一种非均质地层高精度三维地应力模型建立方法

文档序号:10648233阅读:262来源:国知局
一种非均质地层高精度三维地应力模型建立方法
【专利摘要】本发明涉及一种非均质地层高精度三维地应力模型建立方法,该方法包括:步骤一,利用钻井、测井和三维地震资料建立非均质性地层三维格架模型;步骤二,利用三维地震资料反演和测井资料建立非均质性地层三维岩石物理参数模型;步骤三,进行非均质性地层高精度地应力空间分布规律的三维有限元数值模拟计算;步骤四,建立非均质性地层高精度的三维地应力分布模型。本发明的非均质地层高精度三维地应力模型建立方法,可为致密低渗透油气田开发、非常规油气甜点预测及其勘探开发提供可靠的依据,有效提高致密低渗透和非常规油气勘探开发的效率,降低致密低渗透和非常规油气的勘探开发的风险成本。
【专利说明】
一种非均质地层高精度三维地应力模型建立方法
技术领域
[0001]本发明涉及油气地质和计算机技术领域,具体涉及一种非均质地层高精度三维地应力模型建立方法。
【背景技术】
[0002]高精度的三维地应力分布规律是非常规油气储层工程甜点评价及其勘探开发的核心地质参数。目前,主要是利用三维有限元数值模拟技术来建立一个地区的三维地应力分布模型。但由于受地质模型建立的精度有限,因而目前通过三维有限元数值模拟技术建立的三维地应力分布模型精度满足不了油气勘探开发的精度要求,不能有效地指导油气钻探和开发工程。如何建立满足非常规油气勘探开发需求的高精度三维地应力分布模型,是致密低渗透和非常规油气勘探开发需要解决的重要地质问题,对致密低渗透和非常规油气勘探开发具有十分重要的指导作用。

【发明内容】

[0003]高精度的三维地应力分布地质模型建立一直是致密低渗透和非常规油气勘探开发中的技术难点,鉴于目前的技术建立的三维地应力模型精度远远满足不了致密低渗透和非常规油气勘探开发的需求,制约了致密低渗透和非常规油气勘探开发的效率,增加了致密低渗透和非常规油气勘探开发的风险,因此,本发明提供一种非均质地层高精度三维地应力模型建立方法,该方法是在三维格架模型的基础上,利用三维地震资料和测井资料直接建立三维岩石物理参数模型,避免了地质模型精度的限制,能够定量预测非均质性地层的三维地应力分布规律。建立非均质性地层的高精度三维地应力模型,能够为致密低渗透开发和非常规油气甜点预测及其勘探开发提供可靠的依据,能够有效提高致密低渗透和非常规油气勘探开发的效率,从而降低致密低渗透和非常规油气的勘探开发的风险成本。
[0004]为了实现上述目的,本发明采用如下技术方案。
[0005]—种非均质地层高精度三维地应力模型建立方法,该方法是基于单井测井地应力计算结果作为井点控制、基于三维岩石物理参数模型的有限元数值模拟结果作为井间控制的非均质性地层高精度三维地应力模型建立方法,所述非均质地层高精度三维地应力模型建立方法具体包括如下步骤:
步骤一,利用钻井、测井和三维地震资料建立非均质性地层三维格架模型;
步骤二,利用三维地震资料反演和测井资料建立非均质性地层三维岩石物理参数模型;
步骤三,进行非均质性地层高精度地应力空间分布规律的三维有限元数值模拟计算; 步骤四,建立非均质性地层高精度的三维地应力分布模型。
[0006]优选的是,在所述步骤一中,利用钻井、测井和地震资料,在小层划分对比和构造精细解释的基础上建立非均质地层的三维格架模型。
[0007]在上述任一技术方案中优选的是,在所述步骤一中,建立非均质地层的三维格架模型是建立非均质地层的地应力分布三维地质模型的基础。
[0008]在上述任一技术方案中优选的是,在所述步骤一中,建立非均质性地层三维格架模型利用的资料还包括样品测试、压裂资料。
[0009]在上述任一技术方案中优选的是,在所述步骤二中,在岩心样品静态岩石物理参数测试和动态岩石物理参数测试及其对比和校正的基础上,利用测井资料进行单井岩石力学参数建立非均质性地层三维岩石物理参数模型。
[0010]在上述任一技术方案中优选的是,在所述步骤二中,通过测井约束下的三维地震资料反演,利用三维地震资料计算和预测非均质性地层岩石力学参数的三维分布,建立非均质性地层的三维岩石物理参数模型。
[0011]在上述任一技术方案中优选的是,在所述步骤二中,非均质性地层三维岩石物理参数包括弹性模量和泊松比。
[0012]在上述任一技术方案中优选的是,在所述步骤二中,非均质性地层三维地震资料包括横波时差和纵波时差。
[0013]在上述任一技术方案中优选的是,在所述步骤三中,在利用压裂资料和岩心样品地应力测试的基础上,利用测井资料进行单井地应力计算和校正。
[0014]在上述任一技术方案中优选的是,在所述步骤三中,应用三维地震资料建立的三维岩石物理参数模型输入三维有限元数值模拟系统,并通过校正以后的单井地应力计算结果进行井点约束,利用三维有限元数值模拟技术,计算和预测非均质地层的地应力三维展布规律。
[0015]在上述任一技术方案中优选的是,在所述步骤三中,单井地应力包括垂向应力、水平最大主应力、水平最小主应力。
[0016]在上述任一技术方案中优选的是,在所述步骤四中,在非均质性地层三维格架模型的基础上,利用单井测井地应力计算结果作为井点控制,利用三维有限元数值模拟技术计算和预测的三维地应力分布数据进行井间约束,采用确定性建模和随机建模相结合的方法,建立非均质性地层高精度的三维地应力分布模型。
[0017]本发明的非均质地层高精度三维地应力模型建立方法,该方法是基于单井测井地应力计算结果作为井点控制、基于三维岩石物理参数模型的有限元数值模拟结果作为井间控制的非均质性地层高精度三维地应力模型建立方法,该非均质地层高精度三维地应力模型建立方法包括步骤一的利用钻井、测井和三维地震资料建立非均质性地层三维格架模型,步骤二的利用三维地震资料反演和测井资料建立非均质性地层三维岩石物理参数模型,步骤三的进行非均质性地层高精度地应力空间分布规律的三维有限元数值模拟计算,步骤四的建立非均质性地层高精度的三维地应力分布模型;该方法能够建立一个地区非均质性极强地区的三维地应力模型,极大地提高了三维地应力模型在平面上和纵向上的精度,能够反映地层非均质性及其构造对地应力分布的影响,可为致密低渗透和非常规油气勘探开发提供了可靠信息,从而降低致密低渗透和非常规油气的勘探开发的风险成本。
[0018]通过本发明的非均质地层高精度三维地应力模型建立方法,能够定量预测非均质性地层的三维地应力分布规律,建立非均质性地层的高精度三维地应力模型,避免了常规方法对地质模型精度要求的局限性,大大提高了三维地应力建模的精度,可为致密低渗透油气田开发、非常规油气甜点预测及其勘探开发提供可靠的依据,有效提高致密低渗透和非常规油气勘探开发的效率,降低致密低渗透和非常规油气的勘探开发的风险成本。
[0019]本发明的非均质地层高精度三维地应力模型建立方法是基于单井测井地应力计算结果作为井点控制以及基于三维岩石物理参数模型的有限元数值模拟结果作为井间控制的非均质性地层三维地应力模型建立方法,可以有效地实现非均质地层高精度的三维地应力分布模型的建立,大大提高了非均质地层地应力三维地质模型的精度,可以广泛应用于我国致密低渗透储层和非常规油气储层的高精度地应力三维地质模型建立中,为我国致密低渗透油气田高效合理开发和非常规油气的勘探开发提供了技术支持。
【附图说明】
[0020]图1为按照本发明的非均质地层高精度三维地应力模型建立方法的一优选实施例的流程图;
图2为按照本发明的非均质地层高精度三维地应力模型建立方法的一优选实施例的利用测井资料计算的单井岩石物理参数(即杨氏模量、泊松比)和地应力(即最大水平主应力、最小水平主应力)纵向分布图;
图3为按照本发明的非均质地层高精度三维地应力模型建立方法的一优选实施例的利用三维地震资料建立的岩石弹性模量三维模型图(部分);
图4为按照本发明的非均质地层高精度三维地应力模型建立方法的一优选实施例的利用三维地震资料建立的岩石泊松比三维模型图(部分);
图5为按照本发明的非均质地层高精度三维地应力模型建立方法的一优选实施例的压裂与测井地应力计算结果关系图;
图6为按照本发明的非均质地层高精度三维地应力模型建立方法的一优选实施例的水平最大和最小主应力方位图;
图7为按照本发明的非均质地层高精度三维地应力模型建立方法的一优选实施例的地区最大水平主应力三维模型图;
图8为按照本发明的非均质地层高精度三维地应力模型建立方法的一优选实施例的地区最大水平主应力栅状图;
图9为按照本发明的非均质地层高精度三维地应力模型建立方法的一优选实施例的地区最小水平主应力三维模型图;
图10为按照本发明的非均质地层高精度三维地应力模型建立方法的一优选实施例的地区最小水平主应力栅状图;
图11为按照本发明的非均质地层高精度三维地应力模型建立方法的一优选实施例的地区水平差应力三维模型图;
图12为按照本发明的非均质地层高精度三维地应力模型建立方法的一优选实施例的地区水平差应力栅状图;
图13为按照本发明的非均质地层高精度三维地应力模型建立方法的一优选实施例的模型水平主应力方位的检验结果数据表;
图14为按照本发明的非均质地层高精度三维地应力模型建立方法的一优选实施例的模型水平最大和最小主应力大小的检验结果数据表。
【具体实施方式】
[0021]下面结合附图和【具体实施方式】对本发明作详细说明,以下描述仅作为示范和解释,并不对本发明作任何形式上的限制。
[0022]非均质地层高精度三维地应力模型建立方法包括如下四个步骤:
步骤一,利用钻井、测井和三维地震资料建立非均质性地层三维格架模型;
步骤二,利用三维地震资料反演和测井资料建立非均质性地层三维岩石物理参数模型;
步骤三,进行非均质性地层高精度地应力空间分布规律的三维有限元数值模拟计算; 步骤四,建立非均质性地层高精度的三维地应力分布模型;
该方法是基于单井测井地应力计算结果作为井点控制、基于三维岩石物理参数模型的有限元数值模拟结果作为井间控制的非均质性地层高精度三维地应力模型建立方法;该非均质地层高精度三维地应力模型建立方法,基于单井测井地应力计算结果作为井点控制以及基于三维岩石物理参数模型的有限元数值模拟结果作为井间控制的非均质性地层三维地应力模型建立方法,可以有效地实现非均质地层高精度的三维地应力分布模型的建立,大大提高了非均质地层地应力三维地质模型的精度,可以广泛应用于我国致密低渗透储层和非常规油气储层的高精度地应力三维地质模型建立中,为我国致密低渗透油气田高效合理开发和非常规油气的勘探开发提供了技术支持。
[0023]将上述非均质地层高精度三维地应力模型建立方法应用于一致密低渗透非均质地层,实现这一致密低渗透非均质地层高精度地应力三维地质模型的建立。这一致密低渗透非均质地层高精度地应力三维地质模型的建立流程图如图1所示,模型和数据图如图2至14所示。
[0024]如图1所示,一致密低渗透非均质地层高精度地应力三维地质模型的建立过程:利用该地质层的三维地震资料、测井资料、样品测试和压裂等其他资料来建立这一致密低渗透非均质性地层三维格架模型;然后利用这一地质层的三维地震资料反演和测井资料建立非均质性地层三维岩石物理参数模型;接下来进行这一地质层非均质性地层高精度地应力空间分布规律的三维有限元数值模拟计算;再接下来就是建立非均质性地层高精度的三维地应力分布模型;该致密低渗透非均质地层高精度地应力三维地质模型的建立过程结束。
[0025]在上述过程中,基于单井测井地应力计算结果作为井点控制、基于三维岩石物理参数模型的有限元数值模拟结果作为井间控制的非均质性地层高精度三维地应力模型建立方法,第一步,利用钻井、测井和地震资料,在小层划分对比和构造精细解释的基础上,建立这一致密低渗透非均质地层的三维格架模型,这是建立这一致密低渗透非均质地层的地应力分布三维地质模型的基础;第二步,在岩心样品静态岩石物理参数测试和动态岩石物理参数测试及其对比和校正的基础上,利用测井资料进行单井岩石力学参数(弹性模量、泊松比),如图2所示,通过测井约束下的三维地震资料反演,利用三维地震资料计算和预测非均质性地层岩石力学参数(弹性模量、泊松比)的三维分布,建立这一致密低渗透非均质性地层的三维岩石物理参数(弹性模量、泊松比)模型,如图3和图4所示的这一致密低渗透非均质地层的利用三维地震资料建立的岩石弹性模量三维模型图(部分)和利用三维地震资料建立的岩石泊松比三维模型图(部分);第三步,进行地应力分布的三维有限元数值模拟计算,在利用压裂资料和岩心样品地应力测试的基础上,利用测井资料进行单井地应力(垂向应力、水平最大主应力、水平最小主应力)计算和校正,如图2和图5所示的这一致密低渗透非均质地层利用测井资料计算的单井岩石物理参数(即杨氏模量、泊松比)和地应力(即最大水平主应力、最小水平主应力)纵向分布和压裂与测井地应力计算结果关系;应用三维地震资料建立的三维岩石物理参数模型输入三维有限元数值模拟系统,并通过校正以后的单井地应力计算结果进行井点约束,利用三维有限元数值模拟技术,计算和预测这一致密低渗透非均质地层的地应力三维展布规律;第四步,建立非均质性地层高精度的三维地应力分布模型,在这一致密低渗透非均质性地层三维格架模型的基础上,利用单井测井地应力计算结果作为井点控制,利用三维有限元数值模拟技术计算和预测的三维地应力分布数据进行井间约束,采用确定性建模和随机建模相结合的方法,建立这一致密低渗透非均质性地层高精度的三维地应力分布模型,如图6的这一致密低渗透非均质地层水平最大和最小主应力方位图、图7的这一致密低渗透非均质地层最大水平主应力三维模型图、图8的这一致密低渗透非均质地层最大水平主应力栅状图、图9的这一致密低渗透非均质地层最小水平主应力三维模型图、图10的这一致密低渗透非均质地层最小水平主应力栅状图、图11的这一致密低渗透非均质地层水平差应力三维模型图及图12的这一致密低渗透非均质地层水平差应力栅状图所示。
[0026]如图1至图14所示,采用非均质地层高精度三维地应力模型建立方法,可以成功地实现一致密低渗透非均质地层高精度地应力三维地质模型的建立,完成后,通过与利用井径崩落法和诱导裂缝法解释的单井地应力方向进行检验对比,地应力方向的平均误差为4.3%,如图13和图14所示。通过与利用压裂资料校正以后的测井地应力计算结果对比检验,其最大主应力平均误差为6.75%,最小主应力平均误差为7.1%,取得了较好的效果,反映本发明方法建立的高精度地应力三维分布模型具有较好的可信度,能够满足致密低渗透和非常规油气勘探开发的需求,为该地区油气勘探开发提供了可靠依据,从而可有效地降低勘探开发风险成本。
[0027]以上所述仅是对本发明的优选实施方式进行描述,并非是对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通工程技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明的权利要求书确定的保护范围内。
【主权项】
1.一种非均质地层高精度三维地应力模型建立方法,该方法包括如下步骤: 步骤一,利用钻井、测井和三维地震资料建立非均质性地层三维格架模型; 步骤二,利用三维地震资料反演和测井资料建立非均质性地层三维岩石物理参数模型; 步骤三,进行非均质性地层高精度地应力空间分布规律的三维有限元数值模拟计算; 步骤四,建立非均质性地层高精度的三维地应力分布模型。2.如权利要求1所述的非均质地层高精度三维地应力模型建立方法,其特征在于:在所述步骤一中,利用钻井、测井和地震资料,在小层划分对比和构造精细解释的基础上建立非均质地层的三维格架模型。3.如权利要求1或2所述的非均质地层高精度三维地应力模型建立方法,其特征在于:在所述步骤一中,建立非均质地层的三维格架模型是建立非均质地层的地应力分布三维地质模型的基础。4.如权利要求1或2所述的非均质地层高精度三维地应力模型建立方法,其特征在于:在所述步骤一中,建立非均质性地层三维格架模型利用的资料还包括样品测试、压裂资料。5.如权利要求1所述的非均质地层高精度三维地应力模型建立方法,其特征在于:在所述步骤二中,在岩心样品静态岩石物理参数测试和动态岩石物理参数测试及其对比和校正的基础上,利用测井资料进行单井岩石力学参数建立非均质性地层三维岩石物理参数模型。6.如权利要求1或5所述的非均质地层高精度三维地应力模型建立方法,其特征在于:在所述步骤二中,通过测井约束下的三维地震资料反演,利用三维地震资料计算和预测非均质性地层岩石力学参数的三维分布,建立非均质性地层的三维岩石物理参数模型。7.如权利要求6所述的非均质地层高精度三维地应力模型建立方法,其特征在于:在所述步骤二中,非均质性地层三维岩石物理参数包括弹性模量和泊松比。8.如权利要求5所述的非均质地层高精度三维地应力模型建立方法,其特征在于:在所述步骤二中,非均质性地层三维地震资料包括横波时差和纵波时差。9.如权利要求1所述的非均质地层高精度三维地应力模型建立方法,其特征在于:在所述步骤三中,在利用压裂资料和岩心样品地应力测试的基础上,利用测井资料进行单井地应力计算和校正。10.如权利要求1或9所述的非均质地层高精度三维地应力模型建立方法,其特征在于:在所述步骤三中,应用三维地震资料建立的三维岩石物理参数模型输入三维有限元数值模拟系统,并通过校正以后的单井地应力计算结果进行井点约束,利用三维有限元数值模拟技术,计算和预测非均质地层的地应力三维展布规律。
【文档编号】E21B49/00GK106014399SQ201610377777
【公开日】2016年10月12日
【申请日】2016年5月31日
【发明人】曾联波, 祖克威, 刘国平
【申请人】中国石油大学(北京)
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1