专利名称:具有电润湿特性的超疏水表面制备方法
技术领域:
本发明涉及一种超疏水表面的制备方法,尤其是涉及一种具有电润湿特性的 超疏水表面制备方法。
背景技术:
电润湿特性在微流控领域具有广泛的应用,是生物芯片、液体透镜、电子纸 显示等器件中液体状态控制的主流方法之一。电润湿通过外加场强改变液体与固 体材料之间的表面自由能,其宏观表现为外加场强改变了液体与固体材料之间的 接触角。对于微流控器件而言,初始接触角越大,则电润湿作用下接触角的变化 范围就越大,同时较大的接触角有利于液滴在微流控器件中形成较小的曲率半 径,从而在表面张力作用下产生较大的压力,有利于提高液滴的动态响应速度, 提高微流控器件的性能。对于平坦的表面,聚四氟乙烯材料具有较低的表面自由能,其接触角大约为 110度。在电润湿作用下,其接触角可以从110度连续变化到50度左右。进一 步提高液体与固体表面的接触角,则需要提高固体表面的粗燥度,即产生具有微 米和纳米结构的粗燥表面,形成类似莲花叶子的超疏水表面。目前具有电润湿特 性的超疏水表面主要有氧化锌纳米棒、碳纳米管、氧化硅纳米线、碳纳米管纸等。 上述超疏水表面主要是通过微机械加工和半导体加工技术,在固体表面形成微米 和纳米的微观结构,其加工方法成本高,大面积制备比较困难,并且在电润湿作 用下接触角的变化范围较小,通常在150度 100度之间。为克服上述问题,本发明采用四针氧化锌形成超疏水表面结构,通过掺杂纳 米碳管的方法实现电润湿特性。四针氧化锌和一维纳米碳管通过电泳法沉积在待 加工表面,从而克服四针氧化锌表面不具有电润湿特性和一维纳米碳管不具有超 疏水特性的问题,该方法不但成本低,而且适合大面积制备。技术问题为了克服现有具有电润湿特性的超疏水表面制备成本高,大面积 制备困难等问题,本发明提供一种超疏水表面的制备方法,该方法克服四针氧化 锌表面不具有电润湿特性和一维纳米碳管不具有超疏水特性的问题,并且加工成本低,可以实现大面积制备。
技术方案本发明采用电泳法制备具有电润湿特性的超疏水表面,该方法采 用由器皿、电泳液、导电阳极、加工表面和直流电源组成制备装置,电泳液中加 入四针氧化锌和纳米碳管,待加工表面与直流电源的阴极相连,导电阳极与直流 电源的阳极相连,并与加工表面平行放置,四针氧化锌和纳米碳管通过电泳沉积 在加工表面,电泳速度由直流电源控制,电泳完成后,加工表面采用高温烘干, 烘干后的加工表面涂覆一层低表面自由能材料。
所述的外加直流电源的电压范围为小于300v,加载时间范围为10秒 10分钟。
所述的导电阳极与加工表面平行放置,且具有相似的表面结构,间隔范围为 0. 5cm 20cm。
所述的导电阳极是导电的金属,或是覆盖有导电层的非导电材料。
所述的电泳液的组成是,以异丙醇为溶剂,加入浓度为1X10—2 1X10、/L 的Mg(N0》2湖20,再加入浓度为0. lg/L 5g/L的四针氧化锌和浓度为0. lg/L~5g/L 的纳米碳管。
所述的四针氧化锌和纳米碳管的尺寸范围为10nin 100um。
所述的高温烘干的温度范围为100度 500度。
所述的低表面自由能的材料采用Teflon AF或Cytop。
有益效果本发明采用四针氧化锌形成超疏水表面结构,通过掺杂纳米碳管
的方法实现电润湿特性。四针氧化锌和一维纳米碳管通过电泳法^:积在待加工表
面,从而克服四针氧化锌表面不具有电润湿特性和一维纳米碳管不具有超疏水特 性的问题,该方法不但成本低,而且适合大面积制备。
图1是具有电润湿特性超疏水表面的制备示意图。
以上图中有器皿l、电泳液2、导电阳极3、加工表面4、直流电源5。
具体实施例方式
图1中所示是本发明制备具有电润湿特性超疏水表面的加工方法示意图。具 有电润湿特性的超疏水表面主要通过电泳法进行制备。主要由器皿l、电泳液2、导电阳极3、加工表面4和直流电源5组成。在外加直流电源5 (电压范围大约 为〈300v)的作用下,电泳液中的纳米颗粒在外加场强的作用下,在加工表面 4沉积。为了使沉积厚度均匀,导电阳极3与加工表面4平行放置,间隔范围大 约为0.5cm 20cm,且具有相似的表面结构,导电阳极3可以是导电的金属,例 如铜、银等,也可以是覆盖有导电层的非导电材料,例如覆盖有ITO、铜膜的玻 璃基板,加工表面4可以是任意形状的任意材料,但其表面需覆盖有导电层,导 电层与直流电源5的阴极相连,例如带有ITO导电层的平板玻璃,或各种导电的 金属材料,例如铜、银等。传统的一维纳米结构,例如纳米碳管,在加工表面4 沉积后,其一维纳米结构的方向通常与加工表面4相平行,从而无法达到超疏水 效果所需的粗燥程度。为了使沉积的纳米结构与加工表面4相垂直,本发明优选 四针氧化锌颗粒制备电泳液2,由于四针氧化锌具有对称的四面体结构,四针氧 化锌在加工表面4沉积后,始终有一针的方向与加工表面4的法线方向相平行, 即垂直于加工表面4,从而形成粗燥的具有纳米结构的表面,但四针氧化锌属于 半导体材料,单纯的四针氧化锌表面具有超疏水特性,但是不具备电润湿特性。 本发明优选掺杂纳米碳管实现电润湿特性。纳米碳管具有导电性,在表面涂覆绝 缘层后可以实现电润湿。本发明优选的电泳液2的组成是,以异丙醇为溶剂,加 入浓度为1X10—2 1X1(TM/L的Mg(N03)2.6H20,再加入浓度为0. lg/L 5g/L的四 针氧化锌和浓度为0. lg/L 5g/L的纳米碳管。加工表面4纳米颗粒的沉积厚度和 密度与电泳液2的浓度、直流电源5的电压大小和加载时间长度、四针氧化锌和 纳米碳管的尺寸大小等因素有关。本发明优选的直流电源5加载时间范围为10 秒 10分钟,四针氧化锌和纳米碳管的尺寸范围为10nm 100um。电泳后的加工 表面4可以进一步放入高温炉中进行干燥和烘干。高温炉的温度范围为100度 500度,烘干温度不能太高,以防止烧毁碳管。采用图1中电泳法制备的表面具有超亲水特性。为实现超疏水特性,还需采 用低表面自由能的材料进一步包覆四针氧化锌和碳管,例如采用Teflon AF或 Cytop进行涂覆,并采用100度 350度的高温进行烘干和固化,或采用真空蒸 镀的方法蒸镀一层聚四氟乙烯。通过覆盖上述低表面自由能材料,便可以实现接 触角大于150度的超疏水表面,当在表面液滴和固体表面之间加载电压时,便可 以改变液滴与固体表面的接触角。
权利要求
1.一种具有电润湿特性的超疏水表面制备方法,其特征在于该方法采用由器皿(1)、电泳液(2)、导电阳极(3)、加工表面(4)和直流电源(5)组成制备装置,电泳液(2)中加入四针氧化锌和纳米碳管,待加工表面(4)与直流电源(5)的阴极相连,导电阳极(3)与直流电源(5)的阳极相连,并与加工表面(4)平行放置,四针氧化锌和纳米碳管通过电泳沉积在加工表面(4),电泳速度由直流电源(5)控制,电泳完成后,加工表面(4)采用高温烘干,烘干后的加工表面(4)涂覆一层低表面自由能材料。
2、 根据权利要求1所述的具有电润湿特性的超疏水表面制备方法,其特征 在于所述的外加直流电源(5)的电压范围为小于300v,加载时间范围为10秒 IO分钟。
3、 根据权利要求1所述的具有电润湿特性的超疏水表面制备方法,其特征 在于所述的导电阳极(3)与加工表面(4)平行放置,且具有相似的表面结构, 间隔范围为0. 5cm 20cm。
4、 根据权利要求1所述的具有电润湿特性的超疏水表面制备方法,其特征 在于所述的导电阳极(3)是导电的金属,或是覆盖有导电层的非导电材料。
5、 根据权利要求1所述的具有电润湿特性的超疏水表面制备方法,其特征 在于所述的电泳液(2)的组成是,以异丙醇为溶剂,加入浓度为1X10—2 1X 1(TM/L的Mg(N03》6H20,再加入浓度为0. lg/L~5g/L的四针氧化锌和浓度为 0. lg/L~5g/L的纳米碳管。
6、 根据权利要求1所述的具有电润湿特性的超疏水表面制备方法,其特征 在于所述的四针氧化锌和纳米碳管的尺寸范围为10run 100um。
7、 根据权利要求1所述的具有电润湿特性的超疏水表面制备方法,其特征 在于所述的高温烘干的温度范围为100度 500度。
8、 根据权利要求1所述的具有电润湿特性的超疏水表面制备方法,其特征 在于所述的低表面自由能的材料采用Teflon AF或Cytop。
全文摘要
具有电润湿特性的超疏水表面制备方法采用电泳法制备,由器皿1、电泳液2、导电阳极3、加工表面4和直流电源5组成制备装置,电泳液2中加入四针氧化锌和纳米碳管,待加工表面4与直流电源5的阴极相连,导电阳极3与直流电源5的阳极相连,并与加工表面4平行放置,四针氧化锌和纳米碳管通过电泳沉积在加工表面4,电泳速度由直流电源5控制,电泳完成后,加工表面4采用高温烘干,烘干后的加工表面4涂覆一层低表面自由能材料。
文档编号C25D13/02GK101613872SQ20091018322
公开日2009年12月30日 申请日期2009年7月23日 优先权日2009年7月23日
发明者军 夏, 威 雷 申请人:东南大学