薄壁可膨胀井下筛管组件及其制造方法

文档序号:5408022阅读:109来源:国知局
专利名称:薄壁可膨胀井下筛管组件及其制造方法
技术领域
本发明总地涉及一种过滤装置,且在此描述的实施例中,更具体地说,提供一种用于地下井筒的可膨胀井下筛管组件,以及制造该井下筛管的相关方法。
背景技术
在一些情况下,能够将大致管状设备运送到地下井筒内其预定位置处,并然后在井筒中向外膨胀该设备是有益的。例如,井筒内的约束可以防止该设备在其膨胀构型下穿过那部分井筒,但是该设备在其收缩构型下可以穿过该约束。在这个原理的一项应用中,公知的是在井筒中利用可膨胀井下筛管。
在井筒中可膨胀设备的潜在用途的一个示例在于井筒横切一个产油的相对松散的地层。在很多情况下,在井筒中浇注水泥以及进行砂砾填充操作的支出之前,需要能够利用筛管过滤来自该地层的产液。不幸的是,没有任何径向支撑,松散的地层将易于在井筒中塌陷,导致额外的花费和受益损失。传统的非可膨胀筛管必须小于井筒,以便通过其运送,并因此它们不能够为松散的地层提供任何径向支撑。
前面所提出的可膨胀井下筛管存在若干与其相关的问题、局限和缺点。例如,它们一般不是为了与地层接触并给其提供径向支撑而设计,并因此不适于该目的。另外,前面提出的井下筛管组件中的至少一个具有多层构型,其中各种管状元件必须彼此叠套并然后相互固定。这种前面提出的可膨胀井下筛管组件相对的结构复杂性以及利用多个工序来制造它的需要不利地增大了它的制造成本。此外,由于向外外接井下筛管的穿孔的基本管部分的组件部分具有若干层,由于要将井下筛管组件的外径限制在由限制井的尺寸而决定的最大值之内,因此基本管的最大可允许非膨胀直径不利地减小。由于基本管的非膨胀直径减小,其工作时的展开不利地增大了其上的膨胀应力,并减小了最大可膨胀直径。
从前面可以清楚地明白,存在如下需求,即,改善可膨胀井下筛管以及相关的制造方法,该筛管可以消除或至少基本上减小前面提出的如上面总地描述的井下筛管结构的上述问题、局限和缺点。本发明旨在上述需求。

发明内容
在实施本发明的原理中,根据本发明的实施例,提供了特别设计的井下筛管,该井下筛管可以作为一种颗粒过滤构件而用于地下井筒。虽然井下筛管为可膨胀结构的代表,但是它也可以优选地应用于不需要或者不期望膨胀井下筛管的各项用途中。另外,本发明的原理可以用于所典型示出的下向井眼的井下筛管用途之外的其他过滤用途中。
根据本发明的一个方面,井下筛管包括穿孔的管状基本管,该基本管由特别设计的薄壁管状过滤构件同轴外接,该薄壁管状过滤构件固定到基本管上,并由穿孔的管状外部保护套筒限定,该保护套筒具有直接固定到其内侧表面上的管状过滤介质板。过滤构件的结构利于井下筛管的径向膨胀,对于给定的最大井下筛管外径,为其提供了更大的中央通流面积,简化了井下筛管的制造,并降低了井下筛管的制造成本。
优选地是,过滤构件为金属网材料,并具有相对粗糙的径向外部和内部过滤材料层,在二者之间夹有较细的中间过滤材料层。穿孔的管状外部套筒元件具有侧壁开口,该开口的面积百分比一般在约10%到30%的范围内,并优选地约为23%。
根据本发明优选实施例中的本发明的制造方面,管状外部套筒/过滤分组件是通过提供一个平的穿孔板并在其一侧上放置一叠单独的金属网片材而形成。优选地,扩散粘结方法用于将单个片材彼此粘合,并将片材叠层粘结到穿孔板的相向侧上。优选地使用一次粘结过程,虽然第一粘结步骤可以用于将各片材粘结到一起,而随后的粘结步骤用于将粘合的片材叠层固定到穿孔板上。
在将平板/片材叠层分组件沿周边剪切成所需的组件大小之后,板/片材叠层组件变形为管状构型,该管状构型限定了内衬有过滤介质的管状套筒构件。沿着现在成为管状穿孔板的毗邻边缘部分形成焊缝,以将其与内衬它的管状过滤介质构件固定,后者在它们最终的管状构型中直接固定到其内侧表面上。
然后,将最终的外部管状套筒/过滤构件围绕穿孔基本管同轴放置,并利用通过将套筒的相对端部焊接到基本管上而适当地固定与后者上,从而完成井下筛管的制造。


图1A和1B是实施本发明原理的方法的示意图;图2是用在实施本发明原理的可膨胀井下筛管中的局部组装好的外部过滤构件的局部剖开的简化侧视图;图3是变形为管状构型的组装好的外部过滤构件的局部剖开的简化侧视图;图4是可膨胀井下筛管的穿孔的管状基本管部分的简化侧视图;图5是完成的可膨胀井下筛管的局部剖开的简化侧视图;图6是沿着图5中的线6-6截取的穿过完成的可膨胀井下筛管的放大比例的简化剖面图;以及图7是图6中的区域“7”的放大比例的简化剖面图。
具体实施例方式
图1A和1B典型示出的是实施本发明原理的方法10。在以下方法10以及其中描述的其他装置和方法的描述中,方向术语,如“之上”、“之下”、“上部”、“下部”等仅为参照附图方便而采用。另外,应理解的是在此典型示出的装置可以以各种取向,如倾斜、倒置、水平、垂直等,并在各种构型下加以使用,而不会背离本发明的原理。
首先参照图1A,在方法10中,包括多个可膨胀井下筛管14、16和18的筛管组件12运送到井筒20内。井筒20横切多个底层或区域22、24、26,从各底层中期望开采流体。筛管14、16、18分别相对于各个区域22、24、26定位。
井筒20作为未下套管并封闭的形式示于图1A和1B中,但是可以清楚地理解到本发明的原理也可以在下套管并封闭的井筒内实施。另外,井下筛管12被示为包括三个单独的筛管14、16、18,相对于每个区域22、24、26仅定位一个筛管,但是可以清楚地理解到在该组件中可以使用任意数量的筛管,并且对于任意区域可以定位任意数量的筛管,这不会背离本发明的原理。从而,在此描述并在图1A和1B中示出的每个筛管14、16、18可以代表多个筛管。
密封装置28、30、32、34在筛管组件12中并在筛管14、16、18之上和之下互连。密封装置28、30、32、34可以是封隔器,在这种情况下,封隔器可以放置在井筒20中,以将井筒中的区域22、24、26彼此隔离。然而,密封装置28、30、32、34优选地为可膨胀密封装置,当筛管组件12如下面所要详细描述的那样膨胀时它们膨胀成与井筒20密封接触。例如,密封装置28、30、32、34可以包括从外部施加到筛管组件12上的诸如弹性体、弹性材料、非弹性体等的密封材料。
另外参照图1B,筛管组件12已经从其初始的图1A构型径向向外膨胀。目前,密封装置28、30、32、34在筛管14、16、18之间和筛管之上及之下密封接合井筒20。
另外,筛管14、16、18优选地在区域22、24、26接触井筒20。筛管14、16、18与井筒20之间的这种接触可以有助于防止地层砂土被开采,防止地层或区域22、24、26坍塌到井筒中等。然而,对于符合本发明的原理,这种接触不是必须的。
使用可膨胀筛管组件12具有若干附加的优点。例如,图1A所示的径向减小的构型对于穿过受约束的井口来说是有益的,而图1B所示的径向膨胀构型对于提供较大通流面积并增强穿过其的通道是有益的。
现在另外参照图2~7,实施本发明原理的可膨胀井下筛管36在图5中代表性地示出。井下筛管36可以用于方法10中的一个或多个井下筛管14、16、18。然而,可以清楚地理解到井下筛管36可以用在任何其他方法中,而不背离本发明的原理。另外,如果需要的话,井下筛管36可以用于非膨胀用途中,而不会背离本发明的原理。
井下筛管36(见图5)包括大致管状基本管38(见图4)、同轴外接并向外覆盖基本管的大致管状构型的多层过滤介质板40(见图5和图6)、以及外接并向外覆盖管状过滤介质板40的大致管状的保护外部套筒42(见图5和图6)。套筒42(见图3~6)具有通过其侧壁形成的开口44,以允许流体进入该井下筛管36。典型地,套筒42具有侧壁开口,其百分比在约10%到约30%的范围内。优选地,这个侧壁开口百分比大约为23%。向内穿过套筒开口44的流体经由向内穿过过滤介质40而得以过滤。然后,流体向内流过开口46,该开口46通过基本管38的侧壁而形成(见图4~6)。
井下筛管36可以利用各种任意方法而径向膨胀。例如,整形器(swage)可以穿过基本管38,流体压力可以施加到基本管内定位的膜片上,等等。从而,可以使用任何膨胀井下筛管36的方法,而不会背离本发明的原理。
外部套筒42保护过滤介质40在井下筛管36在井中运送并定位的同时免受损坏。另外,如果井下筛管36用于诸如此前描述的方法10的方法中,该方法中井下筛管膨胀而与井筒径向接触,套筒42也会保护过滤介质40免受由于这种接触造成的损坏,并提供径向支撑,以防止井筒塌陷。从而,套筒42优选地由坚固、可变形的高强度材料(如钢)构成,但是其他材料也可以使用,并符合本发明的原理。
可以轻易理解的是当基本管38径向向外膨胀时,过滤介质40将在套筒42和基本管38之间径向压缩。由于基本管38和套筒42之间的膨胀不同,在套筒内的开口44和基本管内的开口46之间保持对齐是困难的,要不然是不合乎需要的。开口44和46之间对齐不佳,以及套筒42和基本管38之间的过滤介质40的压缩会严重地约束流体流入井下筛管36中。然而,过滤介质40包括完全或者基本上消除这个潜在问题的特征。
具体地说,如图7中以横截面示出的,夹在穿孔的管状基本管38和穿孔的管状外部套筒42之间的过滤介质40包括三层过滤材料-外部相对粗糙层48、中间相对精细层50、以及内部相对粗糙层52。术语“精细”和“粗糙”在此用于表示允许穿过过滤层48、50、52的颗粒的相对尺寸。即,中间层50从流过它的流体中过滤精细或小尺寸颗粒,而内层和外层48、52从流过它们的流体中过滤粗糙或大尺寸的颗粒。每层48、50、52可以由一个或多个单独的金属网材料片材构成。
然而,内层和外层48、52不需要为了它们的过滤特性而使用,尽管至少外层48将从流入井下筛管36内部的流体中过滤大尺寸颗粒,而是它们主要用于为在基本管38膨胀之后在开口44、46之间的流动提供条件。例如,如果过滤层48、52由相对粗糙的机织材料制成,径向通过套筒开口44进入井下筛管36的流体可以相对轻易地横向流过各层48~52(即,大致垂直于进入流体流动的径向)。从而,流体可以流入套筒开口44之一中,横向流过外部过滤层48,向内流过中间过滤层50,横向流过内部过滤层52而到达开口46之一,并然后向内流过开口46进入基本管38的内部。因此,即使过滤介质40在套筒42和基本管38之间径向压缩,并且套筒开口44与基本管开口46未对齐,流体仍然可以相对无阻碍地流过过滤介质(而不是由于相对精细的中间过滤层50而阻碍流动)。
根据本发明的关键方面,利用一种独特的方法制造井下筛管36,该方法为井下筛管36提供了非常理想的薄壁构型,并且减小其复杂性和制造成本。现在将参照图2~5描述这种制造方法。
如图2所示,外部管状套筒42由最初为平的矩形金属板42a形成,该金属板其中形成有套筒穿孔44,并具有内侧面54。在完成的井下筛管36中为管状构型的过滤介质构件40最初为放置在平面金属板42内侧面54顶部上的单个平面矩形金属网片材的叠层40a。这些单个金属网片材的网眼尺寸设置成在上述叠层中限定相对粗糙的过滤介质层48、52以及相对精细的中间层50。
利用适当的扩散粘结方法,这些单独的金属网片材同时彼此粘结,并且金属网片材的叠层粘结到板42a的内侧面54上。另外,单独的各片材可以在将叠层扩散粘结到金属板42a上之前彼此扩散粘合。虽然扩散粘结是将过滤介质固定到穿孔板42a内侧面54上的优选方法,但是如果需要的话可以使用其他技术将过滤介质固定到金属板上,而不会背离本发明的原理。
优选地是,矩形金属丝网片材叠层40a和下面的平面穿孔板42a的长度和宽度尺寸一般是相同的,并且片材叠层40a与下面的平面板42a四周对齐,且叠层和板对齐的周边一般沿着图2中虚线的周线P延伸。在已经完成扩散粘结过程后,叠层/板分组件的周边从虚线P剪裁到图2所示的实线周线Pa,以为板/过滤介质分组件提供最终周边,该周边具有预定的最终制造尺寸。
接着,如图3所示,平面板42适当地变形为管状构型,且直接固定到其内侧面上54的过滤介质构件40目前也变形成管状构型,且目前由管状外部穿孔套筒42外接。为了将套筒42和内衬其内部的过滤介质40保持为管状构型,沿着套筒42和过滤介质片材40的毗邻侧边缘部分形成焊缝56,由此完成内衬过滤介质的穿孔管状套筒42的结构,如图3所示。
在套筒42制造完成之后,穿孔的管状基本管38(见图4)套入套筒42的内部中(见图5和6),由此将过滤介质40夹在基本管38和套筒42之间(见图6和7)。然后,内衬过滤介质的套筒42适当地固定到基本管38上,例如通过围绕套筒42相对各端延伸的环形焊缝58(见图5)。
过滤介质构件直接向穿孔套筒42的内侧面54上固定不仅简化了井下筛管36的制造并降低其制造成本,而且与传统结构的井下筛管相比为筛管36提供了其他优点。例如,由于外部过滤器/套筒构件40、42的薄壁结构,对于井下筛管给定的最大外径,井下筛管36可以具有较大直径的穿孔基本管38。因此,当井下筛管36径向膨胀(例如,在先前描述的方法10中)时,与未膨胀的初始最大外径相同的传统厚壁井下筛管相比,所形成的基本管通流面积得以增大,并且在基本管上的膨胀应力得以降低。
此外,由于基本管38最初具有比最大外径相同的传统构造的井下筛管更大的直径,因此,基本管开口46可以主要基于排放效率考虑而确定尺寸,而不是主要以利于基本管径向膨胀为基础来确定尺寸。
如上所述,虽然井下筛管36典型地为可膨胀井下筛管,但是它也可以有利地应用在它不需要膨胀的各种用途中。另外,虽然筛管36已经作为可用在地下井筒中的井下筛管加以描述和图示,但是过滤技术领域的技术人员可以轻易意识到如果需要的话本发明的原理也可以应用于其他各种过滤用途中。
当然,在仔细考虑上述本发明代表性实施例的描述时本领域技术人员可以轻易理解到可以对其特定实施例作出各种改进、添加、替换、删除和其他变化,并且这种变化是可以由本发明的原理预期到的。因此,上述详细描述应清楚地理解为仅以示例和说明的方式给出,本发明的精髓和范围由所附权利要求书惟一地限定。
权利要求
1.一种制造过滤装置的方法,该方法包括以下步骤提供一片具有侧面的穿孔板元件;将过滤介质片材以与其平行的关系放置在穿孔板元件的所述侧面上;以及利用将穿孔板元件以及该过滤介质片材变形成管状构型的步骤形成管状过滤构件,其中,变形的穿孔板元件外接变形的过滤介质片材。
2.如权利要求1所述的方法,还包括将过滤介质片材固定到穿孔板元件上的步骤。
3.如权利要求1所述的方法,还包括将变形的穿孔板元件和过滤介质片材保持为它们管状构型的步骤。
4.如权利要求3所述的方法,还包括以下步骤提供穿孔的管状基本元件;将该基本元件同轴插入过滤构件内;以及将过滤构件固定到被插入的基本元件上。
5.如权利要求3所述的方法,其特征在于,穿孔板元件具有相对的侧边缘,它们在变形步骤中紧密靠近,以及保持步骤包括将所述相对的侧边缘相互固定的步骤。
6.如权利要求5所述的方法,其特征在于,穿孔板元件为金属材料,以及相互固定步骤通过沿着变形的穿孔板元件的紧密靠近的相对侧边缘形成焊缝而进行。
7.如权利要求2所述的方法,其特征在于,固定步骤利用扩散粘结方法进行。
8.如权利要求2所述的方法,其特征在于,固定步骤利用金属网材料形成的一片过滤介质进行。
9.如权利要求8所述的方法,其特征在于,固定步骤包括以下步骤将一组金属网层叠置在穿孔板元件的所述侧面上;以及将金属网层彼此扩散粘结,并且将叠置的金属网层扩散粘结到穿孔板元件的该侧面上。
10.如权利要求9所述的方法,还包括以下步骤在形成管状构件之前进行的,对穿孔板元件和扩散粘结于其上的金属网层叠层进行周边剪裁的步骤。
11.如权利要求2所述的方法,其特征在于,固定步骤利用一片过滤介质进行,该过滤介质具有相对精细过滤材料的内层,该相对精细过滤材料夹于相对粗糙过滤材料的内侧和外侧层之间。
12.如权利要求1所述的方法,其特征在于,提供穿孔板元件的步骤利用具有侧壁开口的穿孔板元件进行,该开口的面积百分比在约10%到约30%的范围内。
13.如权利要求1所述的方法,其特征在于,提供穿孔板元件的步骤利用具有侧壁开口的穿孔板元件进行,该开口的面积百分比大约为23%。
14.一种制造地下井筒中使用的井下筛管的方法,该方法包括以下步骤提供穿孔的管状基本元件;利用如下步骤形成管状过滤构件提供穿孔板元件;提供过滤介质片材;将过滤介质片材以与其面对面的关系放置在穿孔板元件上;将穿孔板元件和过滤介质片材变形为管状构型,其中变形的穿孔板元件外接变形的过滤介质片材;以及将变形的穿孔板元件和过滤介质片材保持在它们的管状构型下;将基本元件套入过滤构件内;以及将套入的基本元件与过滤构件相互固定。
15.如权利要求14所述的方法,还包括将过滤介质片材固定到穿孔板元件上的步骤。
16.如权利要求15所述的方法,其特征在于,固定步骤是利用扩散粘结方法进行的。
17.如权利要求15所述的方法,其特征在于提供过滤介质片材的步骤包括提供一组单独的金属网层的步骤;以及固定步骤包括以下步骤将一组单独的金属网层叠置在穿孔板元件的侧面上,并且将金属网层彼此扩散粘结,并将该叠置的一组金属网层扩散粘结到穿孔板元件的侧面上。
18.如权利要求17所述的方法,还包括在变形步骤之前进行的,对穿孔板元件和扩散粘结于其上的金属网层的叠层进行周边剪裁的步骤。
19.如权利要求14所述的方法,其特征在于,保持步骤通过在变形的穿孔板上形成焊缝而进行。
20.如权利要求14所述的方法,其特征在于,提供过滤介质片材的步骤是通过提供一片金属网材料而进行的。
21.如权利要求14所述的方法,其特征在于,提供过滤介质片材的步骤是通过提供这样的过滤介质片材而进行的,该过滤介质片材具有相对精细材料的内层,而该相对精细材料夹于相对粗糙过滤材料的内侧和外侧层之间。
22.如权利要求14所述的方法,其特征在于,提供穿孔板元件的步骤是通过提供具有这样侧壁开口的穿孔板元件而进行的,该开口的面积百分比在大约10%到30%的范围内。
23.如权利要求14所述的方法,其特征在于,提供穿孔板元件的步骤是通过提供具有这样侧壁开口的穿孔板元件而进行的,该开口的面积百分比约为23%。
24.一种构成具有井筒的地下井的方法,该方法包括以下步骤提供一个管状的井下筛管组件,该井下筛管组件具有穿孔的基本管,基本管由管状过滤组件同轴外接,而管状过滤组件由具有内部表面的外部穿孔管状元件限定,同轴设置于外部管状元件之内的管状构型的过滤介质元件直接固定到该内部表面上;以及将管状井下筛管下降到井筒中。
25.如权利要求24所述的方法,还包括径向膨胀降低到井筒之内的管状井下筛管组件的步骤。
26.如权利要求25所述的方法,其特征在于,径向膨胀步骤以使得外部穿孔管状元件与井筒的四周形成接合的方式进行。
27.如权利要求24所述的方法,其特征在于,提供井下筛管的步骤是利用金属结构的管状过滤介质元件而进行的。
28.如权利要求27所述的方法,其特征在于,提供井下筛管的步骤是利用管状构型的金属网过滤介质元件进行的,该过滤介质元件扩散粘结到穿孔的外部管状元件的内部表面上。
29.如权利要求24所述的方法,其特征在于,提供井下筛管的步骤是利用外部穿孔的管状元件而进行的,该管状元件具有侧壁开口,该开口的面积百分比在大约10%到大约30%的范围内。
30.如权利要求24所述的方法,其特征在于,提供井下筛管的步骤是利用外部穿孔的管状元件而进行的,该管状元件具有侧壁开口,该开口的面积百分比大约为23%。
31.如权利要求24所述的方法,其特征在于,提供井下筛管的步骤是利用管状构型的过滤介质元件进行的,该过滤介质元件径向上具有相对粗糙过滤材料的内层和外层,在二者之间夹有相对精细的过滤材料层。
32.一种管状过滤装置,包括穿孔的管状外部元件,同轴设置在外部元件之内并直接固定到后者内侧表面上的管状过滤介质元件。
33.如权利要求32所述的管状过滤装置,其特征在于,过滤介质元件扩散粘结到外部元件的内侧表面上。
34.如权利要求32所述的管状过滤装置,其特征在于,过滤介质元件为金属网结构。
35.如权利要求32所述的管状过滤装置,其特征在于,过滤介质元件具有相对粗糙过滤材料的径向内层和外层,在二者之间夹有相对精细的过滤材料层。
36.如权利要求32所述的管状过滤装置,其特征在于,外部元件具有侧壁开口,该开口的百分比在大约10%到大约23%的范围内。
37.如权利要求32所述的管状过滤装置,其特征在于,外部元件具有侧壁开口,该开口的面积百分比大约为23%。
38.如权利要求32所述的管状过滤装置,其特征在于,所述管状过滤装置还包括穿孔的管状基本元件,该基本元件由过滤元件同轴外接。
39.如权利要求38所述的管状过滤装置,其特征在于,所述管状过滤装置为可用于地下井筒中的井下筛管。
40.如权利要求38所述的管状过滤装置,其特征在于,所述管状过滤装置可以径向膨胀。
41.如权利要求38所述的管状过滤装置,其特征在于,所述管状过滤装置为可用于地下井筒中的可膨胀井下筛管。
全文摘要
一种可膨胀井下筛管(36),具有理想的薄壁结构以及简化的制造方法。在制造筛管过程中,金属网过滤介质(40)的柔性片材扩散粘结到穿孔金属片材(42)的内侧面上,后者然后变形为管状形状,以形成具有内衬以过滤介质(40)的外部穿孔管状套筒(42)的过滤构件。管状过滤构件套在穿孔基本管(38)之上,并且使其相对的端部(58)密封地固定于后者上,以完成一个可膨胀的井下筛管(36)。
文档编号E21B43/10GK1427918SQ01809197
公开日2003年7月2日 申请日期2001年5月10日 优先权日2000年5月18日
发明者拉尔夫·H·埃科尔斯, 安东尼·D·西蒙娜, 萨姆·A·霍普金斯 申请人:哈利伯顿能源服务公司, 普罗拉特法斯特公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1