采用多导管管材的钻杆和套管的制作方法

文档序号:5381450阅读:303来源:国知局
专利名称:采用多导管管材的钻杆和套管的制作方法
技术领域
本发明概括地说涉及钻井作业,更详细地说,涉及钻地下孔、往多导管管材中注入高压和低压流体并监控井下参数以控制钻井或生产操作,从而达到最佳效率的方法和设备。
基本钻井作业多年来都一直保持不变,直到目前的情况下仍然是一连串连接起来的钻杆形成钻杆柱,旋转着带动钻头转动,将地层磨掉。在钻井过程中,需要测定各种钻井参数,例如钻井地层、地层斜度、温度、酸碱度值等。由于钻杆柱在许多情况下是在几千英尺的地下转动,因此要获得瞬时的井下资料历来是个老问题。
例如,当钻井人员了解地层特性时,钻井操作的效率最高。对诸如岩层、土层或流体层和气体层等不同类型的地层,往往希望能改变地面操作方式,以便有效处理当时钻头所遇到的地层类型。对钻头所侵蚀掉的地层钻屑,传统的处理方法是往钻杆中往下泵送流体,将钻屑通过钻杆柱周围的环形空隙带到井口。钻屑上升到地面是需要相当长的一段时间的,因而检查这些钻屑是不能获取当时钻探中地层的可靠资料的。
埃伧堡的美国专利3,419,092是有关钻井的公知技术,该专利采用了内外同心管式的双通道钻杆往一个导管中往下泵送通气的钻井流体,以此来降低钻头上的流体静压头,从而加速钻屑在另一钻杆导管中上移到地面的速度。采用这种方式,代表钻探中地层类型的钻屑就可以更快到达地面,于是可以根据情况改变钻井操作方式。尽管埃伧堡式钻杆的各种同心导管的流体换向过程并不太复杂,但从钻杆结构的实用角度考虑,这类导管可加以应用的数量终究是有限的。
坎普等人的美国专利2,951,680认为,可以采用非同心多导管钻杆来增加导管的数目。但为使流体换向,流体通道从导管到钻杆端的过渡是呈盘旋状进入普通的同心圆形通道中。结果,坎普等人的钻杆,虽然能使不同的流体换向入各导管中,但却使钻杆的制造过程复杂化,因而造价高。
熟悉本专业的人士都承认采用多导管钻杆具有一定的优点,但这种钻杆得不到广泛的应用是有其一系列原因的。将这种钻杆连接在一起遇到的一个缺点是将一钻杆的导管密封到另一钻杆导管的方式。普通密封装置有O形环或V形密封环(美国专利2,951,680)或传统的密封(美国专利3,077,358)。所采用的密封类型和使用密封的方式使密封所能承受的流体压力通常都在7,500磅/平方英寸分压。
因此显然需要有这样一种高压多导管钻杆,钻杆的导管数不受限制,钻杆的结构或制造过程也不过分复杂或造价过高。
此外,迫切需要监控井下钻进作业,即时将其结果传送到井口,并使传送媒体与钻杆以这样的方式结合起来,不致严重损害钻杆载送流体的能力。
过去有人提出过采用钻杆中心孔作为安置导线的小室。美国专利2.795,397和3,904,840就介绍了这种实例。但按照这种作法,导线的绝缘会受到钻井液的侵蚀,不然就得使用价昂的防护装置。
在载送流体的孔中因采用导线而产生的问题是将各段导线连在一起的电气连接器与流体隔离开来的问题。为解决这个问题,人们曾求助于复杂和特殊的技术。在那种需要将一段钻杆进行转动藉丝扣固定到另一段钻杆的形式中,各导线从一个钻杆连接到另一个钻杆的情况更恶化了,这使问题变得更为复杂。在美国专利2,798,358中,这一点是通过留出足够的电缆长度解决的,这样电缆就可与钻杆一道扭在一起。在其它情况下,即美国专利3,879,097中,电缆除两端是取道钻杆侧壁接到钻杆各端的环形接点之外,大部分是沿其长度在中心孔中载送的。显然,采用这种技术限制了导线的数目。
目前在钻杆各端将多根导线连接在一起的配置实例有美国专利2,750,569所介绍的那一种。在该专利中,电缆通过流体载送孔走道。这使电缆和接头易受钻井液的腐蚀或侵蚀。
钻井技术中还有影响作业总费用值得考虑的问题是有关钻井“泥浆”的组成问题。必须用不同物质和化学品定期调节泥浆的密度、粘度或其它性能。这种调节只能在泥浆从钻头区往上通过地面设备循环过程逐步进行。在某些情况下,例如在紧急井喷的情况下,必须极快改变泥浆的密度,以防这种情况发生。因此,有许多井喷是不能用公知技术加以避免的。所以需制造一种能及时改变钻井泥浆压力以控制井喷或者提高钻井速度的钻杆柱。
即使钻井作业完成之后,从矿井管理出发,也需要在生产阶段监控井下诸参数。迄今,普通钻井套管对井孔来说是高度完善的,但在导线、气体或液体(往上泵送的流体除外)的输送通道方面,装备极差。作为临时措施,历来是将遥测导线用金属或塑料带固定到套管外周边,在井下一直延伸到遥测设备上。还有一种公知的作法是在套管外部设附加管道,以便送空气压力,以形成人造的提升井孔。
因此就需要有一个多导管钻井套管,供泵送生产过程中的流体,以及容纳遥测导线和载送溶剂、防冻溶液和许多其它流体的附加导管。
本发明提供的是对通过具有若干完全相同的导管的独特钻杆中的许多高压和低压流体进行换向,并将电气信号或电力往井下传输到传感器,以收集有关地下地层资料的方法和设备。
本发明提供的是这样一种整个横截面均匀因而可用挤压法进行制造的多导管钻杆。在横截面上,该钻杆有一个筒形外壁,和一个界定着中心孔的筒形内壁,和位于内外壁之间的多根其它导管。
其中一个导管装有电气导线,在各钻杆端部的导管中固定有一个连接器。由于一般可能希望不同的流体或电气线路占用各种不同的导管,因此在各钻杆的另一端设有一个指示凸耳和一个指示凹口,使得各钻杆的各导管连接在一起时能保持在一直线上。除指示凸耳和凹口外,各钻杆还设有各种不同的凸耳和凹口,用以用一个钻杆驱动其它钻杆。
本发明设有一种有孔口的密封,密封横截面的形状与钻杆的一样,其中一个孔口装有电气中间接头,用以将各钻杆的电气线路连接在一起。密封件各边有一个弹性体,在各钻杆连接起来时确保各导管之间高压的完善性。
根据本发明的另一个方面,各钻杆是用其间的密封藉一个带丝扣的联接环连接在一起的,联接环的一端有直径均匀的内丝扣,另一端也有直径均匀的内丝扣,但这些联接环各个都具有不同的直径和螺纹距。钻杆部分各端都具有直径和螺距与联接环相对应的丝扣。这使各钻杆可借助于以压缩方式将密封在毗邻钻杆之间挤压进行密封的局部丝扣作用联接在一起。
根据本发明的另一特点,来自各自的流体源的多种流体是用一种流体换向器换向到各种钻杆导管的,该流体换向器有一个轴,在连接着各不同流体源的管汇中转动着。该筒形轴具有内部通道,各个对应于各钻杆的导管。各换向器轴通道也通向轴筒形边上的进口孔。流体在各种进口孔周围的通路(该孔口沿换向器轴轴向间隔配置)中,在管汇中有若干相应的环形槽。各换向器轴通道即通过其管汇槽连接到一个流体源上。有了这种配置方式,各种钻杆导管就可与某一选定的流体源不中断地连通。
就本发明的有关特点而言,流体源换向器轴是通过一个将各换向器轴通道(从而流体源)连接到其中一个所选定的钻杆导管,连接到各钻杆柱上的。这样,手头就一直可以有许多管接头,并可将它们彼此互换,以通过换向器轴将各种流体源连接到钻杆柱中一根所想使用的导管中。
就本发明的另一方面而言,鹅颈水笼头的套筒部分有一个套筒轴,套筒轴有一个电气连接器,作为钻杆电气导线的终端接头。数量与钻杆中承载的导线相当的滑环配置在套筒轴周围,各滑环则连接到钻杆中的一根导线上。静止电刷装置与各滑环接触,并将井下的电气响应信号传送到地面的监控设备。
如上所述,这样一种经过改进的钻井法是可能实现的,在该方法中,诸高压流体可分别注入一根或多根钻杆导管中,以便,例如,同时侵蚀地层、清洗和冷却钻头或钻头路径,同时将其它各导管中的其它低压流体在井下与其它各导管中的气体混合,以降低井下的液体静压力。同时,钻头或钻杆各传感器可以将有关温度、压力、倾斜度等信息传送到地面的监控设备,于是就可以即时应用这些信息改变钻井操作。
这类信息还可用以,例如,控制往环形液体或泥浆的加压过程,和防止井喷。此外,根据本发明,万一检测出可能发生井喷,就可以开动泵机施加压力抵消钻杆中心通道中过量的上升料流。另外,本发明还具有这样的特点,即本发明采用了一种环形蓄压器,该蓄压器可调节加到井孔环形孔隙中液体的压力,从而保持环形液体的给定压力。这种往钻井环形孔隙中的环形液体施压的能力具有无需再循环泥浆和加入物料以增加其重量从而提高泥浆密度的作用。
本发明极其重要的一个类似特点是用了多导管钻井套管,这种套管使钻杆具有多种特性,其中包括可容纳大量生产流体通常较大的中心孔,它能监控许多井下参数,能在各种压力下同时往井下注入流体和溶液,使矿井达到最佳的生产率,这一切都提高了矿井的管理水平。
现在结合附图参照下列说明更详细介绍本发明的结构和操作方式。附图中

图1是实现本发明各方面和特点所采用的井口和井下设备的总示意图;
图2是两钻杆联接在一起的部分侧视图,其中有一部分剖开,以显示各钻杆与联接套筒之间丝扣的接合情况;
图3a是沿图2的3-3线截取的多导管管材的横向剖视图。
图3b是多导管管材另一种可供选择的实施例的横向剖视图,展示诸圆形周边导管沿周边围绕中心导管配置的情况;
图3c是空心管又另一个实施例的横向剖视图,展示了一个外管、一个形成中心导管的内管和多个形成导管的其它管沿周边围绕内中心管配置的情况。
图3d是多导管管材又另一个实施例的横向剖视图,展示了一套充满图3a钻杆的一个导管的个别导管。
图4是从图2的4-4线截取的联接好的多导管管材的横向剖视图;
图5是其中装有一个中间电气连接器的管形密封的斜视图;
图6是在连接着的诸管材的交界处的横向剖视图,展示了密封和中间电气连接器;
图7是装有电气导线、连接器和接点连接好的管形导管的横向剖视图;
图8至10是分别沿图7中的8-8线、9-9线和10-10线截取的横向剖视图;
图11是准备与密封件连接的管形端部部分的部件分解斜视图;
图12是钻井井架一个实施例的正视图,展示鹅颈水笼头和悬挂附设在其上的钻杆;
图13的鹅颈水笼头的横向侧视图,展示了在套管部分的流体和电气换向器连同钻杆传动设备的配置情况;
图14是流体分配管汇和换向器的斜视图,管汇有四分之一部分被剖开,以展示轴进口孔与管汇环形槽中有流体传送时的情况;
图15是图14管接头的底视图,展示了两个或多个钻杆导管可与单个换向轴通道公用的情况;
图16是流体换向器的横向剖面侧视图,展示了管汇环形槽与各自各种轴进口孔连接,和通过各轴通道连接到套管部分的情况;
图17是套筒轴上电气滑环的示意图,其中显示了给钻杆或从钻杆传送电气信号用的相应电刷;
图18是本发明的转换接头连同其上所附的传感设备的侧向平面图;
图19是转换接头的纵剖面图,以显示用以装设各传感器和遥测设备的流体导管的堵塞部分,转换接头各孔围绕导管的分支部分配置;
图20是往钻井环形区的钻井流体施加规定压力用的环形蓄压器各元件的符号示意图;
图21是多导管钻杆及所附钻头的剖视平面图,在有些导管中采用了高速流体以钻削地层和清洗钻头,图中还展示了其它诸导管中用以在环形空隙区周围往上载送钻屑的低压流体;
图22是与图21类似的另一个视图,其中气体往下被压入一个钻杆导管中,再从井下排出,以降低该处的流体静压力。
图23是采用液体和气体逆向循环和取岩心技术的钻井操作的示意图;
图24是采用钻井套管的多导管管材的简化示意图;
图25是沿图24的25-25线截取的多管钻井套管的横向剖视图;
图26是沿图24的26-26线截取的钻井套管截头底部的端视图;
图27是从多导管泵段卸下的钻井套管短头的横向侧视图;
图28是通过传感器室截取的钻井套管短头终端端部的部分横向部视图。
现在参看附图。图1是本发明的方法和设备的概况。如图所示,本发明包括通常以编号10表示的多导管钻杆,该钻杆由多流体鹅颈水笼头12驱头。钻头14可以是多种多样能搞到的侵蚀地下地层16钻井用的钻头。
钻头14中可采用诸如温度传感器18或酸碱度传感器20等各种井下传感器,用以收集井下数据并通过钻杆导线(图1中未示出)将数据传送到地面的监控设备。必要时还可设电源25给的钻头传感器和井下电气器具的控制器供电。
液泵24给鹅颈水笼头中的流体换向器供应高压或低压流体。还可以采用类似的其它泵。这样,各种流体可以相同或不同的压力泵送到井下,以将钻井技术提高到前所未有的水平。压缩机28以类似的方式给流体换向器26供应氮气之类的气体,在其中分配到钻杆中所要分配的导管中。当采用钻杆的中心导管32作为在液体或气体中往上载送地层钻屑用的通道时,钻屑由鹅颈软管34载送到旋流分离器36,由该分离器有效地从回流的钻井流体中分离出来。液泵38也连接到鹅颈软管上,以将流体从一个流体源(图中未示出)通过中心导管32往下泵送,进行钻井或者不然的话抵消因井内发生喷而在导管中产生的任何不希望有的流体流。泵38还可用以往井下泵送水泥或其它密封料以密封钻井。阀40在泵38启动时自动关闭,使所泵送的物料不致进入分离器36。
视乎所想使用的钻井方法,可设置压井管线泵42,将钻井流体往下泵入钻井的环形空隙44。环形蓄压器46使井中环形流体的压力保持在规定值。
从以上的介绍可以看出,本发明提供了根据有条件使钻井操作最佳化的各种可供选择的方案。从下面论述中可以更清楚地看到,本发明提供了一种前所未有的先进技术。
现在参看图2。从图中可看到联接好的管段,特别是构成钻杆一部分的钻杆,更具体地说,钻杆端部部分连接的方式。图2所展示的是钻杆的情况,其中,多根导管(其中之一的编号30)在整个钻杆中,因而在通过将是钻杆50与另一钻杆52连接在一起的钻杆接头48中都是均匀一致的。这种导管30,尽管在图2所示的钻杆的固定部分54和56为满足强度和密封要求在直径方面略为大些,但其本性是直线性的。
从图3a多导管材的横剖面图可以更清楚地看到钻杆50的情况。从多方面的适应性的观点出发,在钻杆中设置多根导管在实际应用中极为重要,所有这些导管个个都是呈直线性,可以相互连接起来往井下供应任意希望数目的液体或气体;各液体或汽体彼此隔离开来,因而可以按不同的压力和量供应。为此,本发明值得推荐的方案中提出了一种钻杆,该钻杆有一个外侧壁58和一个同心内侧壁60,构成中心导管62,大部分流体(可选择而不是必需)即通过导管62泵送的。各种纵向导管30介在内侧壁60和外侧壁58之间,形成内外侧壁之间的纵向环形通道径向隔板64将该环形通道分成若干独立的导管30。因此各导管30整个横截面呈梯形,其弧形边彼此平行。
采用这种结构极其有利的一点是钻杆或钻井套管可用挤压法用铝制成,其加厚部分用钢制成,或全部用高级钢制成。当然还可采用图32a以外的导管构型以满足个别要求。例如图3b是另一种可供选择的多导管管材的形式。该管具有外侧壁66和内侧壁68,中心导管62也以内侧壁68为界。但在这种形式中,在内侧壁68和外侧壁66之间,围绕中心导管62等间距配置有横截面呈圆形的一系列导管70。这种形式的管材制造起来很方便,可将管材在一端立起来竖向钻通各导管。
图3c是与图3b类似的多导管管材的另一个形式,只是它由大管72构成,大管外壁构成外侧壁,较小管74构成中心导管62。在大管72和小管74之间沿圆周配置有若干直径较小的管76。因此各管焊接到管子两端的毗邻管上。
图3d是由3b改进的管材。在周边上具有若干圆形导管70的管材中插入有一个筒形多通道插件78,用焊接之类的方法固定。插件78有一个中心轴向通道80,周边有若干通道82,这一切都有效地增加了管材中导管的数目,尽管直径减小了。
因此可以看出,本发明提供了一种易于制造的管材,在管材的整个长度上敷设有多根均匀一致的独立导管。下面即将详细介绍如何真正利用这类导管来使钻井或生产操作达到最佳化。
再参看图2。多导管管材是采用带丝扣的联接接箍84彼此连接在一起的。这样连接时,密封86保证了各导管压力的完善性,这些也将在下面详细介绍。钻杆50的端部与钻杆52的端部是通过外管丝扣88和90与外联接接箍丝扣92和94之间的丝扣88和90具有不同的螺距。例如,图2中所示钻杆50的一端每英寸可以有四个丝扣88(螺距为.25),图中管52的一端每英寸可以有五个丝扣90(螺距为.2)。联接接箍84的套丝情况类似,它具有粗丝扣92,用以与钻杆端50上相应的丝扣接合,在另一个接箍端具有细丝扣94(每英寸五扣),用以与钻杆52各自的细丝扣接合。应该指出的是,联接接箍84与钻杆50和52的细丝扣94和90以及粗丝扣92和88在各自有丝扣的部分都是直径一致的丝扣。但钻杆50的粗丝扣88的直径大于钻杆52端部细丝扣90的直径。联接接箍84丝扣的直径类似。丝扣直径不同的这种情况使联接接箍84可以从钻杆50上松扣卸到钻杆52上而不致使联接接箍84的粗丝扣92与钻杆52的细丝扣90接合。这样,联接套管84就可以下到钻杆52上,直到它靠在止动凸缘96上为止。
由于图中所示各钻杆各端具有不同的螺距以达到差动联接的目的,因此丝扣88和90两者不是右旋螺纹就是左旋螺纹。当各钻杆只用联接接箍84联接时,各丝扣最好取这样的方向,使钻头的旋转动作促使各钻杆之间的联接上紧。一般说来,各丝扣按右旋方向车削。从上述情况应予以注意的是,钻杆50和52另一端的螺距和螺纹直径与所述各钻杆端的相反。换言之,各钻杆的一端是粗螺纹88,另一端是细螺纹90。
联接接箍84的直径也比所联接各钻杆的大,因而任何相对于井眼壁引起的磨损,受损的是套管而不是钻杆。为达到此目的,钻杆联接接箍84是制成可从钻杆52上卸下来,方法是在联接接箍端上留出一个成环形内凹的部分98,使其不致与管螺纹90接合。作为另一种可供选择的方案,也可使联接接箍内螺纹94延伸到接箍端部。这样,当联接接箍84严重损坏时不难从钻杆52上卸下更换。通常,钻杆在储存和运输时是将其各联接套管84完全上到钻杆端上靠在止动凸缘96上的,这样做的理由下面即将谈到。
进一步参照图2,根据本发明是将钻杆50和52的端部在使其可用丝扣进行联接之前彼此接合在一起,使驱动转矩可以从一个钻杆传到下一个钻杆上。这样,钻杆柱的驱动转矩并不是借助带丝扣的联接接箍84传递的。因此带丝扣的联接接箍84和钻杆端部不需要普通的锥形箱和带阳螺纹的钻杆接头来传递转矩,这种螺纹需用价昂的切丝板牙。
图4是若干座落在各自的驱动凹口102的驱动凸耳100使所联接的钻杆彼此接合起来的示意图。参看图11,这是带导管的钻杆103和105连同其电气导线110的示意图。从图中可以清楚地看到在钻杆105上若干驱动凸耳100和在钻杆103端部的驱动凹口102(虚线所示)。钻杆103和105之间的相互接合实质上是驱动凸耳的100与诸凹口102的交错配置。
钻杆105的一个凸耳104与钻杆103的各凹口106,它们的大小与其它驱动凸耳100及驱动凹口102的不一样。具体地说,凸耳104是一个指示凸耳,它与指示凹口106一起使钻杆105可按预定所希望的弧形或旋转校准方式连接在一起。根据本发明,钻杆柱各钻杆之间的弧形校准最重要,因为需要在整个钻杆柱保持各钻杆导管都在一直线上。此外,保持各钻杆(例如103和105)处于特定的弧形校准状态甚至更为重要,因为有一个导管(电气导管108)中装有将诸信号和电能供应给井下各传感器和将信号往上从诸传感器或器具供应到地面设备的电气导线。这里“信号”一词也包括来自诸如交流或直流电源之类的电能。
因此可见,不仅需要保持载送流体各导管之间成一直线,而且需要进行个别校准,因为这些导管有一个(导管108)是装有电气导线的。可以理解,在需要用钻杆的各导管传送流体时,只需要加设驱动凸耳102即可使整个导管(不是个别导管)保持在一直线上。可以预料,在某些情况下可在一个以上的导管中装设电气导线。
如上所述,在钻井作业中能即时从井下诸传感器(例如18和20)收到电气信号,且能以闭合环路的方式工作,有助于改进钻井作业,使其达到最佳状态。从图7至10中可以看到,钻杆103的电气导管108载有三根电气导线110,在夹具112中装在一起。夹具112最好配有特氟隆或吉勒等结实耐久的材料制成的盖,使得在钻井过程中夹具112与导管108内表面114之间的任何摩擦运动不致引起电气短路。
各电气导线110接到钻杆端部的终端接线板116上,接线板有三个导线端子118及其有关的销式接点120。各电气导线钎焊到是各目的销式接点120的端子118上。在钻杆各端的接线板116可以粘接或密封在电气导管108中,或用其它适当构件(图中未示出)固定在其中。
为使一个钻杆与其它钻杆各自的诸导管之间在电气上和流体通路上保持连通,装设了一个密封86,如图5所示。密封86是扁平的其横截面与图示钻杆的横截面类似。详细地说,图5密封的横截面与图3a管材实施例的类似,制成钢质带密封垫的盘形垫圈,安置在各钻杆端部之间。根据下面的介绍,熟悉本专业的人士是能制造出与图3b至3d的管材配用的导管密封的。如图5所示,密封8b有一个中心通孔122,周边上等间距配置周边通孔124。其中一个通孔中固定有一个插座式电气中间连接器126,如图5至图7所示。中间连接器126各端有若干插座式接点128,钻杆接线板116的销式接点即可借助摩擦力插入插座式接点128中,确保钻杆与钻杆之间高质量的电气连接。此外,插座式接点128和销点120都镀金或其它合适材料,以防采到钻井环境中普通存在的氧化作用的影响。
中间连接器126与钻杆接线板116一起可粘接或固定到密封盘86中。作为另一种选择,中间连接器126也可设安装构件,使连接器可以“浮置”在密封86中。这样可以使中间连接器126在密封86中有某种程度横向移动的余地,以适应校准对齐了的各钻杆之间在尺寸上存在的小差别。
密封86和中间连接器126的加设,是本发明与普通钻杆电气连接方面的不同点。中间连接器126具有很大的实际优点,它可以使钻杆端部配备销式接点型接线板116。有了这种对称配置方式,密封件86无需正面朝上取向,只要将中间连接器126的任一端与任一钻杆端部接触即可快速安装。此外,例示钻杆的制造过程也简化了,只需在各钻杆端部的电气导管中安装一个销式接线板116即可。
重要的一点是,密封件86具有橡皮或弹性体密封或衬垫装置130,围绕各周边通孔124(包括中心通道孔122)配置。在密封86值得推荐的形式中,密封86各正面侧开有沟槽132,确定着毗邻和中心通孔124和122的界限范围。为便于制造密封86和弹性体垫圈130,毗邻各通孔之间的沟槽132是公用的,从而使弹性体垫圈130制成一个整体。从图6可以看出,当接箍84将钻杆103和105连结在一起并牢固联接时,弹性体垫圈130紧紧被压入其沟槽中起高度密封作用,确保各流体导管与电气导管之间压力的完善性。这种密封方式可以使相邻各导管之间维持50,000磅/平方英寸的朝上压差。这种密封装置比O形环或人字形密封更先进,后者只能承受约7,500磅/平方英寸的朝上压差。为一目了然起见,图6中没有画出电气导管各端中的电气接线板116。
从图11中可以看出本发明钻杆的另一个优点。如图11中所示,联接接箍84靠在止动凸缘96上(图中未示出)。联接接箍84具有这样的长度,当它完全退到钻杆105上时,其终端边缘至少与凸耳的终端边缘136齐平,因而这种凸耳在储存和搬运过程中不易破碎或损坏。为了同样的目的,而且为了减少易损坏的弱点,配套钻杆103的终端周围设有连续的圆柱形边缘138,连同在其内侧表面上的驱动凹口102和指示凹口106。这样,由于边缘138是连续的,因而这种钻杆105的终端不易受损伤,这是我们所迫切希望的;因为可以看出,当凸耳100和104或凹口102和106损坏严重时,整个钻杆就变得不安全。
根据上述说明,不难理解,许多钻杆可以快速而轻易地联接在一起,使其达到所希望的弧形校准状态,在整个钻杆柱上保持其各流体通道和电气导管处于完善状态。
从图12和图13中可以看出本发明的一个重要特点。图12和13的钻井作业用以将流体和电气信号传送到钻杆柱和从钻杆柱传输用的地面设备。起重设备140悬挂在连接到井架框架144的缆绳142上,将鹅颈水笼头12固定吊在井口上方(图中未示出)。缆绳卷扬装置(图中未示出)用以在井孔中粗调钻杆柱,从而粗调钻头重量。转矩止动缆绳148防止鹅颈水笼头12与最顶的钻杆150一起转动。
鹅颈水笼头12在井口上方的竖向细调是借助于一对将套筒154和鹅颈水笼头12的冲管156部分支撑到起重设备140上的油上充气的液压缸152进行。如图13所示,液压缸152各个都具有一个活塞158,安置在部分充油的油缸160中,用以保持所希望的钻头荷重。各活塞158周围有环形密封162,使活塞158与油缸160之间保持密封,并使油面保持在活塞158上方,与活塞158下方的大气压隔离开来。软管164将各液压缸132的上部分联接到上方有气体的油源(图中未示出)。不难理解,油源中的高气体压力减轻了钻头的荷重。各液压缸158的活塞杆166通过肘接168接到起重设备140上。各种流体通过图12的高压软管170、172和174联接到鹅颈水笼头12上。鹅颈水笼头顶上的高压软管176使流体可以往下沿钻杆150的中心孔泵送或从该中心孔轴上。
象钻杆柱的电动机传动装置、井口处的防喷器等元件,对本发明的关系不大,它们的存在和应用熟悉本专业的人士所熟知的,因而这类钻井作业常用的元件在本说明和附图中都从略。
图13的鹅颈水笼头12主要由套筒部分154、冲管156和流体换向器182组成,套筒部分154则包括套筒轴178,其底端用管形接箍180连接到最顶的钻杆150。管接头184可以有效地将流体换向器182联接到套筒轴178上。管接头184和套筒轴178里面都具有流体通道,用以将所希望的流体传送到其中若干钻杆导管中。下面将更详细介绍各种流体换向到所希望的各钻杆导管的方式。
鹅颈水笼头12还包括电气换向器186,用以在钻杆柱转动时保持通往各钻杆柱导线的电气连接。套筒轴178由一个用花键接合到其上的齿轮188通过液压马达或电动机(图中未示出)驱动。电动机传动装置装在框架190中,套筒178即通过框架190在轴承192、194和止推轴承195中转动。轴178还设有适当的油封。
流体换向器182的简化形式如图14所示,其中,换向器轴196可在流体管汇198中转动,并包括即将参照图16加以论述的高压密封。换向器196包括若干与想通过各种钻杆导管泵送的流体的数目相对应的进口孔200和202。为了示范,这里只画出接到流体换向器182的两个流体源。每个进口孔200和202在换向器轴196中都有流体通道204和205(虚线所示),这类通道在换向器轴196底端上都有一个出口。换向器轴196还有一个中心孔208通过其中,钻井流体等即通过中心孔208传送到钻杆150的中心导管62中。
接头184介在换向器轴196与套筒轴178之间,用销179及凹口181装置和销紧螺母183固定在换向器轴196与套筒轴178之间。图14是接头184的透视顶视示意图。接头184有一个与换向器轴中心孔208连通的中心孔210和两个与换向器轴通道204和206连通的通路212和214。图15是接头184底边结构的示意图。在例示的套筒部分154的实施例中,是想把两种不同的流体往下泵送到各种钻杆导管中。因此在接头184的底边,在各通道通路214和212周围设有挖空区216和218。采取这种结构,通路214在将流体传送到三个相应的套筒轴导管224时,通路212就可以同时将流体传送到,例如,其它四个相应的套筒轴导管222。接头184上的无孔区22堵住了套筒轴178中剩下的导管226。
因此实质上换向器196的进口孔204可以把一种流体分配到四个毗邻的套筒导管222中,从而分配到四个相应的钻杆导管中。与此类似,进口孔202可用以将另一钻井流体分配到三个毗邻钻杆导管中。现在应该清楚,钻井现场可以设各种各样的接头用以将若干流体源的流体分配到若干钻杆导管中。这是借助使该部位范围或接头184底部的挖凹部分具有不同的形状付诸实施的。
此外,钻井操作员还可以从本发明的教导发现,可以采用两个以上压力不同的流体源来使钻井操作达到最佳状态。在该情况下,从本发明的介绍可以清楚地了解到改善三个或四个进口孔换向器以便往各钻杆导管中分配同样数目的不同流体的方法。
在图14和16中可以更详地看到,流体管汇198具有通道230和232,在内侧连接到各自的流体源,在外侧借助于一对环形沟槽234和236连接到换向器轴进口孔200和202。因此,进口孔200在流体在其各自的环形沟槽234中流动时是不断有流体传送的。同样,进口孔202通过其环形沟槽236不断传送另一种流体。
由于流体换向器182承受的是只局限于连接软管170至174(图12)强度的流体压力,因此必须设置使各环形槽234和236与转动着的换向器轴196之间保持密封的特殊装置。图16中更详细画出的高压密封装置系用于鹅颈水笼头12的流体换向器182中,以便可以采用各种高压流体使井下钻井作业便于进行。换向器轴196的外表面敷有陶瓷材料240,使在流体汇管198中的轴196具有结实而耐久的支撑表面。
各环形沟槽234和236周围有高压密封圈242,将流体歧管198与换向器轴196的陶瓷镶面240之间密封起来。低压密封243配置在轴196的另一端。高压密封242的一侧施加有高压控制流体,以抵消加到高压密封242另一侧的高压。这样就减少了高压密封242各侧的压差,从而减少了发生压力井喷的可能性。因此设了高压密封流体进口孔244(如图16所示),其作用是给各高压密封圈242的一侧提供高压流体,以平衡高压密封圈另一侧因高压钻井流体沿各钻井导管往下泵送所产生的压力。若干低压密封流体出口孔246是为将对高压密封242起匀衡作用的漏泄压力控制流体回流到一个储液槽(图中未示出)而设的。
换向器轴196中的中心孔208可按上述同样的高压法进行密封,这里不再重复。
不言而喻,根据上述介绍,本发明使钻井操作员可以有选择地往任意数目的不同钻杆导管中注入不同数目的特高压差的流体,并往井下设备加流体以便,例如,清洗或冷却钻头、往钻井液中通气或促进对地层的穴塌作用和侵蚀作用,或同时进行各项操作。
电气换向器(在图17中的编号为186)使钻杆中各转动着的导线110与地面监控设备22之间保持电气通路。钻杆电气导线110是从最顶的钻杆150联接,并通过套筒轴178底下相应的连接器(图中未示出)。套筒轴178中的电气导线的顶部也连接到连接器250,最后连接到图17中的连接器252。这里作为例子,在钻杆150中载有四根电气导线。四根相应的导线254、256、258和260都固定到终端盒262上。四根导线各个都从终端盒262接到各自的滑环264、266、268和270上。各滑环都由黄铜或其它适当的导电材料制成,它们固定在套筒轴178上,因而与套筒轴178一起转动。
这样,来自井下各传感器由各导线110载送的电气信号就出现在各转动滑环264至270上。四个电刷272、274、276和278压着固定在各自的滑环上,使其具有良好的电接触。各电刷是静止的,各个用刷架压在滑环上,如图中编号280所示。各刷架固定在支座282上,支座282又固定到鹅颈水笼头框架上。在支座282中,各导线,例如284,系连接到各电刷278上,将电气信号载送到监控设备上。电气换向器186罩有保护罩(图中未示出),以防止滑环暴露在钻井恶劣的环境中。
因此可见本发明设有若干电气导线110沿钻杆柱走线一直通到井下设备。地面监控设备22即刻可以收到来自井下设备的电气信号,从而可以根据信号采取行动。
从图18和19中可以看出本发明的另一个特点。这是转换接头的示意图,这种转换接头最适宜与经改进的钻杆配用以扩大其多面手性能。转换接头286是钻杆的一个短节,带有上面介绍过的套管接头,同时还设有编号为288的传感设备。具体从图中可以看到的是三个传感器。压力传感器290、酸碱度传感器20和温度传感器18。
各传感器都是电控制的,因而都接到遥测或转换装置292,以便将传感器的物理量输入值转换成电信号,传送到地面监控设备。如图所示,遥测装置292是用导线连接到电气导线夹具112上,再在钻杆柱中往上延伸到各滑环上。导线夹具112配置在电气导管108中。
由于电气导管108中可能没有足够大的空间容纳传感和遥测设备,所以用分离器296和298堵住部分流体导管294。堵住了的部分303与电气导管108之间用沟道297连接,使电气导线可以从电气导管108敷设到位于堵住部分303中的遥测设备292上。通道安装板300装入流体导管294的堵住部分303的通道口302中。安装板300连同垫圈304用螺钉306固定到转换接头壁上。垫圈304采用普通的橡皮垫圈即可,因为堵住了的导管303并没有承受太大的压力。
通往导管隔板310设有许多转换接头孔308,用以使流体从导管294的上部通过流体导管312绕过堵住了的导管部分303流回导管294低处。
为了减少井孔处的流体静压头,通常是将钻井流体通气。因此例示的转换接头286设有外通气孔314和内通气孔316,前者用以给井孔环形空隙44中的钻井流体通气,后者用以给中心导管318中的钻井流体通气。如图19所示,为进行内外通气,通过各通气孔连接到各自的中心导管318和井孔环形空隙44的流体导管320和322都通以氮之类的带压气体。不言而喻,单个转换接头286通过并不能体现所例示转换接头的所有特点。此外上述特殊制造的钻杆还可使它具有一个或多个上述与转换接头有关的特点。
套筒324和326起保护传感器的作用,使其在储存或在井下使用时不致损伤。套筒324还对联接接箍84起止动挡的作用。
因此转换接头286使周围地层传感器可以装到钻杆柱中,同时使流体在各流体导管中流动。应该了解,采用转换接头286时,应将同样的流体泵入导管294和312中,因为这些导管是通过孔口308传送流体的。
图20中可以看到环形蓄压器46。蓄压器46可以有选择地机械调节井孔的流体静压头,以进一步提高井孔的完善性,并能在地下压力变化时,连续进行调节。具体地说,本设备能防止能导致灾难性和代价极大的井喷发生的事件。通常,井下压力过大时是用提高井孔环形空隙44中钻井泥浆的密度加以抵消的。当压力提升得过快或钻井操作员没有注意到压力升高时,钻井泥浆的密度就不能快速调节得足以防止井喷的发生。
这时环形蓄压器就能往井孔环形空隙44施加压力,迅速改变钻井泥浆327的实际密度来处理这个紧急事件。环形蓄压器46有一个通过适当管路330连接到井孔环形空间的储槽328。转动头331在钻杆周围形成环形密封使系统成为一个闭环系统。储槽328有一个柔韧隔膜332将钻井泥浆327与其上的带压气体324隔离开来。可以看出,随着隔膜332上,从而钻头和泥浆327的气体压力的增加,泥浆的实际密度增加。气泵336将气体压入容积较大的供气槽338中,这样当需要时可以快速提高蓄压器储槽328中气体334的压力。调节器340可加以调节,从而可以调节供气槽338与蓄压器储槽328之间的压力。因此,在有要求调节压力这种指示的情况下,就可打开调节器340以增加钻井泥浆327的气体压力,从而提高实际密度。
根据本发明的一个重要方面,可令调节器340自动进行调节,且连接到地面的压力监控器342,以便根据压力传感器290检测出的井下压力的瞬时变化自动调节蓄压器储槽328。这样,通过闭环系统应用本发明可以提早检测并防止紧急井喷灾害。此外还可以利用压力监控器342起动泵42,以便将井下流体液面维持在所希望的高度。
在介绍过在我们认为最实用和值得推荐的实施例中的诸设备之后,现在介绍一下采用这种设备的一种经过改进的钻井方法。从这一点出发,我们看看图21至23,这是应用本发明各种特点的钻杆和井孔的详图。
图21展示了这样一种钻井方法,该方法采用在一个或多个导管346中泵入井下的液体344(例如具有第一密度的钻井流体)通过高速射动作简化从钻头348清除地层钻屑347的过程。悬浮在钻井泥浆中的碎屑347经由井孔环形空隙44往上被载送到地面上。在其它导管352中也往井下泵送钻井流体344。在这些导管352中,流体344所受的压力比在导管346中的大得多,而且被引入钻头钻孔路径354中,以便侵蚀地层和/或快速清除钻孔路径354中的钻屑347。沿钻杆中心导管358可往下大量泵入具有第二密度的钻井流体356,在钻头区348将其与钻井流体344混合,再将此混合流体往上压入井孔环形空隙44中,载送着地层钻屑347。
因此,有了这种多导管钻杆,钻井操作人员有生以来第一次同时分别往井下以足以从钻头上清除钻屑的压力泵送钻井流体,泵送压力极高的钻井流体,以侵蚀地层,往井下大量泵送另一种低压流体,以便将钻屑往上压入井孔环形空隙中。
图22中所示的钻井操作与图21的类似,但还增设了一种转换接头360,带压气体362即在转换接头360中通过外通气314泵入井孔环形空隙44中,以便给混合密度的钻井流体通气,从而降低实际密度。换句话说,此通气过程降低了钻头区348的流体静压力。因此不难理解,在本实例通气过程和用环形蓄压器46往钻井流体施压的过程中,在两过程之间可以在宽范围内迅速改变钻井流体的密度。
图23展示取岩心的操作过程,其中,高压钻井流体344通过某些导管346和352并通过喷嘴(图中未示出)加到钻头区348,然后通过钻杆的中心导管358连同地层钻屑347一起反向循环。此外,还通过将压缩气体362经流体导管364往下泵送,再通过内通气孔316排入中心导管358的通气方式来提高钻井流体344反向循环的效率。不然也可将流体注入钻杆的外环形空隙中以妥善调节外区。
同样也不难理解,图23所示的配置方式也可利用图21的钻头14加以改变。在此实施例中,钻屑的大小减小了,以便可以提高往井口全部气动输送钻屑的效率。
上面介绍了经改进的钻井设备和方法。不难理解,可以将上述各方面和特点结合起来进一步提高钻井操作的效率。例如,可以在钻杆上装设上述所介绍的以外的其它传感器,以检测所希望获取的地层数据,就象上述压力传感器一样,同时将其与地面设备联接起来以改变钻杆操作程序。这种闭环系统消除了操作人员收到信息之后延迟采取措施或完全没有行动的可能性。此外,这种闭环系统可对钻井操作的任何量进行连续调节,使系统达到最佳效率。
根据本发明的一个重要方面,下列三种功能可彼此加以分开,因而可独立加以操纵和控制(1)保持井孔在化学和压力方面的完善性,(2)钻屑的流通循环,将其排出井外,和(3)对地层的切割或侵蚀所起的辅助作用。因此本发明可采用多种彼此分开的流体及其混合流体履行上述三种功能。相比之下,在现有技术中,上述功能是不能分开的,因而也不能独立加以操纵或控制。
本发明的另一个主要目的是提供一种具有多导管的钻井套管。多导管钻井套管具有与上述与钻杆有关的类似优点。
熟悉本专业的人士不难理解,即使在矿井已进入生产阶段之后,也需要履行精心编制的矿井管理计划,确保矿井达到最高的生产效率。迄今矿井的整个生产导理历来受到井下信息量的限制,这些井下信息经收集之后可用以改变井下条件以提高效率,也可用以改变地面上的泵送操作以提高的效率。与上述钻井操作极其相似,在能传送多种流体和电气信号的情况下,也能实现高效率的矿井生产闭环系统。在高度发达的生产系统中需要了解的项目是井下有关各区压力、温度、流量、流体粘度和密度、流体酸碱度等情况。监控这些及其它参数有好处,目的是控制地面的操作情况以便(例如)控制压入井下的气体压力,从而降低井下的流体静压力,并往井下注入溶剂或溶液以溶化油料或调节酸碱度值。还可以同时往井下泵送其它溶液,以便进一步影响地层,使其释放出更多的油或其它物料。在其它应用中,可能需要往井下注入醇类溶液或防冻剂,以防止因气体流动的降温效应所引起的不希望有的低温情况。
从上述介绍的情况可见,迫切希望能在往井下泵送多种流体的同时,监控井下的多种参数。根据本发明,例24和25是一种能弥补迄今各种钻井套管不足之处的多导管钻井套管366的一个例子。钻井套管366的一般性能及其与套管取接以形成钻杆柱的配置方式与上述与钻杆有关的各方面相同。由于套管366的各种导管也可能会载送高压流体,因此设了相当于图5的密封的密封件86(图27),以确保钻井套管366各导管之间压力的完善性。
特别是,图25展示了钻井套管366横剖面的结构,其中包括中心孔370、多根流体导管372和装设有多根遥测导线376的电气导管374。各遥测导线376接到电气导管各端的连接器,并通过密封件86的中间连接器126接到钻杆柱其它钻井套管各段的相应遥测导线上。应该指出,图25的多导管钻井套管366总的说来是和图3b的多导管钻杆相同的,只是钻井套管的管材横截面较大,在井孔直径范围内。此外中心孔370直径稍大一些,以适应往上泵送的大量生产流体。
参看图24,最顶的钻井套管366用接箍84联接到编号为378的井口盖帽。井口盖帽短头380的横截面与钻井套管366的相似,还设有密封86(图中未示出)和上述与图11有关的指示和驱动凸耳和凹口。井口盖帽378有许多通路382(虚线)通过其中,将各钻井套管导管372和374连接到各自的流体或溶液源和监控控制制板394上。在本发明所举的实施例中,钻井套管的七个流体导管372个个都可通过流体分配器386接到各流体源388上。高压软管(例如图中所示的软管384)将各井口盖帽通路382接到流体分配器386的一个出口390。
电气通道374中的遥测导线376通过井口盖帽电气通道392(虚线所示)联接到监控控制板394上。监控控制板394可包括各种仪表、警报器、曲线监控器或放大器,用以将遥测信号变换成其它信号,以便,例如,驱动一排电磁阀(编号为396),例如与流体分配器386的流体管汇397配用的电磁阀。
这样,设了一个闭环系统,在该系统中,地面设备可根据各传感器检测到的井下参数的变化自动操作。例如,根据井下生产流体粘度增加的指示(这由传感器424检测出来,下面即将详细谈到),监控控制板394会处理该电气指示并促使其中一个电磁阀396动作,从而将醇流体源通过流体分配器386接到一个或多个钻井套管流体导管372,从而改变生产流体的粘度。此外,在粘度传感器往监控控制板394传送井下生产流体的瞬时粘度时,一个或多个其它电磁阀396可以动作或释放,以通过令该流体取道其它流体导管372来增加流体量或通过减少泵送该溶剂所通过的流体导管372的数目来减少泵入井下的流体量。
上面只是列举了电磁阀396和管汇装置的一般具体配置方式,熟悉本专业的人士是可以另行设计的。
还可以装设手动操作按钮板400,以便手动操纵电磁阀396,使任何一种流体可通过任何一根或多根钻井套管流体导管372泵送。
井口盖帽378还有一个中心孔(图中未示出),泵轴402即通过该中心孔延伸到井下起泵送作用,生产流体即借助于此泵送作用提升到地面上的。
钻井套管的最底下部分有一个钻井套管短头404(各流体导管372即从该短头出口)和若干电气遥测传感器。钻井套管短头404可用丝扣联接到一个专用的多导管管材406,该管材中装有普通往复式柱塞,用以将生产流体提升到地面上。
图26和图27表示了钻井套管短头404的各种特点。从底部看起,钻井套管短头404(图26)包括一个盖住中心孔370的筛网408,网孔的大小可以防止砂粒等进入泵区406。筛网408由不锈钢或其它耐腐蚀的类似材料制成,其周边有若干孔与流体导管成一直线,因而流体可以从钻井套管短头404的底部喷出而不受筛网408的限制。筛网408夹在接头412的一个凸肩410与导管终端头414之间,固定在钻井套管短头404中。短头404的导管终端头414有多个流体导管372、中心孔370和一个电气导管374,都通过多导管泵段406与多导管钻井套管366的相应导管对齐。此外,钻井套管短头404还有驱动和指示凸耳,可与多导管泵段406上各自的驱动和指示凹口配合。如上所述,密封86确保钻井套管短头404各相应导管与多导管泵段406之间压力的完善性。
从图26可以看到,各流体导管通过喷嘴孔416通到井孔底部。从图中可以看出,可按不同需要设备不同直径的喷嘴孔。
图27进一步展示了钻井套管短头404和多导管泵区406中的遥测导线376。电气导管连接器418、密封中间连接器126和钻井套管短头连接器420使遥测导线376与传感器422之间形成连续电气通路。钻井套管短头404中的传感器室422的放大详图如图28所示。在图26中,在传感器室422的终端头设有多个传感器,其中一个传感器的编号为424。传感器422有若干带丝扣的入口426,外部带丝扣的传感器424即固定在该入口中。这种配置方式和带丝扣熔断器在接气分线箱的配置方式极其相似,只是其中设有填密片428,以防流体漏进传感器室422中。带弹簧的传感器接点430使传感器元件424与遥测导线376之间形成连续的电气通路。
这种结构有很大的好处,因为可以预选若干传感器元件424将其固定在钻井套管短头404中以检测个别对一定类型的矿井生产至关重要的井下参数。监控控制板394上的放大器和其它检测器可按装在钻井套管短头404中传感器424的类型进行配线,使检测出的个别参数可以转换或表示这些参数的有用指示值。此外,若想采用多个单根电气导管374所能容纳的传感器元件424和遥测导线376,则可将遥测导线和相应的连接器装在其它一些流体导管中以扩大传感设备的容量。
至于图27,接头412借助相应的内外丝扣将导管终端头414固定到多导管泵段406。多导管泵段406有一个作为泵缸的中心孔432,泵柱塞434即在该中心孔中往复运动往上压送生产流体。泵柱塞434具有普通的周边密封436用以防止流体漏出泵柱塞434的上方和下方。在泵柱塞434的下行冲程中,生产流体通过通道440、开着的止回阀438被往上压送到泵塞434的顶边。在柱塞434的下行冲程中,止回阀438关闭,生产流体被往上压送到地面的储槽(图中未示出)中。
总的说来,上面列举了多导管管材用作钻井套管的好处。由于设了许多导管,井孔底部有许多通路可资利用,从而可以检测出井下的多项参数,且可以通过各种流体导管将矿井总生产管理效率提高到很高的水平。
尽管以上参照诸管材、导管、联接方式等介绍了钻井方法和设备的一些最佳实施例,不言而喻,在不脱离本说明书所附诸权项所规定的本发明范围的基础上是可以进行种种修改的,这仅是工程上选择问题而已。熟悉本专业的人士甚至可以,例如,将转换接头的各种特点直接体现在钻杆或钻头上,而借助于本发明,他们会发现要实现该选择非常容易。此外,要体现本发明的个别优点时不必要将本发明的全部优点都应用到一个复合管材上。另外,本发明的范围并不受本说明书所公开的上述细节的限制,而是与权利要求书的整个范围一致,因而包括任何和所有等效的设备和方法。
权利要求
1.一种钻井和矿井生产用的管材,其特征在于,该管材包括一个细长钻杆,钻杆各端适宜与其它类似的钻杆各端连接,钻杆中有多个呈拱形间隔的独立导管通过,各所述导管基本上均匀地从所述钻杆的一端延伸到另一端,从而使多种不同的流体传输到该钻井或从该钻井传输出去。
2.如权利要求1的管材,其特征在于,所述钻杆还包括同心的内外侧壁,所述内侧壁形成所述多根导管的一个中心导管,所述多根导管的其它诸导管则径向配置在所述内侧壁外面。
3.如权利要求2的管材,其特征在于,所述其它诸导管为所述内外侧壁之间的一个细长环形通路所界定,所述通路中的若干径向隔板形成各所述其它诸导管的侧壁。
4.如权利要求2的管材,其特征在于,所述其它诸导管包括多个独立的圆截面细长通路。
5.如权利要求4的管材,其特征在于,该管材还包括一个细长插件固定在所述一个通路中,所述插件包括多个独立的细长通路。
6.如权利要求2的管材,其特征在于,所述钻杆包括一个其内侧壁界定所述中心导管的内缸和一个与所述内缸同心的外缸,外侧壁界定所述钻杆外侧,则所述其它诸导管为多个固定在所述内外缸之间的其它各缸所界定。
7.如权利要求1的管材,其特征在于,该管材上有指示装置,用以按拱形使所述管材与另一个类似管材在联接过程中对齐,从而使所述诸导管所希望对齐的一些导管与所述管材联接的类似管材的相应诸导管对齐。
8.如权利要求1的管材,其特征在于,该管材还包括一个密封,用以将一所述管材联接到另一类似管材,并保持各所述贯通其中的导管的完善性,所述密封包括用以将一所述管材的各自导管与另一类似管材连通起来和用以隔离毗邻导管的若干孔。
9.如权利要求8的管材,其特征在于,所述密封件还包括一个具有一个其横截面与各所述导管有关的一个孔口类似的网状物的盘,和一个在上述盘各面上的一个弹性体,围绕各所述导管口周边配置。
10.如权利要求9的管材,其特征在于,所述盘的各面上有一个网状槽,所述弹性体部分即嵌入所述槽中。
11.如权利要求1的管材,其特征在于,该管材还包括一根电气导线,用以载送电气信号并固定在所述管材的一电气导管中。
12.如权利要求11的管材,其特征在于,该管材还包括电气连接装置,配置在所述电气导管的各孔口中,用以端接所述电子导线,所述连接装置包括一接点,所述电气导线电连接到该接点上。
13.如权利要求12的管材,其特征在于,该管材还包括将所述连接器密封到所述电气导管用的装置。
14.如权利要求8的管材,其特征在于,该管材还包括一根设在所述多根管的一电气导管中的电气导线、一附设在所述电气导管各端具有端接所述导线各端的接点的第一连接器和第二连接器,第二连接器在所述密封件中,用以将所述管材的一所述第一连接器的接点联接到另一类似管材的电气线路。
15.如权利要求1的管材,其特征在于,所述管材包括一钻杆,还配套包括流体换向装置,用以在所述钻杆转动时将各多个流体源联接到所述诸导管希望加以联接的导管。
16.如权利要求14的管材,其特征在于,所述管材包括一钻杆,还配套包括电气换向装置,用以在所述钻杆转动过程中耦合来自所述导线的电气信号。
17.如权利要求1的管材,其特征在于,该管材还配套包括用以将钻杆流体限制在所述管材所形成的井孔的一个环形空隙周围范围内的装置和压力装置,压力装置包括一储槽,用以储存加压气体,加压气体则用以往所述环形空隙中的钻井流体施加所希望的压力,从而改变所述环形空隙中钻井流体的实际密度。
18.如权利要求17的管材,其特征在于,该管材还包括一固定在所述管材侧壁的压力传感器、用以转输表示所述管材中井压力的信号的装置,和用以调节加到所述钻井流体的压力、响应所述信号的装置。
19.如权利要求15的管材,其特征在于,该管材还包括连接到所述流体换向装置用以在第一所述导管中以第一压力泵送第一流体,并用以通过第二所述导管以高于所述第一压力的第二压力泵送第二流体从而促进对地层的侵蚀作用的装置。
20.如权利要求19的管材,其特征在于,该管材还包括一闭环系统,该闭环系统包括一固定在所述管材侧壁的传感器、一通过所述管材传输电气信号的装置(所述信号表示某一钻井参数)和一根据所述电气信号控制一所述流体的控制器。
21.一种生产矿井的管理方法,其特征在于,该方法包括下列步骤从所述矿井提取生产流体;监控井下参数;往井口传送所述参数的信号;和根据所述参数的某些信号指示超限情况,往井下泵送所想泵送的流体使所述参数恢复到极限值。
22.如权利要求21的方法,其特征在于,该方法还包括;根据所述超限情况往井下独立泵送多种流体。
23.如权利要求22的方法,其特征在于,该方法还包括,往井下独立泵送多种不同的流体。
24.如权利要求23的方法,其特征在于,该方法还包括,往井下同时而独立地泵送多种不同的流体。
25.如权利要求21的方法,其特征在于,该方法还包括,同时监控多项井下参数,并根据各所述参数的超限情况往井下泵送流体,使各所述参数恢复到极限值。
全文摘要
一种用于钻井作业中的多导管管材具有若干流体导管和若干电气导管,连同有关的地面流体和电气换向器,以及用以为地面诸监控器提供瞬时地层数据的若干井下传感器。各管材包括多根通过其中的均匀线性导管,各连接着的管材之间配置有带垫圈的密封盘,以确保各连接着的导管之间的高压密封。密封盘有一个中间电气连接器,用以将一根管材的诸电气导管连接器连接到另一根管材上。
文档编号E21B21/08GK1039464SQ87105650
公开日1990年2月7日 申请日期1987年8月3日 优先权日1987年8月3日
发明者哈里·贝利·柯利特 申请人:潘盖伊公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1