。一旦从支持层上分离,这些气泡在层压的铜箔表面中留下凹陷。这些小凹陷使得薄层制品的这些区域对于细线电路工艺来说是不可接受的。
仍然需要一种可减少或消除这样的气泡形成的制造软电路的方法。
图1以截面示意图表示根据本发明第一实施方式的复合材料。
图2以截面示意图表示根据本发明第二实施方式的复合材料。
图3以流程图形式表示采用本发明的复合材料用于软箔制造的方法。
图4以截面示意图表示由本发明的复合材料制造的软箔。
具体实施例方式
图1以截面示意图表示根据本发明第一实施方式的复合材料10。该复合材料包括可以是任何导电材料的支持层12,例如铜、铜合金、铝、铝合金和不锈钢。典型地,该支持层的厚度为17μm-70μm。用于支持层12的优选材料是含有至少一种反应元素的可煅的铜合金。用于支持层12的满足这些需要的市售铜合金的例子包括铜合金C199(公称成分重量百分比为2.9%-3.4%的钛,余量为铜)、铜合金C7025(公称成分重量百分比为2.2%-4.2%的镍、0.25%-1.2%的硅、0.05%-0.30%的镁,余量为铜),铜合金C654(公称成分重量百分比为1.2%-1.9%的锡、2.7%-3.4%的硅、0.01%-0.12%的铬,余量为铜)。
示例性的其他铜基合金以及它们以重量百分比表示的公称成分,包括C151000.05%-0.15%的锆和余量(最少99.85%)为铜;C181000.40%-1.2%的铬、0.03%-0.06%的镁、0.08%-0.20%锆和余量(最少98.7%)为铜;C7289.5%-10.5%的镍、7.5%-8.5%的锡、0.10%-0.30%的铌、0.05%-0.30%的锰、0.005%-0.15%的镁和余量为铜;C70261.0%-3.0%的镍、0.2%-0.7%的硅和余量为铜;NK1200.01%-0.4%的铬、0.01%-0.25%的锆、0.02%-2.0%的锌和余量为铜。
根据本发明有用的非铜基物质和它们以重量百分比表示的公称成分,包括铝合金22195.8%-6.8%的铜、0.2%-0.4%的锰、0.05%-0.15%的钒、0.02%-0.10%的钛、0.1%-0.25%的铬和余量为铝;不锈钢3210017.0%-19.0%的铬、9.0%-12.0%的镍,最多0.08%的碳、5×(最小百分数C)的钛和余量为铁。
这些合金的使用有效减少特别在倾向于形成气泡的那些应用,如不加压的层压中形成的气泡数量。引起起泡减少的机理仍然未知。认为以下的一个或多个原因引起起泡减少当与支持层材料形成合金时,反应元素增加支持层的抗张强度从而在加工中有较少的挠曲;当与支持层材料形成合金时,反应元素改变支持层的热膨胀系数;当与支持层材料形成合金或涂覆在支持层表面时,衬底合金或其组成相与气体元素或化合物例如可能在释放层表面形成的湿气反应,以抑制气泡的形成。例如,如果放出氢,那么氢溶解在衬底中,或者与反应元素结合发生反应而形成氢化物。提供这些有益效果的合金元素优选选自有钛、锆、钡、镁、硅、铌、钙及其混合物所组成的组中。
反应性的合金元素以重量百分比为0.001%至50%的量存在,优选为0.1%至5%。期望以足够的量提供铜合金,该铜合金在超过180℃的层压温度下暴露后具有超过207MPa(30千磅/平方英寸(ksi))的抗张强度。这有利于复合材料的处理,保护薄铜箔层不发生皱褶和机械损坏,并可在例如打孔的电路板制造过程中用做保护片。
释放层14布置在支持层12和铜箔层16之间。选择该释放层14使得释放层14和铜箔层16间的粘附力足够高以使铜箔层不会过早地与支持层12分离,但该粘附力还要足够低以在层压后支持层的分离不对铜箔层造成撕裂或其他损伤。典型的释放层包括金属和非金属的混合物,其中所述金属选自由铬、镍、钛、铜、锰、铁、钴、钨、钼、钽及其混合物所组成的组中,所述非金属选自由这些金属的氧化物、磷酸盐和铬酸盐所组成的组中。一个优选的释放层是铬和氧化铬的混合物。
铜箔层16由任何合适的电解液电解沉积在释放层上,所述电解液例如包含以诸如硫酸铜和/或焦磷酸铜的形式存在的铜离子的碱性水溶液或酸性溶液,如在公开的美国专利申请US2002/0192486“具有低外形结合增强的铜箔(Copper Foil with Low Profile Bond Enhancement)”中所披露的。铜箔层很薄,其厚度在15微米或更薄的量级上,优选的厚度为0.2μm至8.0μm。
图2以截面示意图表示根据本发明第二实施方式的复合材料20。与前一种实施方式一样,该复合材料具有铜箔层16和释放层14。支持层12’不需要包括反应元素,但是在暴露于层压温度下后超过207MPa(30ksi)的高抗张强度仍然是有益的。布置在支持层12’和释放层14之间的是包含反应元素的层22。该反应元素选自如上所述的那些元素,并可采用任何合适的方法沉积该层,例如化学气相沉积、物理气相沉积、电镀、溅射和等离子喷涂。该含有反应元素的层22的厚度为0.001μm(10)到2μm。
图3以流程图形式表示本发明的复合材料的制造方法。根据图1表示的实施方式,支持层,例如含有至少一种反应元素的铜基合金(“基”意味着该合金含有重量百分比为至少50%的所叙述的元素,铜)被释放层涂覆26。铜箔层沉积28在释放层上。
然后,优选将该复合材料在低于层压温度的温度下,例如从约100℃到约350℃,在氮气或合成气体(体积百分比为96%N2-4%H2)气氛下进行热处理30最高可达约48小时。“约”意味着不希望精确,而是数值±20%。该热处理可以为一个或多个阶段。单阶段热处理30的例子为在约100℃至约240℃处理约8小时至约24小时。两阶段热处理的例子为第一阶段在约150℃至200℃处理约15小时至约25小时,然后在约200℃至约250温度处理约1/2小时至约5小时。
热处理30后,聚合物电介质沉积32到铜箔层的表面上。示例性的电介质包括环氧树脂、聚酰亚胺、聚四氟乙烯(特弗隆(Teflon))及其混合物。可采用任何合适的方法沉积,例如照相凹版辊涂、轧辊层压、医生的刀/刮涂(doctor’s blade)、喷涂或浸渍。然后将该聚合物电介质干燥,并通过加热到固化的有效温度,例如180℃至380℃下持续0.1小时至6小时而固化34。典型地,当层压是利用加热而不是压力时,起泡更为显著,而本发明的益处就更为必要。
随后,如图4的截面示意图所示,将固化的聚合物电介质38/铜箔组件16从释放层14/支持层12上剥离。再参考图3,剥离步骤36可发生在例如用照相平版印刷法在铜箔层形成电路所需的图案之前,也可以在这之后。
通过在支持层表面上沉积含有反应元素的层的附加步骤40,此类似的工艺流程对制造图2所示的复合材料是有效的。
当通过含有反应元素的层与释放层的接触使起泡大大减少或消除时,即使不包括含有反应元素组分,通过低温退火也可获得起泡数量的一些减少。
通过以下实施例,以上实施方式的优点将被更好地理解。
实施例具有表1所述成分和厚度的支持层被释放层涂覆,该释放层具有约0.0012μm(12)和约0.02μm(200)之间的厚度,标称成分为铬氧化物、铬和铬氢氧化物的混合物。释放层通过电解沉积而沉积。具有标称厚度为5μm的铜箔层通过电解沉积而沉积。然后,将这样形成的复合材料在空气、氮气或合成气体气氛中加热到170℃,持续如表1所述的时间。
然后,经退火的样品在氮气气氛中被加热到360℃持续30分钟以模仿电介质的固化周期。然后,定性评价起泡的发生和密度以预测电路板上反映的铜箔电路迹线的质量,其中00=优秀;0=好;Δ=一般;X=差;N.R.=无评价。结果在表1中报告。
表1
表1显示,当衬底含有反应元素,如钛、硅或镁时,且复合材料被热处理,起泡基本上被消除。而在不含反应元素的合金(即C110)中低温退火减少了起泡,该改进不显著。
显然,根据本发明提供了一种复合材料和一种制造该复合材料的方法,使得在电路板加工过程中,气泡缺陷的形成被减少,并完全满足以上所述的目的、手段和优点。当结合实施方式描述本发明时,显然根据前面的描述许多替代物、改变和变化对于本领域的技术人员来说是显然的。因此,希望包括所有落在所附权利要求的精神和宽的范围中的替代物、改变和变化。
权利要求
1.一种复合材料(10,20),包括支持层(12);金属箔层(16),所述金属箔层具有相反的第一和第二侧面,且其厚度为15微米或更薄;释放层(14),该释放层有效以便于使所述金属箔层(16)从所述支持层(12)分离,所述释放层(14)布置在所述支持层(12)和所述金属箔层(16)之间,并与这二者接触;和与所述释放层(14)接触的含有反应元素的层(22)。
2.根据权利要求1所述的复合材料(10,20),其中所述反应元素选自由钛、锆、钡、镁、硅、铌、钙及其混合物所组成的组中。
3.根据权利要求2所述的复合材料(10),其中所述反应元素与所述支持层(12)形成合金。
4.根据权利要求3所述的复合材料(10),具有重量百分比为0.001%至50%的所述反应元素。
5.根据权利要求4所述的复合材料(10),其中所述支持层(12)是可煅的铜基材料。
6.根据权利要求5所述的复合材料(10),具有重量百分比为0.1%至5%的所述反应元素。
7.根据权利要求2所述的复合材料(20),其中所述反应元素布置在所述支持层(12)的表面上,并与所述释放层(14)接触。
8.根据权利要求7所述的复合材料,其中所述反应元素具有0.001μm(10)至2μm的厚度。
9.根据权利要求4或8所述的复合材料,在100℃至350℃下热暴露持续最高可达48小时后具有超过207MPa(30千磅/平方英寸)的屈服强度。
10.一种用于制造复合材料的方法,包括以下步骤提供(24)含有反应元素的支持层,所述反应元素选自由钛、锆、钡、镁、硅、铌、钙及其混合物所组成的组中;在所述支持层上沉积(26)释放层;在所述释放层上电解沉积(28)铜箔层,由此所述铜箔层的第一侧面接触所述释放层;和在约100℃至约350℃温度下加热(30)所述复合材料约1小时至约48小时。
11.根据权利要求12所述的方法,其中所述加热步骤(30)是在约100℃至约240℃的温度下持续约8小时至约24小时的单阶段步骤。
12.根据权利要求10所述的方法,其中所述加热步骤(30)是第一阶段在约150℃至约200℃的温度下持续约15小时至约25小时,随后第二阶段在约200℃至约250℃的温度下持续约1/2小时至约5小时的两阶段步骤。
13.根据权利要求11或12所述的方法,包括以下附加步骤在所述铜箔层的相反第二侧面涂覆(32)聚合物电介质;和在高于所述加热步骤(30)温度的固化温度下固化(34)所述聚合物电介质。
14.根据权利要求13所述的方法,其中所述固化温度为约180℃至约380℃。
15.根据权利要求14所述的方法,其中所述固化(34)所述聚合物电介质的步骤在没有层压压力下发生。
16.一种用于制造复合材料的方法,包括以下步骤提供(24)支持层;在所述支持层的表面上沉积(40)包含反应元素的层,该反应元素选自由钛、锆、钡、镁、硅、铌、钙及其混合物所组成的组中;在所述支持层的所述涂覆表面上沉积(26)释放层;在所述释放层上电解沉积(28)铜箔层,由此所述铜箔层的第一侧面接触所述释放层;和在约100℃至约350℃温度下加热(30)所述复合材料最高可达48小时。
17.根据权利要求16所述的方法,其中所述加热步骤(30)是在约100℃至约240℃的温度下持续约8小时至约24小时的单阶段步骤。
18.根据权利要求16所述的方法,其中所述加热步骤(30)是第一阶段在约150℃至约200℃的温度下持续约15小时至约25小时,随后第二阶段在约200℃至约250℃的温度下持续约1/2小时至约5小时的两阶段步骤。
19.根据权利要求17或18所述的方法,包括以下附加步骤在所述铜箔层的相反第二侧面涂覆(32)聚合物电介质;和在高于所述加热步骤(30)温度的固化温度下固化(34)所述聚合物电介质。
20.根据权利要求19所述的方法,其中所述固化温度为约180℃至约380℃。
21.根据权利要求20所述的方法,其中所述固化(34)所述聚合物电介质的步骤在没有层压压力下发生。
22.根据权利要求20所述的方法,其中所述反应元素通过选自由以下方法组成的组中的方法沉积(40)化学气相沉积、物理气相沉积、电镀、溅射和等离子喷涂。
23.一种用于制造复合材料的方法,包括以下步骤提供(24)支持层;在所述支持层上沉积(26)释放层;在所述释放层上电解沉积(28)铜箔层,由此所述铜箔层的第一侧面接触所述释放层;和在约100℃至约350℃温度下加热(30)所述复合材料最高可达48小时。
24.根据权利要求23所述的方法,其中所述加热步骤(30)在约150℃至约240℃的温度下持续约8小时至约24小时。
25.根据权利要求23所述的方法,其中所述加热步骤(30)是第一阶段在约150℃至约200℃的温度下持续约15小时至约25小时,随后第二阶段在约200℃至约250℃的温度下持续约1/2小时至约5小时的两阶段步骤。
26.根据权利要求24或25所述的方法,包括以下附加步骤在所述铜箔层的相反第二侧面涂覆(32)聚合物电介质;和在高于所述加热步骤(30)温度的固化温度下固化(34)所述聚合物电介质。
27.根据权利要求26所述的方法,其中所述固化温度为约180℃至约380℃。
全文摘要
一种有益于电路制造的复合材料(20),该材料包括支持层(12’)、具有相对的第一和第二侧面、且厚度为15微米或更薄的金属箔(16)层、以及有效以便于使金属箔层(16)从支持层(12’)分离的释放层(14),该释放层(14)布置在金属箔层(16)和支持层(12’)之间,并与它们接触。含有反应元素的层(22)与释放层(14)接触,该含有反应元素的层(22)可以是支持层(12’),它有效地与气体元素或化合物反应形成热稳定的化合物。该复合材料(20)优选经过低温热处理。低温热处理和含有反应元素的层(22)的结合导致在随后的工艺中铜箔(16)中包括气泡的缺陷的减少。
文档编号C25D7/06GK1871376SQ200480031390
公开日2006年11月29日 申请日期2004年10月15日 优先权日2003年10月22日
发明者威廉·L·布瑞恩曼, 斯祖凯恩·F·陈 申请人:奥林公司