能够在阻挡金属上直接镀铜的阻挡层表面处理的方法

文档序号:5276343阅读:652来源:国知局
专利名称:能够在阻挡金属上直接镀铜的阻挡层表面处理的方法
技术领域
本发明的实施例一般地涉及能够在阻挡金属上直接镀铜的阻挡层表面处理的方法。
背景技术
亚四分之一微米、多层金属化是用于下一代的超大规模集成(VLSI)与极大规模集成(ULSI)半导体器件的关键技术之一。处于此技术核心的多层互连需要填充触头、过孔、线路、和形成在具有大高宽比孔隙中的其他特征。这些特征的可靠形成对于VLSI和ULSI两者的成功以及对于提高单个衬底和管芯上的电路密度和质量的持续努力而言是非常重要的。
随着电路密度的增大,触头、过孔、线路、其它特征以及介于其间的电介质材料的宽度会减小至小于65nm,而电介质层的厚度保持基本恒定,结果使得特征的高宽比(即,高度除以宽度)增大。许多传统的沉积处理无法一致地填充高宽比超过6∶1,特别是当高宽比超过10∶1时的半导体结构。因此,针对形成具有特征高度与特征宽度的比为6∶1或更大的高宽比的无空洞纳米尺寸的结构,仍存在大量的工作。
此外,随着特征宽度减小,器件电流通常保持恒定或增大,而导致对于这些特征的增大的电流密度。元素铝和铝合金已经是用于形成半导体器件中过孔和线路的传统金属,这是因为铝具有可观察到的低电阻率、对于大多电介质材料具良好的粘着性、以及容易图案化,且容易获得高纯度的铝。但是,铝具有比诸如铜之类的其它导电金属更高的电阻率。铝还受电子迁移的影响,导致导体中空洞的形成。
铜与铜合金具有比铝更低的电阻率,且与铝相比具有明显更高的电子迁移阻抗。对于支持在高度集成且增大的器件速度情况下经历的更高的电流密度而言,这些特性是非常重要的。铜还具有良好的热导率。因此铜成为填充半导体衬底上亚四分之一微米、大高宽比互连特征的选择金属。
传统上,诸如化学汽相沉积(CVD)和物理汽相沉积(PVD)之类的沉积技术已经被用于填充这些互连特征。但是,随着互连尺寸减小以及高宽比的增大,使用CVD和/或PVD由传统金属化技术进行的无空洞的互连特征填充变越来越困难。结果,电镀技术,例如电化学镀(ECP)已经成为集成电路制造处理中用于填充亚四分之一微米尺寸的大高宽比互连特征的可行处理。
大多ECP处理需要双阶段的处理,其中首先在衬底上的特征的表面之上形成种晶层(此处理可在单独系统中实现),然后将特征的表面暴露于电解质溶液中,同时在衬底表面与位于电解质溶液内的阳极之间施加电电偏压。
传统的电镀实践包括通过物理汽相沉积(PVD)、化学汽相沉积(CVD)或原子层沉积(ALD)将铜种晶层沉积到扩散阻挡层(例如钽或氮化钽)上。但是,随着特征尺寸变得更小,因为在靠近特征底部的特征侧壁种经常获得不连续的铜结块的岛状物,所以利用PVD技术难以具有合适的种晶阶段覆盖。当使用CVD或ALD沉积处理代替PVD来在大高宽比特征的整个深度上沉积连续的侧壁层时,在该区域上形成厚铜层。在该区域上的厚铜层可以造成特征的入口部在侧壁被完全覆盖之前封闭。当该区域上的沉积厚度被减小以防止入口封闭时,ALD与CVD技术也易于在种晶层中产生不连续。种晶层中的这些不连续已经表现为引起镀于种晶层之上的层中的缺陷。此外,铜在大气中易于快速氧化,而氧化铜会快速地溶解于电镀液中。为防止特征中的铜的完全溶解,铜种晶层通常会被制得相对较厚(厚达800),其可以抑制电镀处理对特征进行填充。因此,所期望的是在不具有铜种晶层的情况下允许直接将铜电镀在一个或多个薄阻挡层上的铜电镀处理。
因此,存在对能填充特征而无需铜种晶层的铜电镀处理的需求。

发明内容
本发明的实施例一般地提供了阻挡层表面处理的方法,其能够在不具有铜种晶层的情况下直接铜电镀。在一个实施例中,一种在衬底上直接电镀铜的方法,所述衬底具有在衬底表面上的VIII族金属层,所述方法包括以下步骤预处理所述衬底表面以移除所述衬底表面上的VIII族金属表面氧化物层和/或有机表面污染物,来减小电镀期间的临界电流密度;和用等于或大于所述临界电流密度的电镀电流在酸性电镀浴液中将连续且无空洞的铜层镀在所述预处理的衬底表面上。


通过结合附图阅读对以下详细说明,将容易理解本发明的教导,附图中图1A-1C图示了集成电路制造序列的示意性剖视图。
图2示出了作为硫酸浓度的函数的临界电流密度。
图3A示出了在铜电镀之前预处理衬底表面的流程图。
图3B示出了对于沉积和退火的钌衬底,作为硫酸浓度的函数的临界电流密度。
图4示出了在0.14μm×0.8μm沟槽中退火后的钌表面上电镀的铜的SEM。
图5是电化学电镀系统的一个实施例的俯视图。
图6图示了在本发明的电化学电镀单元中使用的电镀单元的示例性实施例。
为帮助理解,在可能的情况下,使用相同标号来表示对于附图公共的相同元件。附图未按比例绘制。
具体实施例方式
通过CVD、ALD或PVD沉积的钌(Ru)薄膜可以是对于小于45nm技术的用于金属间电介质(IMD)与铜互连之间的无种晶扩散阻挡的潜在候选。钌为VIII族金属,具有低电阻率(电阻率~7μW-cm)和高热稳定性(高熔点~2300℃)。钌甚至在环境温度下存在氧和水的情况下相对地稳定。钌的热导率和电导率是钽(Ta)的两倍。钌在900℃以下不与铜形成合金,并且对于铜表现了良好的粘附性。因此,半导体工业已经对于将钌用作铜阻挡层产生了兴趣。在试图以无种晶层的状态用铜填充钌涂覆的特征时,钌的低电阻率是一个优点。
图1A-1C图示了结合有本发明的VIII族金属阻挡层的、处于铜互连制造序列的不同阶段的衬底的剖视图。例如,图1A图示了具有金属触头104和形成于其上的电介质层102的衬底100的剖视图。衬底100可以包括半导体材料,如硅、锗、或砷化镓。电介质层102可以包括绝缘材料,如二氧化硅、氮化硅、氮氧化硅、和/或碳掺杂氧化硅(SiOxCy,例如可从位于加州圣塔克劳拉的应用材料公司获取的注册商标为BLACKDIAMONDTM的低k电介质)。金属触头104可包括例如铜或其它材料。孔隙120可以界定在电介质层102中,以提供金属触头104之上的开口。可以使用传统光刻或蚀刻技术在电介质层102中界定孔隙120。孔隙120的宽度可以等于或小于约900。电介质层102的厚度可以在约1000至约10000之间的范围内。
在一个实施例中,阻挡层106可以形成在电介质层102中界定的孔隙120中。光学阻挡层106可以包括一个或多个含耐火金属的层,用作铜阻挡材料,例如钛、氮化钛、氮化硅钛、钽、氮化钽、氮化硅钽、钨、氮化钨、和其它材料。可以使用诸如ALD、化学汽相沉积(CVD)或物理汽相沉积(PVD)之类的合适的沉积处理来形成光学阻挡层106。例如,可以使用其中四氯化钛与氨发生反应的CVD处理或ALD处理来沉积氮化钛。在一个实施例中,通过如2003年7月3日公开的共同转让的美国专利公开20030121608(其通过引用而结合于此)所述的ALD处理,来沉积钽和/或氮化钽作为阻挡层。可选的阻挡层的厚度在约5至约150之间,并优选为小于100。
在一个实施例中,例如为钌(Ru)、铑(Rh)、钯(Pd)、锇(Os)、铱(Ir)、与铂(Pt)的VIII族金属的薄膜可以用作为铜过孔或线路的底层(或阻挡层)。能抵抗腐蚀和氧化的这些VIII族金属可以提供如下的表面,利用电化学镀(ECP)处理可以将铜层随后沉积于其上。VIII族金属用于铜阻挡层。VIII族金属还可以沉积在传统的阻挡层(例如Ta(钽)和/或TaN(氮化钽))上,以充当传统阻挡层与铜之间的粘合层。通常使用化学汽相沉积(CVD)处理、原子层沉积(ALD)处理或物理汽相沉积(PVD)处理来沉积VIII族金属。
参考图1B,VIII族阻挡金属层108(例如钌)形成在衬底上,且在此例中形成在可选的阻挡层106上。VIII族金属层108的厚度通常取决于待制造的器件结构。通常,VIII族金属层108(例如钌)的厚度小于约1000,优选地在约5至约200之间。在一个实施例中,VIII族金属层108是具有厚度小于约100(例如约50)的钌层。
其后参考图1C,孔隙120可被铜110填充,以实现铜互连。在一个实施例中,贵金属或过渡金属层(例如钌层)可用作种晶层,而铜利用ECP镀或其它铜电镀技术直接沉积到该种晶层。用于ECP的电化学镀溶液通常包括铜源、酸源、氯离子源、以及至少一种电镀溶液添加剂(即水平剂、抑制剂、促进剂、防泡沫剂等)。例如,电镀溶液可包含约30g/l和约60g/l之间的铜、约10g/l至约50g/L的硫酸、约20ppm和约100ppm之间的氯离子、约5ppm和约30ppm之间的添加促进剂、约100ppm和约1000ppm之间的添加抑制剂、约1ml/l和约6ml/l之间的添加水平剂。电镀电流可以在从2mA/cm2至10mA/cm2的范围内,用于将铜填充到亚微米沟槽与/或过孔结构中。铜电镀化学剂和处理的示例可以在2003年7月8日递交的、题为“Multiple-Step Electrodeposition Process For Direct CopperPlating On Barrier Metals”的共同转让的美国专利申请号10/616,097、和2003年10月10日递交的、题为“Methods And Chemistry For ProvidingInitial Conformal Electrochemical Deposition Of Copper In Sub-MicroFeatures”的美国专利申请号60/510,190中找到。以下将在图5-6中说明电化学镀(ECP)系统的示例和示例性电镀单元。
已经发现,使用10-50g/l的H2SO4和2-10mA/cm2的电镀电流密度的传统铜电镀处理将不能产生钌层上连续的铜薄膜(≤1000)沉积。当电镀电流密度和/或H2SO4浓度(或酸度)增加至传统铜电镀所使用的值以上时,在钌层上形成连续的铜膜。最小或临界电流密度(CCD)已经被发现当电镀电流密度等于或大于此值时,将会在钌层上形成连续的铜薄膜,而当电镀电流密度小于此值时,将不会在钌层上形成连续的铜薄膜。CCD的大小与电镀溶液的酸性有极大的相关。
图2图示了临界电流密度(CCD)与硫酸(H2SO4)浓度的关系。如图2所示,CCD被定义为在钌表面上形成1000连续铜膜所需的最小电流密度。在CCD以下的值,在衬底的中心区域处将不会沉积视觉上光滑的连续铜膜。虽然CCD的大小与电镀浴液的酸性具有极大的相关,但是CCD与钌沉积方法(无论是ALD、CVD或PVD)并不相关。
众所周知,对于电沉积的成核和结晶生长的动力学与在成核/生长位置处的当地电化学超电位(over-potential)密切相关。超电位被定义为实际电位与零电流(开路)电位之间的差。较高的超电位通过降低临界晶核尺寸并增大晶核密度而促成新的结晶成核;而较低的电化学超电位促成在现有的微晶上的生长。此外,电镀溶液中的含硫有机添加剂(例如,促进剂)被认为能增强铜的被吸附原子(Cu adatoms)的表面扩散,并在消耗成核的情况下促进结晶生长。铜的被吸附原子是指在电镀期间或在它结合到铜层中之前着陆于衬底表面的铜原子。因为电镀电流密度取决于用于给定的电镀浴液的电化学超电位,所以铜沉积的结构/形态受电镀电流密度的影响。在具有铜膜(该铜膜为在3mA/cm2的电镀电流的情况下在含有10g/l硫酸的电镀溶液中电镀在100的钌膜上的1000(由接近衬底边缘量测)铜膜)的衬底的中心附近所取的扫瞄式电子显微镜(SEM)图像中,发现在衬底的中心区域中具有较大的晶粒以及较差的膜沉积。100厚的钌膜通过PVD沉积。根据如图2所示的结果,当硫酸浓度为10g/l时,CCD为约40mA/cm2。3mA/cm2的电流密度远低于40mA/cm2(CCD),故如所预料地形成非连续层。已经认为在此电镀条件下,仅少数的微晶是足够稳定来用作进一步结晶生长的成核中心的,因此来自电镀电流的能量主要用于生长这些结晶,并帮助铜的被吸附原子的快速表面扩散。因此SEM显示出在衬底中心区域中大的晶粒和铜岛状物沉积。在此条件下为在整个衬底表面上形成连续的铜膜,沉积层不得不非常厚,且此沉积层将容易包含空洞,这使得其不适于铜互连的应用。已经发现,使用含有60g/l的H2SO4的电镀溶液和约10mA/cm2的电镀电流密度(略低于15mA/cm2的CCD),可以形成在钌膜(其为100厚,并通过PVD沉积)上具有5000厚的连续铜膜的衬底。然而在铜/钌界面处存在大的空洞。
当电镀电流增大至30mA/cm2,发现在衬底的中心附近晶粒密度增大,并发现晶粒尺寸减小。但是因为电镀电流低于CCD,所以在钌表面上形成非连续铜膜。如前面所述,钌膜为100厚并通过PVD沉积。
增大电镀电流也存在一些缺点。通常,高电镀电流密度倾向于导致较差的间隙填充。通常,已经发现小于约10mA/cm2的电镀电流密度可促进从底部向上的间隙填充。为了将电镀电流密度减小到适于从底部向上的间隙填充的范围,需要增大硫酸的浓度。当硫酸浓度增大至160g/l且电镀电流为5mA/cm2(其等同于在该特定酸性浓度下的CCD)时,在衬底上的100钌膜之上形成连续的1000铜膜。但是,剖面SEM图像显示,在铜/钌界面处形成空洞。当电镀电流增大至10mA/cm2(5mA/cm2的CCD的两倍)且硫酸浓度维持在160g/l,连续的5000铜膜形成在100的钌膜上并且在铜/钌界面处没有空洞。
CCD取决于浴液酸度的原因之一涉及以上讨论的当地电化学超电位。具有较低酸度的电镀溶液具有更高的电阻。因此需要高的CCD来克服低酸度电镀浴液中的更高电阻。
在2003年3月23日至27日在路易斯安那州新奥尔良举行的美国化学学会国际会议中,北德州大学的Chyan等人发表的最新研究显示,氧化钌(RuO2)具有类金属的导电性,且铜也会电镀且牢固地粘附于氧化钌上。在钌沉积表面上所观察到的高CCD可能是钌表面氧化和/或有机表面污染物的存在的结果。已经猜测,“纯”的钌表面对铜成核更具活性。通过在铜电镀前之前的预处理工艺移除表面氧化物层或有机表面污染物,可以大大减少为形成连续铜膜而没有铜/钌界面空洞所需的电镀电流和电镀浴液酸度。预处理工艺可以将衬底表面暴露到还原剂。图3A示出了预处理工艺流程。在步骤301,顶部具有VIII族金属(例如钌)的衬底通过诸如在还原气体(例如,氢气)中退火之类的工艺被预处理,以清洁表面的金属氧化物或有机污染物。在步骤302,将铜膜直接电镀到已预处理的衬底。一种可能的氧化还原反应如下之方程式(1)所示。
RuO2+2H2-----→Ru+2H2O(1)通过紧接着铜电镀之前的退火来预处理具有100 PVD钌膜的衬底。此退火处理在存在有含氢气体(例如,含有4%氢气与96%氮气的合成气体)、室温至约400℃之间(并优选地在约100℃至约400℃之间)的温度、约1sccm(标准立方厘米每分钟)至约20slm(标准升每分钟)之间的气体流率、并在约5mTorr至约1500Torr下持续约2秒至约5小时的条件来实施。出于制造效率的考虑,退火时间优选为1小时内。衬底退火的目的是为了将RuO2表面还原为钌和/或使有机表面污染物析出。在一个实施例中,含氢气体与非反应性气体(例如,N2或惰性气体(例如,Ar、He等)混合。为了使有机表面污染物析出的目的,可以用对钌而言的非反应气体(例如N2或惰性气体(如Ar))来退火。退火处理可以在可从加州圣塔克劳拉的应用材料公司获取的单晶片快速热退火室中进行,或者在批处理炉中进行。
图3B图示了在钌沉积衬底在如图5的下部所示的退火室中以270℃在合成气体中退火30秒之后CCD减小的情况的示例。曲线311示出了在钌沉积衬底表面上电镀铜的CCD。曲线312示出了在合成气体退火的钌衬底表面上电镀铜的减小的CCD。例如对于含有10g/l硫酸的溶液,CCD从40mA/cm2降低至8mA/cm2,对于含有100g/l硫酸的溶液,CCD从10mA/cm2降低至3mA/cm2。曲线311与312两者均示出了CCD随酸浓度的增大而减少。电镀溶液中使用的酸可以是其他类型的酸,例如磺酸(包括烷烃磺酸)。若使用另一种酸代替硫酸,应该使用当量酸浓度范围。
在合成气体退火的情况下,直接铜电镀处理可以用与传统的铜电镀处理相似的电流密度来操作。在合成气体退火之后,钌衬底表面趋于变得更具亲水性,如同对于清洁且纯的钌表面所期望的。为了保持CCD的大幅减小,合成气体退火钌膜上的铜电镀必须在合成气体退火之后的4小时内执行,优选地在2小时内执行。若衬底暴露于氧或其它污染物太久,则由于RuOx的再次形成或来自大气环境的有机表面污染物的再次沉积,CCD将逐渐回到退火前的状态。
通过含氢气体退火引起的CCD的大幅减小非常重要,因为CCD的减小允许使用包含范围在约10g/l至约300g/l范围内的实际酸浓度的酸性CuSO4浴液、以适于亚微米沟槽/过孔结构的间隙填充的电流密度来沉积铜膜。
在一个示例中,对于使用含有100g/l硫酸浓度的电镀溶液和3mA/cm2的电镀电流密度(PCD)(等于CCD,PCD/CCD=1)在退火的80 ALD钌上沉积的1000铜膜,对其所取的SEM图像显示沉积了连续的铜膜,且在铜/钌界面之间无空洞。在铜/钌界面上无空洞表示良好的铜(Cu)和钌界面完整性和铜在退火钌表面上的良好粘附。在第二示例中,对于使用含有100g/l硫酸浓度的电镀溶液和4.5mA/cm2的电镀电流密度(或PCD/CCD=1.5)在退火的80 ALD钌上沉积的1000铜膜,对其所取的SEM图像也显示沉积了连续的铜层,且在铜/钌界面之间无空洞。类似地,7.5mA/cm2的电镀电流密度(或PCD/CCD=2.5)也实现了连续的铜膜,并且在铜/钌界面之间无空洞。这些结果表示气体退火预处理降低电镀电流密度,并提高了Ru/Cu界面的粘附与完整性。
当铜沉积在合成气体退火的钌表面时,即使当PCD/CCD等于1时,Ru/Cu界面也显示无空洞的良好完整性。相反,当以CCD(或PCD/CCD=1)电镀时,介于铜与未退火钌表面之间的界面将产生如前所述的界面空洞。清洁的钌表面允许较佳的铜成核与沉积,并因此提高了界面完整性。
利用含氢气体退火来预处理VIII族金属表面的另一个优点是提高铜与VIII族金属之间的粘附。实验结果显示因为良好的铜/钌界面完整性(无空洞),在铜与预处理的、清洁并可能无氧化的钌表面之间的粘附更佳。铜与钌层之间的良好界面完整性对于形成可靠的半导体器件而言是非常重要的方面。显然,预处理的钌表面对于在钌膜上形成高品质铜是关键的。
将铜电镀到合成气体退火的钌表面的另一方面在于,由于如上所述提高了亲水性而引起的电镀铜膜对整个衬底表面的覆盖。衬底特征上的铜电镀的阶梯覆盖也会得到改善,因为退火钌表面更具亲水性,并更能将电镀溶液深入引至特征中。图4示出了在0.14μm×0.8μm的沟槽中在退火钌表面上电镀铜的优良间隙填充的SEM。所沉积的钌是80 ALD钌。预处理是在300℃持续3分钟的合成气体退火。铜电镀电流在最初的100时为10mA/cm2,其余1900时为5mA/cm2。
退火处理可以在一体的退火室(如图5所示的退火室535)中或在分离的退火系统中进行。退火处理可以在单个晶片室或是批处理炉中执行。
除了利用含氢气体退火之外,在直接电镀铜之前对VIII族金属表面的预处理也可以由其他方法完成。其他预处理方法的一个示例是在无铜离子的酸溶液中的阴极处理。表面RuOx层可以被阴极还原,而弱键合的有机表面污染物可通过阴极极化从表面排出。以下方程式(2)示出了一种可能的还原反应。阴极处理可以在与如下参考图6所述的铜电镀单元类似的一体单元中执行,或者在与铜电镀系统分离的处理单元中执行。阴极处理单元需要阳极、阴极、和无铜离子的酸浴液。酸浓度范围应介于约10g/l至约100g/l之间的范围内,并优选地在约10g/l至约50g/l之间的范围内。优选的酸为H2SO4,但也可以使用其它类型的酸性溶液,诸如有机磺酸溶液(例如甲基磺酸)。酸性浴液需要无铜以避免阴极处理期间在钌上的铜沉积,该铜沉积不良地使铜岛状物成核。
RuO2+4H*+4e------>Ru+2H2O(2)阴极处理可以通过电位控制或电流控制来实现。对于电位控制方案,除工作电极外,需要基准电极来监控晶片电位,所述工作电极为在晶片表面上的薄沉积钌层以及阳极。优选的基准电极是接近衬底表面布置的薄铜线。电位控制可通过恒电位器来实现。相对于铜基准电位,被控制的钌电极电位在约0伏至约-0.5伏的范围内。除了将RuOx还原为Ru之外,在钌膜表面可以发生H2演化。对于电流控制方案,阴极电流在沉积钌的衬底与阳极之间通过。电流密度应该在约0.05mA/cm2至约1mA/cm2的范围内。处理时间应该在约2秒至约30分钟的范围内。但是,出于产量考虑,处理时间优选地保持在5分钟以下。
与钌相关的实验结果和讨论仅用作示例。本发明的构思可以应用于其他VIII族金属,例如铑(Rh)、钯(Pd)、锇(Os)、铱(Ir)、和铂(Pt)。
铜电镀可在Electra Cu ECP系统或SlimCell铜电镀系统上的单元中执行,两者均可由加州圣塔克劳拉的应用材料公司获取。图5图示了SlimCell铜电镀系统500的俯视图。ECP系统500包括工厂接口(FI)530,其一般亦称为衬底装载台。工厂接口530包括多个衬底装载台,其构造为与衬底容纳盒534接合。机械手532位于工厂接口530中,并构造为访问容纳在盒534中的衬底。此外,机械手532也延伸到连接通道515中,连接通道515将工厂接口530连接到处理主框架或平台513。机械手532的位置允许机械手访问衬底盒534以从其取出衬底,并将衬底递送至位于主框架513上的处理单元514、516中的一个,或可选地递送至退火台535。类似地,在衬底处理序列完成后,机械手532可以用于从处理单元514、516、或退火台535取出衬底。在此状况下,机械手532可以将衬底递送回到盒534以从系统500移除。
将在以下更详细说明的退火台535一般包括双位置退火室,其中冷却盘/位置536与加热盘/位置537相邻地定位,并具有位于其附近的衬底传输机械手540(例如位于两个台之间)。机械手540通常构造为在各个加热盘537和冷却盘536之间移动衬底。此外,虽然退火室535被图示成定位为使得可从连接通道515访问退火室535,但是本发明的实施例并不限于任何特定的构造或布置。在一个实施例中,退火台535可定位为与主框架513直接连通,即,可由主框架机械手520访问。例如,如图5所示,退火台535定位为与允许访问主框架513的连接通道515直接连通,因此,退火室535被图示为与主框架513连通。在2003年4月18日递交的题为“Two Position Anneal Chamber”的美国专利申请号60/463,860中描述了合适退火室的细节。
在一个实施例中,在一体的退火室中执行退火处理,如图5所示的退火室535。在另一实施例中,在分离的退火系统中执行退火处理。在其他实施例中,在单个晶片室或批处理炉中执行退火处理。
如上所述,ECP系统500还包括处理主框架513,其上具有位于中心的衬底传输机械手520。机械手520通常包括一个或多个臂/托板522、524,其构造为在其上支撑和传输衬底。此外,机械手520与所附托板522、524通常构造为可延伸、旋转和垂直移动,使得机械手520可将衬底插入和移出位于主框架513上的多个处理位置502、504、506、508、510、512、514、516。类似地,工厂接口机械手532还包括延伸、旋转与垂直移动其衬底支持托板的能力,同时还允许沿着从工厂接口530延伸到主框架513的机械手轨道线性地行进。通常,处理位置502、504、506、508、510、512、514、516可以是在电化学镀平台中利用的任何数量的处理单元。更具体而言,处理位置可以构造为电化学镀单元、清洗单元、斜面清洁单元、旋转清洗干燥单元、衬底表面清洁单元(其整体包括清洁、清洗、和蚀刻单元)、无电镀单元、计量检测台、和/或其它任何可以有利地与电镀平台结合使用的处理单元。各个处理单元和机械手中的每个通常与处理控制器511通信,处理控制器511可以是基于微处理器的控制系统,其构造为从用户和/或位于系统500上的各种传感器接收输入,并根据输入来适当地控制系统500的操作。
图6图示了可以实施在图5的处理位置502、504、506、508、510、512、514、516上的电镀室600的部分剖视立体图。电化学镀单元600通常包括外盆601和定位在外盆601内的内盆602。内盆602通常构造为包含电镀溶液,其用于在电化学镀处理期间将例如铜之类的金属镀到衬底上。在电镀处理期间,电镀溶液通常连续地供应到内盆602(例如,对于10升的电镀单元为约1加仑每分钟),并因此使电镀溶液连续地溢流过内盆602的最上点(通常称作“堰”),并被外盆601收集而从其排出,以用于化学处理和再循环。电镀单元600通常以倾角定位,即,电镀单元600的框架部分603通常在一侧上升高,使得电镀单元600的部件倾斜约3°和约30°之间,或对于优化结果通常在约4°和约10°之间。电镀单元600的框架构件603支撑位在其上部的环形基体构件。因为框架构件603在一侧上升高,所以基体构件604的上表面通常相对于水平倾斜以一定的角度倾斜,此角度对应于框架构件603相对于水平位置的角度。基体构件604包括形成在其中央部分的环形或盘形凹部,环形凹部构造为收纳盘形阳极构件605。基体构件604还包括从其下表面延伸的多个流体入口/出口609。流体入口/出口609中的每个通常被构造为对电镀单元600的阳极隔室或阴极隔室单独地供应或排放流体。阳极构件605通常包括形成通过其的多个槽607,其中槽607通常定位为在阳极组件605的表面之上互相平行定向。平行定向允许阳极表面处产生的浓稠流体往下流动穿越阳极表面并进入槽607之一。电镀单元600还包括膜支撑组件606。膜支撑组件606通常在其外周界处紧固到基体构件604,并包括构造为允许流体通过其的内部区域。膜608伸张在支撑606上,并操作以流体地分离电镀单元的阴极电解液室与阳极电解液室。膜支撑组件606可以包括位于膜的周界附近的O环式密封,其中该密封构造为防止流体从紧固在膜支撑606上的膜的一侧流至该膜的另一侧。通常是多孔陶瓷盘构件并构造为在被电镀衬底的方向上产生流体的基本层流或均匀流动的扩散板610,在单元中被定位在膜608与被电镀的衬底之间。在2002年10月9日递交的、要求2002年7月24日递交的美国临时专利申请号60/398,345的优先权的、题为“Electrochemical Processing Cell”的共同转让的美国专利申请号10/268,284中进一步解释了该示例性电镀单元,两者均通过引用将其全文结合于此。
虽然已经示出并详细说明了结合本发明教导的数个优选实施例,但是本领域的技术人员可以容易地得到仍然结合了这些教导的许多其他修改实施例。
权利要求书(按照条约第19条的修改)1.一种在衬底上直接电镀铜的方法,所述衬底包含布置在衬底表面上的金属阻挡层,所述方法包括以下步骤预处理所述衬底表面,以从所述金属阻挡层移除金属氧化物层并减小铜电镀期间的经过所述金属阻挡层的临界电流密度;和在所述铜电镀期间将连续且无空洞的铜层镀在预处理的所述衬底表面上,其中酸性电镀浴液具有等于或大于所述临界电流密度的电镀电流密度。
2.如权利要求1所述的方法,其中所述金属阻挡层包括从以下金属组成的群组中选择的金属钌(Ru)、铑(Rh)、钯(Pd)、锇(Os)、铱(Ir)、和铂(Pt)。
3.如权利要求2所述的方法,其中所述金属阻挡层的厚度小于约1000。
4.如权利要求1所述的方法,其中在所述预处理之后的4小时内执行所述铜电镀。
5.如权利要求1所述的方法,其中所述临界电流密度随着所述电镀浴液的酸度的增大而减小。
6.如权利要求1所述的方法,其中所述酸性电镀浴液中的酸度来自具有约10g/l至约300g/l浓度的硫酸。
7.如权利要求1所述的方法,其中所述临界电流密度小于约10mA/cm2。
8.如权利要求1所述的方法,其中所述预处理包括在包含退火气体的处理室内退火所述衬底。
9.如权利要求8所述的方法,其中所述退火气体以约1标准立方厘米每分钟至约20标准升每分钟范围内的流率被引入到所述处理室。
10.如权利要求8所述的方法,其中所述退火气体被加热到在约100℃至约400℃的范围内的温度。
11.如权利要求8所述的方法,其中所述退火气体被加压到约5mTorr至约1500Torr的范围内的压力。
12.如权利要求8所述的方法,其中所述退火持续在约2秒至约1小时的范围内的持续时间。
13.如权利要求1所述的方法,其中所述退火持续短于约1小时。
14.如权利要求1所述的方法,其中在一体的单个晶片退火室中执行所述预处理。
15.如权利要求1所述的方法,其中所述预处理包含阴极处理,所述阴极处理包括将所述衬底暴露于含酸浴液。
16.如权利要求15所述的方法,其中所述含酸浴液具有约10g/l至约100g/l的酸浓度。
17.如权利要求16所述的方法,其中以在约0伏至约-0.5伏的范围内的电位或以在约0.05mA/cm2至约1mA/cm2的范围内的电流密度来执行所述阴极处理。
18.如权利要求15所述的方法,其中所述含酸浴液包含硫酸。
19.如权利要求16所述的方法,其中所述酸浓度在10g/l至约50g/l之间的范围内。
权利要求
1.一种在衬底上直接电镀铜的方法,所述衬底具有在衬底表面上的VIII族金属层,所述方法包括以下步骤预处理所述衬底表面以移除所述衬底表面上的VIII族金属表面氧化物层和/或有机表面污染物,来减小电镀期间的临界电流密度;和用等于或大于所述临界电流密度的电镀电流在酸性电镀浴液中将连续且无空洞的铜层镀在预处理的所述衬底表面上。
2.如权利要求1所述的方法,其中所述VIII族金属从以下金属组成的群组中选择钌(Ru)、铑(Rh)、钯(Pd)、锇(Os)、铱(Ir)、和铂(Pt)。
3.如权利要求1所述的方法,其中所述VIII族金属的厚度小于约1000。
4.如权利要求1所述的方法,其中在所述预处理之后的4小时内执行所述铜电镀。
5.如权利要求1所述的方法,其中所述临界电流密度随着所述电镀浴液的酸度的增大而减小。
6.如权利要求1所述的方法,其中所述酸性电镀浴液中的酸度来自具有约10g/l至约300g/l浓度的硫酸。
7.如权利要求1所述的方法,其中所述临界电流密度小于10mA/cm2。
8.如权利要求1所述的方法,其中通过将所述衬底在具有含氢气体和/或与VIII族金属不反应的一种或多种气体的环境中退火来完成预处理所述衬底的步骤。
9.如权利要求8所述的方法,其中所述气体的流率在约1标准立方厘米每分钟至约20标准升每分钟。
10.如权利要求8所述的方法,其中以约100℃至约400℃之间的温度发生所述退火。
11.如权利要求8所述的方法,其中以约5mTorr至约1500Torr之间的压力发生所述退火。
12.如权利要求8所述的方法,其中所述退火具有约2秒至约1小时之间的持续时间。
13.如权利要求1所述的方法,其中预处理所述衬底短于约1小时。
14.如权利要求1所述的方法,其中在一体的单个晶片退火室中执行所述预处理。
15.如权利要求1所述的方法,其中通过在含酸浴液中的阴极处理来完成预处理所述衬底的步骤。
16.如权利要求15所述的方法,其中所述含酸浴液具有约10g/l至约100g/l的酸浓度。
17.如权利要求16所述的方法,其中以在约0伏至约-0.5伏的范围内的电位或以在约0.05mA/cm2至约1mA/cm2的范围内的电流密度来执行所述阴极处理。
18.如权利要求15所述的方法,其中所述含酸浴液包含硫酸。
19.如权利要求16所述的方法,其中所述酸浓度在10g/l至约50g/l之间的范围内。
20.如权利要求1所述的方法,其中在预处理VIII族金属表面上电镀铜的初始电镀电流至少等于所述临界电流密度。
全文摘要
本发明公开了阻挡层表面处理的方法的实施例,从而能够在不具有铜种晶层的情况下直接铜电镀。在一个实施例中,将铜电镀在顶部上具有VIII族金属的衬底上的方法是移除VIII族金属表面氧化物层和/或表面污染物,以及在预处理的VIII族金属表面上电镀铜。可以通过将衬底在具有含氢气体和/或与VIII族不反应的一种或多种气体的环境中退火、通过在含酸浴液中阴极处理、或通过将衬底浸没在含酸浴液中来完成预处理衬底的步骤。
文档编号C25D5/34GK1965110SQ200580019070
公开日2007年5月16日 申请日期2005年6月7日 优先权日2004年6月10日
发明者孙志文, 何人人 申请人:应用材料公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1