专利名称:模块化的连接器和方法
技术领域:
本发明涉及用于在井下工具组内诸如工具或工具内的模块的部件之间传递辅助流体和电子信号/能量的连接。
背景技术:
钻井井孔(也被称为井眼)以勘探和生产碳氢化合物。经常希望在钻井操作期间,诸如在实际钻井已经暂时停止的一段时间期间,对井孔穿透的地层执行不同的测定。在一些情况中,钻柱可以提供有一个或多个钻井工具以测试和/或采样周围的地层。在其它情况中,钻柱可以在称作“脱扣”的程序中从井孔移除,并且可以将测井电缆工具配置到井孔内以测试和/或采样地层。通过这样的井下工具执行的采样或测试可以用于例如定位有价值的碳氢化合物生产地层并且管理碳氢化合物从其中生产。
在盘绕的管子、钻管、套管或其它传送器上传送的这样的钻井工具和测井电缆工具以及其它井孔工具,也在这里简单地称作“井下工具”。这样的井下工具可以自身包括多个集成的模块,每个用于执行单独的功能,并且井下工具可以独自使用或与井下工具组中的其它井下工具结合使用。
更特别地,地层测定经常需要将来自地层的流体抽入井下工具(或者其模块)用于在现场测试和/或采样。不同的装置,诸如探测器和/或封隔器,从井下工具延伸以隔离井孔壁的区域,并且由此与围绕井孔的地层建立流体连通。随后可以使用探测器和/或封隔器将流体抽入井下工具。
使用集成的采样/压力工具在钻井的同时理想地执行这样的地层流体样本的采集,该工具包括数个模块,每个用于执行不同的功能,诸如电源供应、液力供应、流体采样(例如,探测器或双重封隔器)、流体分析、和样本采集(例如,罐)。这样的模块在例如美国专利No.4,860,581和4,936,139中说明。因此,诸如地层流体的井下流体通常被抽入井下工具,用于测试和/或采样。这种和其它类型的井下流体(除了通过钻柱泵送的钻井泥浆)在下文中被称作“辅助流体”。此辅助流体可以为采样的地层流体,或用于注入地下的地层内的特殊流体(例如,修井液)。辅助流体通常在井下操作中具有效用,而不仅仅是润滑钻头和/或将钻头钻屑运走到地面。此辅助流体可以在这样的采样工具的集成的工具的模块之间传递,和/或在在工具组内互连的工具之间传递。此外,电能和/或电子信号(例如,用于数据传输)也可以在这样的工具的模块之间传递。因此,挑战为在工具的模块之间执行必要的流体和电传递的同时维持可使用的工具长度(例如,30英尺)。
还应该理解,数个其它应用将需要在井下工具组的顺序地定位的模块或工具之间的流体连通和电信号通信-在测井电缆和“随钻”操作中。“随钻”操作通常表征为随钻测量(MWD)和/或随钻记录(LWD)操作的一部分,其中,需要穿过连接的工具或集成的工具模块的电(能量和信号)通信。已经开发了不同的设备以进行这样的随钻操作,诸如在以下美国专利中所披露的设备,授权给Cobern的No.5,242,020;授权给Berger等人的5,803,186;授权给Smith等人的6,026,915;授权给Berger等人的6,047,239;授权给Berger等人的6,157,893;授权给Nasr等人的6,179,066;和授权给Ciglenec等人的6,230,557。这些专利披露了用于从地下的地层中采集数据并且在一些情况中采集流体样本的不同的井下工具和方法。
尽管井下工具的采样和测试能力有所进展,现有系统-特别是“随钻”系统-经常受限于用于穿过工具或工具模块传递电信号的解决方法。其中,特别的解决方法包括在诸如在转让给Schlumberger的美国专利No.6,641,434中所描述的“有线钻管”(WDP)的连接的管形构件的连接点处的不同的环型连接器。没有已知这样的有线钻管连接器提供为用于在连接的管形构件之间传递电信号。
也已经提供了用于通过井下测井电缆工具流通流体的连接器。这样的连接器的示例在转让给Halliburton的美国专利No.5,577,925和美国专利申请No.10/710,246中示出。然而,没有已知的连接器被披露用于连接延伸通过并且终止于或靠近连接的井孔管的相对端的辅助流动线路,或用于促进在连接的部件之间的连接。此外,已知的连接器或连接器系统还没有面临包括钻铤、钻井泥浆、空间限制和苛刻的钻井问题的钻井工具的额外的挑战。
因此,存在对适合用于在井下工具组内的工具模块和/或工具之间连通辅助流体和/或通信电信号的连接器的需要。希望这样的连接器呈现长度调节的功能,以便补偿要被连接的模块/工具之间的分隔距离的不同。此外,希望这样的连接器呈现在连接的模块/工具断开时自动地密封流动通过其中的辅助流体的功能。此外,希望这样的连接器是模块化的并且适合用于不同的环境和情况中。
定义在本说明书中,某些术语在它们第一次被使用时定义,而用于本说明书的某些其它术语定义如下“辅助流体”表示井下流体(除了通过钻柱泵送的钻井泥浆),诸如通常被抽入井下工具用于测试和/或采样的地层流体、或用于注入地下的地层的特殊流体(例如,修井液)。辅助流体通常在井下操作中具有效用,而不仅仅是润滑钻头和/或将钻头钻屑运走到地面。
“部件”表示一个或多个井下工具或一个或多个井下工具模块,特别是当这样的工具或模块用于井下工具组内时。
“电的”和“电地”指的是用于传输电子信号的连接和/或线路。
“电子信号”表示能够传输电能和/或数据(例如,二进制数据)的信号。
“模块”表示井下工具,特别是具有两个或多个互连的模块的多功能的或集成的井下工具的一部分,用于执行单独的或分立的功能。
“模块化”表示适合用于连接(互连)模块和/或工具,并且为了使用中的灵活性和多样性,可能地用标准单元或尺寸构造。
发明内容
在至少一个方面中,本发明涉及用于连接延伸通过并且终止于或靠近井下工具组的两个分别的部件的相对端的辅助流动线路的连接器。该连接器具有用于流体连接分别的两个部件的辅助流动线路的主体组件,和用于调节主体组件的长度的组件。
两个部件可以为单一工具的分立模块,或替代地,为独立的工具。主体组件的主要部分可以轴向地布置在两个部件的相对端之间。主体组件可以包括可连接的第一和第二管形构件。第一和第二管形构件可以包括分别的管形阳螺纹和阴螺纹部分,并且,更特别地,可以包括钻柱内的邻近的钻铤。两个部件的辅助流动线路可以大致轴向地定向。轴向地定向的流动线路可以大致中心地定位或可以非中心地定位(即,偏心)在分别的两个部件内。
主体组件可以限定至少一个用于流体连接两个部件的辅助流动线路的流体管道。第一和第二管形构件可以合作以限定至少一个用于流体连接两个部件的辅助流动线路的流体管道。该流体管道可以轴向地定向穿过第一和第二管形构件,在该情况中,流体管道可以包括例如轴向地定向穿过第一和第二管形构件的液压接头件(stabber)。替代地,该流体管道可以径向地定向穿过第一和第二管形构件,在该情况中,第一和第二管形构件可以例如合作以限定穿过第一和第二管形构件的流体管道的环形部分。第一和第二管形构件可以螺纹地接合在长度调节组件内或靠近长度调节组件,并且长度调节组件促进第一和第二管形构件之间的相对旋转以调节主体组件的长度。第一和第二管形构件中的至少一个可以具有可以运动通过其中的腔室的活塞,用于在第一和第二管形构件断开时关闭一个或两个部件的辅助流动线路。
在另一个方面中,本发明提供用于连接延伸通过并且终止于或靠近井下工具组的两个分别的部件的相对端的辅助流动线路以及电线路的连接器。该连接器包括用于流体连接分别的两个部件的辅助流动线路和电连接分别的两个部件的电线路的主体组件,和用于调节主体组件的长度的组件。
两个部件可以为单一工具的分立模块,或替代地,为独立的工具。主体组件的主要部分可以轴向地布置在两个部件的相对端之间。主体组件可以具有可连接的第一和第二管形构件。第一和第二管形构件可以具有分别的管形阳螺纹和阴螺纹部分,并且,更特别地,可以具有钻柱内的邻近的钻铤。两个部件的辅助流动线路可以大致轴向地定向。轴向地定向的流动线路可以大致中心地定位或可以非中心地定位(即,偏心)在分别的两个部件内。主体组件可以限定至少一个用于流体连接两个部件的辅助流动线路的流体管道。第一和第二管形构件可以合作以限定至少一个用于流体连接两个部件的辅助流动线路的流体管道。该流体管道可以轴向地定向穿过第一和第二管形构件,在该情况中,流体管道可以包括轴向地定向穿过第一和第二管形构件的液压接头件。替代地,该流体管道可以径向地定向穿过第一和第二管形构件,在该情况中,第一和第二管形构件可以合作以限定穿过第一和第二管形构件的流体管道的环形部分。
两个部件的电线路可以大致轴向地定向。两个部件的电线路可以大致中心地定位、非中心地定位(即,偏心)在分别的两个部件内。主体组件可以限定至少一个用于电连接两个部件的电线路的传导通道。第一和第二管形构件可以合作以限定至少一个用于电连接两个部件的电线路的传导通道。该传导通道可以径向地定向穿过第一和第二管形构件,如在通过分别的第一和第二管形构件的阳螺纹和阴螺纹部分携带的互补的径向电触点、插头到插座连接器、或互补的湿接头(wet-stab)触点的情况。替代地,该传导通道可以轴向地定向穿过第一和第二管形构件,如在通过分别的第一和第二管形构件携带的互补的轴向电触点的情况。这样的轴向电触点可以包括电接头件、感应耦合、或它们的结合。
第一和第二管形构件可以螺纹地接合在长度调节组件内或靠近长度调节组件,并且长度调节组件促进第一和第二管形构件之间的相对旋转以调节主体组件的长度。第一和第二管形构件中的至少一个可以具有可以运动通过其中的腔室的活塞,用于在第一和第二管形构件断开时关闭一个或两个部件的辅助流动线路。
在另一个方面中,本发明提供用于连接延伸通过并且终止于或靠近井下工具组的两个分别的部件的分隔开的相对端的辅助流动线路以及电线路的方法。该方法包括以下步骤确定两个部件的相对端之间的距离,并且根据确定的距离,在分别的两个部件的辅助流动线路之间建立流体连接,并且在分别的两个部件的电线路之间建立电连接。
建立步骤可以包括使用至少一个流体管道以流体连接两个部件的辅助流动线路,并且根据需要调节流体管道的长度以符合确定的距离。流体管道可以大致轴向地定向(例如,沿其总长度的大部分)在两个部件之间,并且也可以至少部分地径向地定向(例如,包括径向地定向的部分)在两个部件之间。建立步骤可以包括使用至少一个传导通道以电连接两个部件的电线路,并且根据需要调节传导通道的长度以符合确定的距离。传导通道可以至少部分地径向地定向(例如,包括径向地定向地部分)在两个部件之间,并且也可以大致轴向地定向(例如,沿其总长度的大部分)在两个部件之间。该方法还可以包括在两个部件之间的流体连接断开时关闭一个或两个部件的辅助流动线路。
在另一方面中,本发明提供用于沿工具组连通流体和通信电子信号的系统,包括具有延伸通过并且终止于或靠近第一部件的端部的至少一个辅助流动线路和至少一个电线路的第一工具组部件,和具有延伸通过并且终止于或靠近第二部件的端部的至少一个辅助流动线路和至少一个电线路的第二工具组部件。第二部件的端部与第一部件的端部相对。主体组件用于流体连接分别的两个部件的辅助流动线路和电连接分别的两个部件的电线路。组件用于调节主体组件的长度。第一和第二部件可以为单一工具的分立模块。
为了能够详细地理解本发明的上述特征和优点,通过参考在附图中示出的本发明的实施例,提出对上面简要概述的本发明的更加详细的描述。然而,需要注意,附图仅示出了本发明的典型实施例,并且因此不能认为其限制本发明的范围,因为本发明可以承认其它同样有效的实施例。
图1为示意图,部分地示出了从钻机延伸到井孔内的现有的钻柱的截面,该钻柱具有包括多个通过在它们之间的连接器连接的模块的地层测试器组件。
图2为图1所示钻柱的一部分的示意性的截面图,更加详细地示出了地层测试器组件和其互连的模块中的一些。
图3为通过一般的模块化的连接器连接的井下工具组的两个部件的示意性的截面图。
图4为通过具有中心的轴向地定向的流体管道和中心的径向地定向的电传导通道的连接器连接的井下工具组的两个部件的示意性的截面图。
图5为通过具有轴向地定向的、环形的流体通道和中心的径向地定向的电传导通道的连接器连接的井下工具组的两个部件的示意性的截面图。
图6为通过与图5所示连接器相似的连接器连接的两个井下部件的示意性的截面图,其中更加详细地示出了连接器和被连接的部件之间的接口。
图7为通过具有用于调节连接器的长度的组件的连接器连接的井下工具组的两个部件的示意性的截面图。
图8为通过提供有用于调节连接器的长度的替代的组件的连接器连接的井下工具组的两个部件的示意性的截面图。
图9为通过具有内部的径向地对称的流体管道和中心的径向地定向的电传导通道的连接器连接的井下工具组的两个部件的示意性的截面图。
图10为通过具有中心的轴向地定向的流体管道和非中心的轴向地定向的电传导通道的连接器连接的井下工具组的两个部件的示意性的截面图。
图11A-B为图10所示轴向地定向的电传导连接器通道使用的有线钻管系统的一部分的示意性的截面图。
图12为通过具有外部的径向地对称的流体管道和中心的径向地定向的电传导通道的连接器连接的井下工具组的两个部件的示意性的截面图。
图13为通过具有非中心的轴向地定向的流体管道和轴向地定向的电传导通道的连接器连接的井下工具组的两个部件的示意性的截面图。
图14A-B为具有用于在连接器的主体组件的第一和第二管形构件断开时自动地关闭互连的部件的流动线路的阀的连接器的示意性的截面图。
具体实施例方式
本发明提供允许在维持标准钻井操作的同时在邻近的工具或模块之间传输流体以及电信号的连接器和系统。从而例如通过利用本发明,两个LWD或测井电缆工具或模块能够被连接以在其间流体(液力)连通和电通信。该连接器适合放置在井下工具组上需要这样的连通的任何地方。
图1示出了现有的钻机和钻柱,其中可以有利地利用本发明。陆上的平台和钻架组件110定位在穿透地下的地层F的井孔W上方。在示出的实施例中,井孔W通过以众所周知的方式旋转钻井形成。然而,在被告知本披露物的优势以后,那些本领域中的普通技术人员应该理解,本发明还可以应用在定向钻井应用以及旋转钻井中,并且不限于陆上钻机。
钻柱112悬挂在井孔W内并且在其下端包括钻头115。钻柱112通过转盘116旋转,通过没有示出的装置为转盘116供能,转盘116接合在钻柱的上端的钻杆117。钻柱112从通过钻杆117和允许钻柱相对于钩旋转的旋转转节119接附到移动块(也没有示出)的钩118悬挂。
钻井流体或泥浆126存储在形成在井场处的坑127内。泵129将钻井流体(也称作泥浆)126通过转节119内的口递送到钻柱112内部,导致钻井流体如通过定向箭头109所指示的向下流动通过钻柱112。钻井流体126通过钻头115内的口从钻柱112出去,并且随后如通过定向箭头132所指示的向上循环通过钻柱的外部和井孔的壁之间的环面。照这样,钻井流体润滑钻头115并且在其返回坑127时将地层钻屑传送到地面上以再循环。
钻柱112还包括靠近钻头115(换句话说,在距离钻头数个钻铤长度以内)的底部转具组件,通常称作100。该底部转具组件,或BHA,100包括用于测量、处理、和存储信息,以及与地面通信的能力。BHA100还包括传送钻铤的工具、稳定装置等等,用于执行不同的其它测量功能,和用于执行遥测功能的地面/本地通信子组件150。
在图1所示实施例中,钻柱112还装备有钻铤130,钻铤130容纳具有用于执行诸如提供电能或液力、流动控制、流体采样、流体分析、和流体样本存储的不同的分别的功能的不同的连接的模块130a、130b、和130c的地层测试工具。模块130b为具有用于接合井孔W的壁并且从地层F抽取有代表性的流体样本的探测器232的探测器模块,如本领域中的普通技术人员通常已知的。模块中的另一个(例如,模块130c)装备有用于存储通过探测器模块130b连通的有代表性的或“清洁的”流体样本的压力体积温度性质腔室(也被称作罐或圆筒)。
图2更加详细地示出了图1所示地层测试器组件130,特别是探测器模块130b和样本存储模块130c。探测器模块130b装备有用于接合井孔W的壁并且通过探测器线路234将流体从地层F抽取到中心流动线路236内的探测器组件232。操纵阀238、240、和242(及其它阀)以将探测器232流体连接到流量控制模块(没有示出),以将地层流体抽取到流动线路236内,并且将采样的流体泵送到地层测试器130内适当的模块以分析、排放到井孔环面、或存储等等。探测器模块130c装备有一个或多个样本存储腔室244,用于接收和存储压力体积温度性质流体样本,用于随后在地面上分析。
连接器210用于在邻近的模块(其实际上可以不邻接,如在图2中提出并且在下文中进一步解释的)之间传导采样的流体,并且用于通过电线路250传导电信号,电线路250同样贯穿模块,用于在地层测试器130的不同模块(130a、b、c)之间连通能量、并且可能通信数据。一个或多个压力计246可以与一个或多个采样探测器合作使用(仅示出了一个探测器232),以促进流体采样和压力测量,以及压力梯度确定和其它贮备测试操作。另外,通过适当地使用诸如压力计246的传感器,可以检验连接器210的完整性。因此,本发明的连接器适合许多的配置和应用,并且不限于地层测试工具,如对于那些阅读过本披露物的本领域中的普通技术人员显而易见的。
图3示出了用于连接延伸通过并且终止于或靠近布置在穿透地下的地层F的井孔W内的井下工具组(通过连接的钻铤306、308表示)的两个分别的部件360、380的相对端361、381的辅助流动线路362、382和电线路364a/b、384a/b的一般的模块化的连接器310。部件360、380可以为独立的井下工具,并且不需要为如上面对于图2所描述的单一工具的分立模块。
连接器310包括用于流体连接分别的两个部件360、380的辅助流动线路362、382并且电连接分别的两个部件360、380的电线路364a/b、384a/b的主体组件312。主体组件可以大致为单一的,或包括两个或多个如接下来在不同的实施例中描述的互补的部分。主体组件312限定了至少一个用于流体连接两个部件的辅助流动线路362、382的流体管道322。接下来呈现的实施例中呈现了不同的其它流体管道解决方案。主体组件通常装备有用于密封穿过连接的部件360、380的端部361、381的流体连接的O形圈密封装置324a/b、326a/b。应该理解,如在本领域中已知的,为了流体流动的完整性,O形圈可以被相似地用于其它地方。还应该理解,虽然遍及本披露物确定使用O形圈来促进穿过不同流体连接的密封,可以有利地使用其它已知的密封机构(例如,填密环)。另外,在至少一些实施例中,连接器主体组件将执行压力闷头的功能,其例如防止互连的部件中的一个的溢流扩散到其它互连的部件。
主体组件还装备有至少一个传导通道(在图3中没有示出),用于电连接两个部件360、380的电线路364a/b、384a/b。这样的电通道可以用于传导电信号通过主体组件,并且可以以许多方式限定,如通过下面描述的不同的实施例举例说明的。
连接器主体组件可以大致由金属制造,使用玻璃密封连接阳螺纹、触点等等。替代地,连接器主体组件可以由绝缘的热塑性塑料(例如,PEEKTM热塑性塑料)制造,或者其可以由金属、绝缘的热塑性材料、和玻璃的适当的组合制造。
此外,可以结合套筒构件(没有示出)的长度调节组件314提供为用于调节主体组件312的长度,以便适应要被连接的工具组部件360、380的端部361、381之间的不同的距离d。如下面进一步描述的,主体组件312可以包括螺纹地互连的第一和第二构件(例如,连接到彼此或通过共同的套筒或特形接头(sub))。在这样的情况中,长度调节组件314可以操作以允许或辅助第一和第二主体组件构件中的一个或全部旋转,以便调节主体组件的总长度。应该理解,虽然不是必需的,通过将主体组件312的主要部分轴向地布置在两个部件360、380的相对端361、381之间,简化了在这样的情况中的长度调节组件的操作。
图4-14示出了可以用于连接诸如井下工具组的接近的模块和/或工具的部件的连接器的不同版本。每个连接器具有通常包括可连接的第一和第二管形构件的主体组件。第一和第二管形构件可以包括分别的管形阳螺纹和阴螺纹部分,并且,在一些实施例中,可以包括在钻柱内的邻近的钻铤,如下面所描述的。
图4为可以用于在分别的钻铤406、408内携带的两个部件460、480的轴向地定向的、中心地定位的辅助流动线路462、482中的连接器410的截面图。连接器410的主体组件412包括可连接的第一和第二管形构件412a/b。第一管形构件412a被携带以与上部部件460(其与上部钻铤406一起运动)一起运动,并且限定了主体组件412的阳螺纹部分。第二管形构件412b被携带以与下部部件480(其与下部钻铤408一起运动)一起运动,并且限定了主体组件412的阴螺纹部分。当钻铤406、408通过在其间的相对旋转构成时,主体组件412的阴螺纹和阳螺纹部分也被旋转并且驱动形成连接的接合,以便限定轴向地定向的流体管道422,用于流体连接两个部件460、480的辅助流动线路462、482。O形圈415a/b通常围绕第一管形构件412a的套筒部分413携带,并且O形圈419a/b通常围绕第二管形构件412b的套筒部分417携带,用于密封穿过连接的部件460、480的端部461、481的流体连接。应该理解,如在本领域中已知的,为了流体流动的完整性,O形圈或其它密封装置可以被相似地用于其它地方。
第一和第二管形构件412a、412b还合作以限定至少一个传导通道474,用于电连接两个部件460、480的电线路464a/b、484a/b。该电线路通过插头485接附到主体组件412的传导通道474,但是也可以被焊接或压接到适当的位置,或通过其它已知的接附方法。通过由分别的第一和第二管形构件的阳螺纹和阴螺纹部分携带的互补的径向(环形)电触点490a(内部)、490b(外部),将传导通道474径向地定向(即,其包括径向地定向的部分)穿过第一和第二管形构件412a、412b。
虽然为了简单没有在图4中示出用于调节主体组件412的长度的组件,本领域中的普通技术人员应该理解,这样的附加的组件在许多应用中至少是希望的。这样的组件的特别的示例在下面参考图7-8讨论。
图5为可以用于在分别的钻铤506、508内携带的两个部件560、580的轴向地定向的环形辅助流动线路562、582中的特别的连接器实施例510的截面图。连接器510的主体组件512包括可连接的第一和第二管形构件512a/b。第一管形构件512a被携带以与上部部件560(其被固定到并且与上部钻铤506一起运动)一起运动,并且限定了主体组件512的阳螺纹部分。第二管形构件512b被携带以与下部部件580(其被固定到与下部钻铤508一起运动)一起运动,并且限定了主体组件512的阴螺纹部分。因此,当钻铤506、508通过在其间的相对旋转构成时,主体组件512的阴螺纹和阳螺纹部分也被旋转并且驱动形成连接的接合,以便限定轴向地定向的环形流体管道522,用于流体连接两个部件560、580的辅助流动线路。O形圈515a/b通常围绕主体组件512的阳螺纹部分携带,用于密封穿过第一和第二管形构件512a/b的流体连接。应该理解,如在本领域中已知的,为了流体流动的完整性,O形圈或其它密封装置可以被相似地用于其它地方。
第一和第二管形构件512a、512b还合作以限定至少一个传导通道574,用于电连接两个部件560、580的电线路564、584。该电线路564、584通过互补的径向(环形)电触点583a(内部)、583b(外部)和插头对插座的设计(与湿接头相似)中的插头585轴向地接附到主体组件512的传导通道574,但是也可以被焊接或压接到适当的位置,或通过其它已知的接附方法。通过由分别的第一和第二管形构件512a/b的阳螺纹和阴螺纹部分携带的互补的径向(环形)电触点590a(内部)、590b(外部),将传导通道574径向地定向(即,其包括径向地定向的部分)穿过第一和第二管形构件512a、512b。
虽然为了简单没有在图5中示出用于调节主体组件512的长度的组件,本领域中的普通技术人员应该理解,这样的附加的组件在许多应用中至少是希望的。这样的组件的特别的示例在下面参考图7-8讨论。
图6为可以用于在分别的钻铤606、608内携带的两个部件660、680的轴向地定向的环形辅助流动线路662、682中的替代的连接器610的截面图。连接器610的主体组件612包括可连接的第一和第二管形构件612a/b。第一管形构件612a被携带以与上部部件660(其被固定到并且与上部钻铤606一起运动)一起运动,并且限定了主体组件612的阳螺纹部分。第二管形构件612b被携带以与下部部件680(其被固定到并且与下部钻铤608一起运动)一起运动,并且限定了主体组件612的阴螺纹部分。因此,当钻铤606、608通过在其间的相对旋转构成时,主体组件612的阴螺纹和阳螺纹部分也被旋转并且驱动形成连接的接合,以便限定轴向地定向的环形流体管道622,用于流体连接两个部件660、680的辅助流动线路662、682。O形圈615a/b通常围绕主体组件612的阳螺纹部分携带,用于密封穿过第一和第二管形构件612a/b的流体连接。应该理解,如在本领域中已知的,为了流体流动的完整性,O形圈或其它密封装置可以被相似地用于其它地方。
第一和第二管形构件612a、612b还合作以限定至少一个传导通道674,用于电连接两个部件660、680的电线路664、684。该电线路664、684通过插头对插座的设计中的插头685、687轴向地接附到主体组件612的传导通道674,但是也可以被焊接或压接到适当的位置,或通过其它已知的接附方法。通过由分别的第一和第二管形构件612a/b的阳螺纹和阴螺纹部分携带的互补的径向(环形)电触点690a(内部)、690b(外部),将传导通道674径向地定向(即,其包括径向地定向的部分)穿过第一和第二管形构件612a、612b。
虽然为了简单没有在图6中示出用于调节主体组件612的长度的组件,本领域中的普通技术人员应该理解,这样的附加的组件在许多应用中至少是希望的。这样的组件的特别的示例在下面参考图7-8讨论。
图7示出了可以用于在分别的钻铤706、708内携带的两个部件760、780的轴向地定向的辅助流动线路(没有示出)中的特别的连接器实施例710的截面图。连接器710的主体组件712包括可连接的第一和第二管形构件712a/b。第一管形构件712a被携带以与上部部件760(其与上部钻铤706一起运动)一起运动,并且限定了主体组件712的阴螺纹部分。第二管形构件712b被携带以与下部部件780(其与下部钻铤708一起运动)一起运动,并且限定了主体组件712的阳螺纹部分。因此,当钻铤706、708通过在其间的相对旋转构成时,主体组件712的阴螺纹和阳螺纹部分也被旋转并且驱动形成连接的接合,以便限定轴向地定向的、具有直线部分722a和环形部分722b的流体管道,用于流体连接两个部件760、780的辅助流动线路(没有示出)。O形圈715a/b通常围绕主体组件712的阳螺纹部分携带,用于密封穿过第一和第二管形构件712a/b的流体连接。应该理解,如在本领域中已知的,为了流体流动的完整性,O形圈或其它密封装置可以被相似地用于其它地方。
第一和第二管形构件712a、712b还合作以限定至少一个传导通道774,用于电连接两个部件760、780的电线路764、784。该电线路764、784部分地延伸通过流体管道722a并且通过插头对插座的设计785a/b(与湿接头相似)轴向地接附到主体组件712的传导通道774,但是也可以被焊接或压接到适当的位置,或通过其它已知的接附方法。通过由分别的第一和第二管形构件712a/b的阳螺纹和阴螺纹部分携带的互补的电插座785a(内部)和电插头785b(外部),将传导通道774径向地定向(即,其包括径向地定向的部分)穿过第一和第二管形构件712a、712b。
图7还略为详细地示出了用于调节连接器长度的组件714。调节长度的过程主要包括以下步骤确定两个部件760、780的相对端之间的距离,并且根据确定的距离缩短或延长分别的两个部件的辅助流动线路之间的流体连接和电线路之间的电连接。长度调节组件714包括通过多个锁定螺钉732围绕下部部件780可移除地固定的套筒730。下部部件780具有装配在连接器主体组件712的第二管形构件712b的下部部分(没有单独标号)内的上部直径减小的部分780a。下部部件部分780a和第二管形构件712b装备有互补的有螺纹的表面,用于如在734参考的螺纹接合。第二管形构件712b包括在其有螺纹的表面的区域内的用于接收键738的键槽736,键738(与套筒730合作)防止第二管形构件712b旋转。从而,当移除套筒730和键738时,第二管形构件712b自由地在施加的转矩作用下旋转。
优选地在将第一和第二管形构件712a、712b、部件760、780、和长度调节组件714布置在钻铤706、708内以前执行连接器710的长度调节。实质上,当转矩被施加到第二管形构件712b时,下部部件780被保持不能旋转,导致第二管形构件712b相对于下部部件780旋转。这样的相对旋转具有沿(上或下)下部部件部分780a轴向地运动第二管形构件712b的效果,如全部构件被安装在它们分别的钻铤706、708内并且通过这些钻铤之间的相对旋转构成时,在第二管形构件712b和第一管形构件712a之间适当的接合所需要的。从而,通过操纵第二管形构件712b沿下部部件780的位置执行长度调节。第一管形构件712a通常被保持在沿上部部件760的一个位置,虽然电插座785a可以被弹簧向下偏置以促进其与电插头785b接合。应该理解,为了流体流动的完整性,O形圈或其它密封装置可以用于不同的位置(没有标号)。
图8示出了可以用于在分别的钻铤806、808内传送的两个部件860、880的轴向地定向的环形辅助流动线路862、882中的替代的连接器810的截面图。连接器810的主体组件812包括可连接的第一、第二、和第三管形构件812a/b/c。第一和第二管形构件812a/b被携带以与被固定到并且与上部钻铤806一起运动的上部部件860一起运动。第一管形构件812a包括限定了主体组件812的外部阴螺纹部分812a1和内部阳螺纹部分812a2的同中心的管形部分。使用O形圈815c将第二管形构件812b可滑动地连接到第三管形构件812c(即,允许在其间相对旋转),并且第二管形构件812b包括限定了主体组件812的外部阳螺纹部分812b1和内部阴螺纹部分812b2的同中心的管形部分。第三管形构件812c被携带以与被固定到并且与下部钻铤808一起运动的下部部件880一起运动。因此,当上部和下部钻铤806、808通过在其间的相对旋转构成时,主体组件812的阴螺纹和阳螺纹部分(分别通过第二和第三管形构件812b/c限定)也被旋转并且驱动形成连接的接合,以便限定轴向地定向的环形流体管道822,用于流体连接两个部件860、880的辅助流动线路862、882。O形圈组815a/b通常围绕主体组件812的分别的阳螺纹部分携带,用于密封穿过第一和第二管形构件812a/b的流体连接。应该理解,如在本领域中已知的,为了流体流动的完整性,O形圈或其它密封装置可以被相似地用于其它地方。
第一和第二管形构件812a、812b还合作以限定至少一个传导通道874,用于电连接两个部件860、880的电线路864、884。该电线路864、884通过分别的上部/下部湿接头885a/b轴向地接附到主体组件812的传导通道874,但是也可以被焊接或压接到适当的位置,或通过其它已知的接附方法。传导通道874部分地通过由第一和第二管形构件812a、812b限定的中心管道891内的传导线890(注意盘绕的区域890c)的过长度提供。
图8还略为详细地示出了用于调节连接器810的长度的替代的组件814。调节长度的过程主要包括以下步骤确定两个部件860、880的相对端之间的距离,并且根据确定的距离缩短或延长分别的两个部件的辅助流动线路之间的流体连接和电线路之间的电连接。长度调节组件814包括可以通过锁紧垫圈831和楔形环832围绕下部部件880锁定的轴环或帽830,锁紧垫圈831和楔形环832可以通过轴环830(参看有螺纹的区域829)的旋转驱动以与外部阴螺纹部分812a1的下部肩锁定接合。围绕外部阳螺纹部分81261的直径减小的部分携带分离的外螺纹的环827。外部阳螺纹部分812b1和环827装配在装备有与环827的螺纹互补的内螺纹的外部阴螺纹部分812a1内。从而,当楔形环832从与外部阴螺纹部分812a1锁定接合卸下时,第一管形构件812a在施加的转矩作用下自由地旋转。
优选地在将第一、第二、和第三管形构件812a/b/c、部件860、880、和长度调节组件814布置在钻铤806、808内以前执行连接器810的长度调节。转矩施加到第一管形构件812a将导致第一管形构件812a相对于有螺纹的环827旋转。这样的相对旋转具有沿(上或下)第一管形部件812a轴向地运动第二管形构件812b的效果,如全部构件被安装在它们分别的钻铤806、808内并且通过这些钻铤之间的相对旋转构成时,在第二管形构件812b和第三管形构件812c之间适当的接合所需要的。从而,通过操纵第二管形构件812b沿第一管形构件812a的位置执行长度调节。第三管形构件812c通常被保持在沿下部部件880的一个位置。
图7-8示出的实施例使用了促进通常在第一和第二管形构件之间的相对旋转以调节主体组件712、812的长度的长度调节组件714、814。然而,本领域中的普通技术人员应该理解,可以有利地使用其它长度调节组件。示例包括促进在第一和第二管形构件之间适当地相对滑动、伸缩、或其它平移运动以调节连接器主体组件的长度的组件。
图9为可以用于在分别的钻铤906、908内携带的两个部件960、980的轴向地定向的环形辅助流动线路962、982中的替代的连接器910的截面图。连接器910的主体组件912包括可连接的第一和第二管形构件912a/b。第一管形构件912a被携带以与上部部件960(其被固定到并且与上部钻铤906一起运动)一起运动,并且限定了主体组件912的阳螺纹部分。第二管形构件912b被携带以与下部部件980(其被固定到并且与下部钻铤908一起运动)一起运动,并且限定了主体组件912的阴螺纹部分。因此,当钻铤906、908通过在其间的相对旋转构成时,主体组件912的阴螺纹和阳螺纹部分也被旋转并且驱动形成连接的接合,以便限定具有穿过第一和第二管形构件912a/b(即,在连接的构件的接口处)的环形空间922c的轴向地定向的流体管道922a/b,用于流体连接两个部件960、980的辅助流动线路962、982。O形圈915通常围绕主体组件912的阳螺纹部分携带,并且一个或多个表面密封件917通常围绕限定环形空间922c的第一和第二管形构件912a/b的端部部分布置,用于密封穿过第一和第二管形构件912a/b的流体连接。应该理解,如在本领域中已知的,为了流体流动的完整性,O形圈或其它密封装置可以被相似地用于其它地方。
第一和第二管形构件912a、912b还合作以限定至少一个传导通道974,用于电连接两个部件960、980的电线路964、984。该电线路964、984通过互补的上部径向(环形)电触点991a(内部)、991b(外部)、互补的下部径向(环形)电触点993a(内部)、993b(外部)、插头985和插头到插座的设计(与湿接头相似)轴向地接附到主体组件912的传导通道974,但是也可以被焊接或压接到适当的位置,或通过其它已知的接附方法。更特别地,通过由分别的第一和第二管形构件912a/b的阳螺纹和阴螺纹部分携带的互补的径向(环形)电触点990a(内部)、990b(外部)的上部和下部对,将传导通道974径向地定向(即,其包括径向地定向的部分)穿过第一和第二管形构件912a、912b。
虽然为了简单没有在图9中示出用于调节主体组件912的长度的组件,本领域中的普通技术人员应该理解,这样的附加的组件在许多应用中至少是希望的。这样的组件的特别的示例在上面参考图7-8讨论。
图10为可以用于在分别的钻铤1006、1008内携带的两个部件1060、1080的轴向地定向的辅助流动线路1062、1082中的替代的连接器1010的截面图。连接器1010的主体组件1012包括装备有O形圈1015的单一的液压接头件1013。液压接头件1013装备有两个或多个O形圈1015,用于流体接合全部部件1060、1080(其与分别的钻铤1006、1008一起运动)。因此,当钻铤1006、1008通过在其间的相对旋转构成时,部件1060、1080也被旋转并且驱动形成通过液压接头件1013和在其分别的端部内的中心钻孔1061、1081的流体接合,以便限定用于流体连接两个部件1060、1080的辅助流动线路1062、1082的轴向地定向的流动管道1022。应该理解,如在本领域中已知的,为了流体流动的完整性,O形圈或其它密封装置可以被相似地用于其它地方。
连接器1010的主体组件1012还包括传导通道1120,用于电连接与两个分别的部件1060、1080有关的钻铤1006、1008的电线路1064、1084。
图11A-B为图10所示轴向地定向的电传导通道1120的详细的截面图。有线钻管(WDP)连接点1110表示适合用于在钻铤1006、1008内实现电传导通道1120的构造。连接点1110与转让给本发明的受让人的Boyle等人的美国专利No.6,641,434中披露的类型相似,并且利用通信耦合器-特别是感应耦合器-传递信号穿过有线钻管连接点。根据Boyle等人,有线钻管连接点内的感应耦合器包括具有环形铁心的变压器,该环形铁心由高磁导率、低损失的材料制造,诸如超透磁合金(其为被处理以获得异常高的初始磁导率并且适合用于低等级信号变压器应用的镍铁合金)。由多圈绝缘的导线组成的绕组围绕环形铁心盘绕以形成环形铁心变压器。在一种构造中,环形铁心变压器被封装在橡胶或其它绝缘材料中,并且装配好的变压器凹进到定位在钻管连接内的凹槽内。
更特别地,有线钻管连接点1110示出为具有通信耦合器1121、1131-特别是感应耦合器元件-位于或靠近其的分别的阴螺纹端部1122的端部1141和阳螺纹端部1132的端部1134。第一电缆1114延伸通过管道1113来以接下来进一步描述的方式连接通信耦合器1121、1131。
有线钻管连接点1110装备有具有轴向钻孔1112、阴螺纹端部1122、阳螺纹端部1132、和从阴螺纹端部1122延伸到阳螺纹端部1132的第一电缆1114的伸长的管形主体1111。第一电流回路感应耦合器元件1121(例如,环形铁心变压器)和相似的第二电流回路感应耦合器元件1131分别被布置在阴螺纹端部1122和阳螺纹端部1132处。第一电流回路感应耦合器元件1121、第二电流回路感应耦合器元件1131、和第一电缆1114共同地提供穿过每个有线钻管连接点的长度的通信管道。在两个有线钻管连接点之间的耦合接口处的感应耦合器(或通信连接)1120示出为由来自有线钻管连接点1110的第一感应耦合器元件1121和来自下一个管形构件的第二电流回路感应耦合器元件1131’组成,其可以为另一个有线钻管连接点。本领域中的普通技术人员应该理解,在本发明的一些实施例中,可以用其它具有相似的通信功能的通信耦合器替代感应耦合器元件,诸如,例如,Denison的美国专利No.4,126,848中披露的类型的直接电接触连接。
图11B更加详细地示出了图11A所示的感应耦合器或通信连接1120。阴螺纹端部1122包括内螺纹1123和具有第一槽1125的环形内部接触肩1124,第一环形铁心变压器1126布置在其中。环形铁心变压器1126连接到电缆1114。相似地,邻近的有线的管形构件(例如,另一个有线钻管连接点)的阳螺纹端部1132’包括外螺纹1133’和具有第二槽1135’的环形内部接触管端部1134’,第二环形铁心变压器1136’布置在其中。第二环形铁心变压器1136’连接到邻近的管形构件9a的第二电缆1114’。槽1125和1135’可以被覆盖有高传导率、低磁导率的材料(例如,铜)以提高感应耦合的效率。当一个有线钻管连接点的阴螺纹端部1122与邻近的管形构件(例如,另一个有线钻管连接点)的阳螺纹端部1132’装配在一起时,形成通信连接。从而,图11B示出了作为结果的接口的一部分的截面,其中面对的一对感应耦合器元件(即,环形铁心变压器1126、1136’)被锁定在一起,以在操作的通信链路内形成通信连接。此截面图还示出了,闭合的环形路径1140和1140’分别封入环形铁心变压器1126和1136’,并且管道1113和1113’形成用于内部电缆1114和1114’(与图10所示导体1064、1084用途相同)的通道,内部电缆1114和1114’连接布置在每个有线钻管连接点的两个端部的两个感应耦合器元件。
上述感应耦合器包括用双环形线制造的电耦合器。该双环形耦合器使用阳螺纹和阴螺纹端部的内部肩作为电触点。在阳螺纹和阴螺纹被构成时,在极端的压力作用下使得内部肩接合,确保在阳螺纹和阴螺纹端部之间的电连续性。通过放置在槽内的环形铁心变压器在连接的金属内感应电流。在给定的频率(例如100kHz),通过趋肤效应将这些电流限制在槽的表面。阳螺纹和阴螺纹端部建立分别的变压器的第二电路,并且该两个第二电路通过配合的内部肩表面背靠背连接。
虽然图11A-B示出了某些通信耦合器类型,本领域中的普通技术人员应该理解,不同的耦合器可以用于穿过互连的管形构件通信信号。例如,这样的系统可以包括磁耦合器,诸如那些在Hall等人的国际专利申请No.WO 02/06716中所描述的。也可以预想其它系统和/或耦合器。
另外,虽然为了简单没有在图10或图11A-B中示出用于调节主体组件1012的长度的组件,本领域中的普通技术人员应该理解,这样的附加的组件在许多应用中至少是希望的。这样的组件的特别的示例在上面参考图7-8讨论。
图12为可以用于在分别的钻铤1206、1208内携带的两个部件1260、1280的轴向地定向的环形辅助流动线路1262、1282中的替代的连接器1210的截面图。连接器1210的主体组件1212包括可连接的第一和第二子组件1212a/b。
第一子组件1212a被携带以与上部部件1260一起运动,并且包括钻铤1206和固定(例如,通过螺纹接合)在钻铤1206内的上部心轴1213a。上部心轴1213a包括在向外突出以接合钻铤1206内的流动线路1223a的环形区域1223ar之前轴向地延伸通过心轴(从上部连接的部件1260)的流动线路1221a。当通过在上部钻铤1206内接合上部心轴1213a(例如,通过其间的螺纹旋转)构成第一主体子组件1212a时,流体线路1221a的径向地突出的端部将被放置为与流体线路1223a的环形区域1223ar垂直接合以建立上部流动链路。
第二子组件1212b被携带以与下部部件1280一起运动,并且包括钻铤1208和固定(例如,通过螺纹接合)在钻铤1208内的下部心轴1213b。下部心轴1213b包括在向外突出以接合钻铤1208内的流动线路1223b的环形区域1223br之前轴向地延伸通过心轴(从下部连接的部件1280)的流动线路1221b。当通过在下部钻铤1208内接合下部心轴1213b(例如,通过其间的螺纹旋转)构成第二主体子组件1212b时,流体线路1221b的径向地突出的端部将被放置为与流体线路1223b的环形区域1223br垂直接合以建立下部流动链路。
当钻铤1206、1208通过在其间的相对旋转构成时。钻井泥浆109如箭头所示通过延伸通过钻铤1206和1208的通道1207。主体组件1212的第一和第二子组件1212a/b也被旋转并且驱动形成连接的接合,以便限定外部的径向地定向的(更特别地,径向对称的)流体管道1222,用于流体连接分别的第一和第二主体子组件的上部和下部流动链路。此过程流体互连两个部件1260、1280。O形圈1215通常围绕上部和下部心轴1213a/b携带,用于密封穿过第一和第二主体子组件1212a/b的流体连接。应该理解,如在本领域中已知的,为了流体流动的完整性,O形圈或其它密封装置可以被相似地用于其它地方。
第一和第二主体子组件1212a、1212b还合作以限定至少一个传导通道1274,用于电连接两个部件1260、1280的电线路1264、1284。该电线路1264、1284通过互补的上部径向(环形)电触点1291a(内部)、1291b(外部)、互补的下部径向(环形)电触点1293a(内部)、1293b(外部)、插头到插座的设计1285(与湿接头相似)、和互补的径向(环形)电触点1290a(内部)、1290b(外部)轴向地接附到主体组件1212的传导通道1274。应该理解,也可以使用其它已知的电接附方法。通过由设计1285的分别的阳螺纹和阴螺纹部件携带的互补的径向(环形)电触点1290a(内部)、1290b(外部)的上部和下部对,将传导通道1274径向地定向(即,其包括径向地定向地部分)穿过第一和第二主体子组件1212a、1212b。
虽然为了简单没有在图12中示出用于调节主体组件1212的长度的组件,本领域中的普通技术人员应该理解,这样的附加的组件在许多应用中至少是希望的。这样的组件的特别的示例在上面参考图7-8讨论。
图13为可以用于在分别的钻铤1306、1308内携带的两个部件1360、1380的轴向地定向的环形辅助流动线路1362、1382中的替代的连接器1310的截面图。连接器1310的主体组件1312包括装备有O形圈1315的单一的液压接头件1313。液压接头件1313装备有两个或多个O形圈1315,用于流体接合全部部件1360、1380(其被固定到并且与分别的钻铤1306、1308一起运动)。应该理解,如在本领域中已知的,为了流体流动的完整性,O形圈或其它密封装置可以被相似地用于其它地方。
连接特形接头1307布置在钻铤1306、1308之间,用于互连钻铤。特形接头1307使用阳螺纹和阴螺纹端部螺纹组,该阳螺纹和阴螺纹端部螺纹组适合用于接合钻铤1306、1308的相对端的分别的螺纹组,并且适合用于当旋转特形接头时将全部钻铤拉向特形接头1307以形成螺纹接合。从而,在特形接头1307的螺纹已经初始接合分别的钻铤的螺纹以后,并且钻铤被保持在钻环底板上不能旋转(例如,在现有的方式中)时,特形接头1307的旋转将在不需要钻铤自身经历旋转(仅平移)的情况下实现钻铤1306、1308的构成。这是必要的,因为流动线路1362、1382不是径向对称的(即,它们的接合取决于正确的径向对准)。
因此,当钻铤1306、1308通过旋转连接特形接头1307构成时,拉动部件1360、1380形成通过在其分别的端部内的液压接头件1313和中心钻孔1361、1381的流体接合,以便限定轴向地定向的流体管道1332,用于流体连接两个部件1360、1380的辅助流动线路1362、1382。
主体组件1312还包括多个互补的插头到插座电触点1390a(上部插头)、1390b(下部插座),其合作以限定至少一个传导通道1374,用于电连接两个部件1360、1380的电线路1364、1384。该电线路1364、1384通过插头到插座的设计中的插头1385轴向地接附到主体组件1312的传导通道1374,但是也可以被焊接或压接到适当的位置,或通过其它已知的接附方法。传导通道1374径向地定向(即,其包括径向地定向的部分)穿过互补的插头到插座电触点1390a(上部插头)、1390b(下部插座)的上部和下部对。
虽然为了简单没有在图13中示出用于调节主体组件1312的长度的组件,本领域中的普通技术人员应该理解,这样的附加的组件在许多应用中至少是希望的。这样的组件的特别的示例在上面参考图7-8讨论。
图14A-B为具有用于在主体组件1412的第一和第二管形构件断开时自动地关闭连接的部件的流动线路的装置的连接器1410的特别的实施例的顺续的截面图。连接器实施例1410可以用于在分别的钻铤1406、1408内携带的两个部件(没有示出)的轴向地定向的辅助流动线路(没有示出)。连接器1410的主体组件包括可连接的第一和第二管形构件1412a/b。第一管形构件1412a被携带以与被固定到并且与上部钻铤1406一起运动的上部部件(没有示出)一起运动,并且包括限定了主体组件的外部阴螺纹部分1412a1和内部阴螺纹部分1412a2的同中心的管形部分。
第二管形构件1412b被携带以与和下部钻铤1408一起运动的下部部件(没有示出)一起运动,并且包括限定了主体组件1412的外部阳螺纹部分1412b1和内部阳螺纹部分1412b2的同中心的管形部分。因此,当上部和下部钻铤1406、1408通过其间的相对旋转构成(形成如图14B所示的接合)时,主体组件1412的阴螺纹和阳螺纹部分也被旋转并且驱动形成连接的接合,以便限定轴向地定向的环形流体管道,用于流体连接两个部件(没有示出)的辅助流动线路(没有示出)。
环形流体管道包括形成在第一管形构件1412a内的第一管道部分1422a、形成在第二管形构件1412b内的第二管道部分1422b、和在主体组件1412的第一和第二管形构件1412a/b接合时形成的中间的第三管道部分1422c。第一和第二管形构件1412a/b中的每个包括在此实施例中通过分别的环形活塞1423a/b限定的阀,环形活塞1423a/b可以运动通过其中的环面1425a/b(参看图14A)限定的腔室,以在第一和第二管形构件1412a/b连接时自动地打开辅助流动线路的第三管道部分1422c,并且在第一和第二管形构件1412a/b断开时自动地关闭第三管道部分1422c。
从而,当第一和第二管形构件1412a/b脱离时,通过与外部阳螺纹部分1412b1接合从关闭位置被移动到打开位置(参看从图14A到图14B的顺序)的活塞1423a将通过在第一管道部分1422a和第四管道部分1422d内施加的流体压力(或者,替代的力施加设备,诸如卷簧)自动地移动回到关闭位置。相似地,当第一和第二管形构件1412a/b脱离时,通过与内部阴螺纹部分1412a2接合从关闭位置被移动到打开位置(参看从图14A到图14B的顺序)的活塞1423b将通过在第二管道部分1422b和第五管道部分1422e内施加的流体压力(或者,替代的力施加装置,诸如卷簧)自动地移动回到关闭位置。O形圈组(没有标号)通常围绕主体组件1412的分别的阳螺纹部分携带,用于密封穿过第一和第二管形构件1412a/b的流体连接。应该理解,如在本领域中已知的,为了流体流动的完整性,O形圈或其它密封装置可以被相似地用于其它地方。
第一和第二管形构件1412a、1412b还合作以限定至少一个传导通道1474,用于电连接两个部件(没有标号)的电线路1464、1484(参看图14A)。该电线路1464、1484通过分别的上部(阴螺纹)和下部(阳螺纹)湿接头构件1485a/b轴向地接附到主体组件1412的传导通道,但是也可以被焊接或压接到适当的位置,或通过其它已知的接附方法。
虽然为了简单没有在图14中示出用于调节主体组件1412的长度的组件,本领域中的普通技术人员应该理解,这样的附加的组件在许多应用中至少是希望的。这样的组件的特别的示例在上面参考图7-8讨论。
通过前面的描述应该理解,可以在不偏离本发明的真正精神的情况下对本发明的优选的和替代的实施例作出不同的修改和变化。
本描述内容的目的倾向于仅是说明性的而不应该被解释为限制性的。本发明的范围应该仅通过后附的权利要求书的语言确定。权利要求书中的术语“包括”倾向于表示“至少包括”,从而,权利要求书中陈述的元件列表为开放的组或群。相似地,术语“包含”、“具有”、和“包括”全部倾向于表示元件的开放的组或群。除非特别排除,“a”,“an”单数术语倾向于包括其复数形式。
权利要求
1.一种用于连接延伸通过并且终止于或靠近可以定位在穿透地下的地层的井孔内的井下工具组的两个分别的部件的相对端的辅助流动线路的连接器,该连接器包括用于流体连接分别的两个部件的辅助流动线路的主体组件;及用于调节主体组件的长度的组件。
2.根据权利要求1所述的连接器,其中,主体组件包括可连接的第一和第二管形构件。
3.根据权利要求2所述的连接器,其中,第一和第二管形构件包括钻柱内的邻近的钻铤。
4.根据权利要求1所述的连接器,其中,两个部件的辅助流动线路大致轴向地定向。
5.根据权利要求1所述的连接器,其中,主体组件限定至少一个流体管道,用于流体连接两个部件的辅助流动线路。
6.根据权利要求2所述的连接器,其中,第一和第二管形构件合作以限定至少一个流体管道,用于流体连接两个部件的辅助流动线路。
7.根据权利要求6所述的连接器,其中,流体管道轴向地定向穿过第一和第二管形构件。
8.根据权利要求6所述的连接器,其中,流体管道径向地定向穿过第一和第二管形构件。
9.根据权利要求8所述的连接器,其中,第一和第二管形构件合作以限定穿过第一和第二管形构件的流体管道的环形部分。
10.根据权利要求2所述的连接器,其中,第一和第二管形构件螺纹地接合在长度调节组件内或靠近长度调节组件,并且长度调节组件促进在第一和第二管形构件之间的相对旋转,以调节主体组件的长度。
11.根据权利要求2所述的连接器,其中,第一和第二管形构件中的至少一个包括可以运动通过其中的腔室的活塞,用于在第一和第二管形构件断开时关闭一个或两个部件的辅助流动线路。
12.一种用于连接延伸通过并且终止于或靠近井下工具组的两个分别的部件的相对端的辅助流动线路和电线路的连接器,该连接器包括用于流体连接分别的两个部件的辅助流动线路并且电连接分别的两个部件的电线路的主体组件;及用于调节主体组件的长度的组件。
13.根据权利要求12所述的连接器,其中,主体组件包括可连接的第一和第二管形构件。
14.根据权利要求13所述的连接器,其中,第一和第二管形构件包括钻柱内的邻近的钻铤。
15.根据权利要求12所述的连接器,其中,两个部件的辅助流动线路大致轴向地定向。
16.根据权利要求12所述的连接器,其中,主体组件限定至少一个流体管道,用于流体连接两个部件的辅助流动线路。
17.根据权利要求13所述的连接器,其中,第一和第二管形构件合作以限定至少一个流体管道,用于流体连接两个部件的辅助流动线路。
18.根据权利要求17所述的连接器,其中,流体管道轴向地定向穿过第一和第二管形构件。
19.根据权利要求17所述的连接器,其中,流体管道径向地定向穿过第一和第二管形构件。
20.根据权利要求19所述的连接器,其中,第一和第二管形构件合作以限定穿过第一和第二管形构件的流体管道的环形部分。
21.根据权利要求12所述的连接器,其中,两个部件的电线路大致轴向地定向。
22.根据权利要求12所述的连接器,其中,主体组件限定至少一个传导通道,用于电连接两个部件的电线路。
23.根据权利要求13所述的连接器,其中,第一和第二管形构件合作以限定至少一个传导通道,用于电连接两个部件的电线路。
24.根据权利要求23所述的连接器,其中,传导通道径向地定向穿过第一和第二管形构件。
25.根据权利要求24所述的连接器,其中,传导通道包括通过分别的第一和第二管形构件的阳螺纹和阴螺纹部分携带的互补的径向电触点。
26.根据权利要求23所述的连接器,其中,传导通道轴向地定向穿过第一和第二管形构件。
27.根据权利要求26所述的连接器,其中,传导通道包括通过分别的第一和第二管形构件携带的互补的轴向电触点。
28.根据权利要求13所述的连接器,其中,第一和第二管形构件螺纹地接合在长度调节组件内或靠近长度调节组件,并且长度调节组件促进在第一和第二管形构件之间的相对旋转,以调节主体组件的长度。
29.根据权利要求21所述的连接器,其中,第一和第二管形构件中的至少一个包括可以运动通过其中的腔室的活塞,用于在第一和第二管形构件断开时关闭一个或两个部件的辅助流动线路。
30.一种用于连接延伸通过并且终止于或靠近井下工具组的两个分别的部件的分隔开的相对端的辅助流动线路以及电线路的方法,该方法包括以下步骤确定两个部件的相对端之间的距离;及根据确定的距离,在分别的两个部件的辅助流动线路之间建立流体连接,并且在分别的两个部件的电线路之间建立电连接。
31.根据权利要求30所述的方法,其中,建立步骤包括以下步骤使用至少一个流体管道流体连接两个部件的辅助流动线路;及根据需要调节流体管道的长度以符合确定的距离。
32.根据权利要求30所述的方法,其中,建立步骤包括以下步骤使用至少一个传导通道电连接两个部件的电线路;及根据需要调节传导通道的长度以符合确定的距离。
33.根据权利要求30所述的方法,还包括在两个部件之间的流体连接断开时关闭一个或两个部件的辅助流动线路的步骤。
全文摘要
连接器连接辅助流动线路,并且在一些构造中,连接电线路,其延伸通过并且终止于或靠近井下工具组的两个分别的部件的相对端。连接器包括用于流体连接分别的两个部件的辅助流动线路并且电连接分别的两个部件的电线路的主体组件,和用于调节主体组件的长度的组件。在特别的实施例中,两个部件为单一工具的分立模块,或替代地,为独立的工具。另外,连接器可以包括用于在两个部件之间的流体连接断开时关闭一个或两个部件的辅助流动线路的机构。
文档编号E21B49/00GK1880723SQ20061009366
公开日2006年12月20日 申请日期2006年6月14日 优先权日2005年6月15日
发明者A·帕图什, K·D·哈姆斯, F·拉特利勒, J·小坎贝尔, T·W·帕尔默 申请人:普拉德研究及开发股份有限公司