涡卷式压缩机的制作方法

文档序号:5453411阅读:223来源:国知局
专利名称:涡卷式压缩机的制作方法
技术领域
本发明涉及涡卷式压缩机,具体涉及一种提高固定涡卷和可动涡卷间的密封性、抑制内部泄漏的涡卷式压缩机。
背景技术
作为以往的涡卷式压缩机的一个例子,对在日本专利特开平6-330864号公报中记载的有关涡卷式压缩机进行说明。
参考图8,在涡卷式压缩机外壳101内的上部装有可动涡卷103和固定涡卷102。可动涡卷103的镜板上突设有可动涡卷齿132。固定涡卷102的镜板上突设有固定涡卷齿122。可动涡卷齿132和固定涡卷齿122啮合形成压缩室。
在固定涡卷102的外周部分设有吸入口180以将吸入管107来的制冷剂气体吸到压缩室。在固定涡卷102的中央附近,形成为排出被压缩的高压制冷剂气体的排出口123。
在外壳101内的下部设有电动机104。从电动机104延设的驱动轴141由固定在可动涡卷103下方的轴承座105上的轴承支承。驱动轴141上端部分插嵌在设于可动涡卷103的镜板131上的轮毂部133中。
轴承座105和可动涡103卷间形成背压室109。高压(排出压力)作用在此背压室109上。在可动涡卷103和轴承座105间设有密封圈170。
密封圈170密封配置有高压的背压室109及可动涡卷103和固定涡卷102的低压(吸入压力)的空间。为此,从密封圈170内侧的可动涡卷103的镜板131背面有排出压力作用,从密封圈170外侧的背面有吸入压力作用。
为防止过压缩、使压缩中的压缩室制冷剂气体排出到排出室101A,在固定涡卷102的镜板121上设有减压口110和减压阀111。
另外,复盖在排出口123上部的盖体124用固定螺栓安装在固定涡卷102上。盖体124连接固定在外壳101内上部的支撑板106。支撑板106上设有与排出口123连通的连通孔161。
连通孔161通过通道101C连通开口的外壳101的排出室101A和轴承座105下方的空间101B。
在空间101B中开有用于从外壳101送出高压制冷剂气体的排出管108。
以下说明上述涡卷式压缩机的动作。
随着电动机104转动,可动涡卷103相对于固定涡卷102公转驱动,由可动涡卷齿132和固定涡卷齿122形成的压缩室从外周部向中心部涡卷状地一边收缩一边移动。
根据此动作,由吸入管107来经吸入口180送至压缩室的低压制冷剂气体被压缩后变成高压制冷剂气体。高压制冷剂气体从排出口123排出。从排出口123排出的制冷剂气体经过连通孔161、排出室101A及通道101C流到空间101B。流入空间101B的制冷剂气体由排出管108排出外壳101。
以下说明以上作用于可动涡卷103的镜板131的压力。在镜板131上一面受到从压缩室内的流体压力作用、另一面受到背面压力作用。图9是相对于镜板131的位置压缩室内压力分布和背面压力分布模式示图。
如上所述,压缩室从外周部向中心部涡卷状地一边收缩一边移动。为此,随着从吸入行程中的最外圆周的压力室经过压缩中的压缩室到排出行程的压缩室,压缩室的压力在上升。
因此,在吸入行程中的压缩室的压力成为最低的吸入压力Ps、在排出行程中的压力成为最高的排出压力Pd。压缩中的压缩室压力成为吸入压力Ps和排出压力Pd间的压力Pm。
因此,基于以上压力在可动涡卷103的镜板131上作用使可动涡卷和固定涡卷分离的力(分离力)。
如上所述,在镜板131上,排出压力Pd作用在镜板131的背面密封圈170内侧范围,吸入压力Ps作用在外侧范围。
因此,基于以上压力,可动涡卷103的镜板131上作用与分离力反向的、将可动涡卷103推向固定涡卷102侧的力(推力)。
以标准的运转压力比运转涡卷式压缩机时,压力分布如图9所示。因此这时得到比分离力充足的推力,从而防止可动涡卷103与固定涡卷102分离。因此由于各个涡卷齿122、132与各自的镜板121、131密封,故可抑制内部泄漏。
另外,运转压力比是在涡卷式压缩机中取决于包括蒸发器和冷凝器取的冷冻循环的压力比,具体是蒸发压力决定的吸入压力Ps除以冷凝压力决定的排出压力Pd的值。
标准的运转压力比的值以取决于各涡卷齿122、132的设计压力比同一水平为好,具体值在大约2-5的范围。
如上所述,涡卷式压缩机在以标准的压力比运转时,得到比分离力充足的推力,能防止内部泄漏。
但是,在运转压力比的值小于2时的运转场合,有以下问题。这样的运转压力比是比设计压力比小,具体是吸入压力Ps相对于比排出压力Pd高、排出压力Pd相对于比吸入压力Ps低的场合。因此,这时因排出压力下降,在压缩中的压缩室压力有时比排出压力高。
现说明这种在低运转压力比时相对于镜板131的位置压缩室内的压力分布和背面压力分布。如

图10所示,在吸入行程中压缩室压力为最低的吸入压力Ps,压缩中的压缩室压力为最高压力Pm。排出行程中的压缩室压力为吸入压力Ps和压力Pm间的排出压力Pd。根据这些压力,在镜板131上作用有分离力。
另一方面,在密封圈170内侧范围作为背压的排出压力Pd作用在镜板131上、在外侧范围有吸入压力Ps作用在镜板131上,根据这些压力在镜板131上作用推力。
分离力和推力相比,因排出压力Pd比压缩中的压力Pm低,相对于分离力,推力变得不足。为此各涡卷齿122、132与各自镜板121、131不能良好地密封而产生从高压侧的压缩室向低压侧的压缩室的内部泄漏。
另外,上述涡卷式压缩机中,在压缩中的压缩室中,达到所定压力以上(过压缩)时,打开减压阀111,将在压缩室的制冷剂气体经减压口110流至排出室101A。因此压缩中的压缩室压力可降到排出压力Pd。
然而,与减压口110连通的压缩室后(外侧)相连的压缩室的压力达到比吸入压力Ps高的状态。为此,与减压口110连通的压缩室压力不能降到排出压力Pd的程度,不仅相对于分离力其推力不足、还发生内部泄漏。

发明内容
本发明目的是为解决以上问题,提供比分离力更充分的推力、减少内部泄漏的涡卷式压缩机。
本发明的第一种涡卷式压缩机具有固定涡卷和可动涡卷、吸入口、排出口、卸荷部、控制装置和第1背压室。固定涡卷和可动涡卷形成压缩室。吸入口将流体送到压缩室。排出口排出压缩室内压缩的流体。卸荷部是把压缩中的压缩室内流体引向吸入口侧。控制装置是使卸荷部动作。第1背压室设在固定涡卷和可动涡卷的任一个涡卷背面,引导从排出口排出的具有排出压力的气体。控制装置检测计算或预测吸入压力和排出压力,或根据检测、计算或预测的吸入压力和排出压力,将使固定涡卷和可动涡卷分开的分离力与一方涡卷推另一方涡卷的推力相比较,因此,推力相对于分离力不足或将要不足时使卸荷部动作,将压缩中的压缩室内的流体排到吸入口侧。
采用这种涡卷式压缩机,如以低运转压力比运转时发生过压缩现象等且分离力比推力大时,控制部对此栓测并使卸荷部动作而将压缩中的压缩室的流体引导到吸入口侧。因此,即使推力下降,相对于分离力下降还可得到充足的推力,可抑制压缩机内部泄漏。另外,还能缓和过压缩现象。
较佳为在涡卷式压缩机的控制装置中,排出压力和吸入压力可分别由在外壳外面、各自排出流体的排出管和吸入流体的吸入管间连接的蒸发器和冷凝器中流动的流体温度算出。
此时,从蒸发器内流动的流体温度得到的蒸发温度和从冷凝器内流动的流体温度得到的冷凝温度同样可得到各自蒸发压力和冷凝压力。其蒸发压力和冷凝压力分别与吸入压力和排出压力大致相等。据此,可通过测定蒸发器流动的流体温度和冷凝器流动的流体温度容易地求得吸入压力和排出压力。
较佳为涡卷式压缩机的卸荷部具有设在连通压缩中压缩室和吸入口侧的第1通道中、根据排出压力的流体或者吸入压力的流体进行第1通道的开闭动作的第1开闭部,导入吸入压力流体时第1开闭部件打开,导入排出压力流体时第1开闭部件关闭。
此时,通过利用流体压力进行排出压力的流体和吸入压力的流体的切换,可容易地控制第1开闭部件的开闭动作。
较佳为,在设有第1背压室的涡卷背面上还设有引导排出压力流体使其减压的第2背压室。
此时,排出压力的流体被减压、第2背压室内的压力成为排出压力和吸入压力间的压力,因此,与第2背压室的压力是吸入压力的场合相比,得到更加充足的推力、能更有效抑制内部泄漏的发生。而且与第1背压室和第2背压室都变成排出压力的情况相比,因在通常的运转压力比下运转时的推力变小,也不会过分把一方涡卷推向另一方涡卷。
较佳为装有密封第1背压室和第2背压室的密封件。排出压力的流体通过从第1背压室经靠近密封件的间隙流到第2背压室而被减压。
此时不必要有复杂的机构就能容易地使流体减压。
较佳为驱动可动涡卷的电机是可变速电机。
此时,通过提高电动机的转速,能短时间完成如除霜运转。
较佳为具有为直接将压缩中的压缩室内流体导入排出口侧的减压口、设于减压口中途或出口并在压缩中的压缩室内压力比排出口侧高时打开减压口的减压阀。
此时,即使在卸荷部动作且运转压力比非常小时也有过压缩现象发生,这时由于引起过压缩的压缩室流体向排出口侧开放,能缓和过压缩现象。
本发明的第二种涡卷式压缩机具有固定涡卷和可动涡卷、吸入口、排出口、卸荷部和第1背压室。固定涡卷和可动涡卷形成压缩室。吸入口将流体吸入压缩室内。排出口将压缩室里压缩的流体排出。卸荷部是把压缩中的压缩室内流体导入吸入口侧。第1背压室设在固定涡卷和可动涡卷的任一方涡卷背面,引导从排出口排出的具有排出压力的流体。卸荷部包括通过使排出压力作用在活塞的一侧、使吸入压力和弹性力作用在活塞另一侧而进行开闭的开闭部,当排出压力比吸入压力和弹性力小的场合,将压缩室的流体引导至吸入口侧。
采用这种涡卷式压缩机,在以低运转压力比运转时,排出压力下降产生过压缩现象,由于排出压力比吸入压力和弹性力小时开闭部自动打开且卸荷部动作、把压缩中的压缩室流体引导到吸入口侧。因此,即使推力下降、相对于分离力下降也可得到充足的推力、能抑制压缩室内部泄漏。还可缓和过压缩现象。
较佳为在第1背压室设在涡卷背面还设有使排出压力的流体减压并引导的第2背压室。
这时,通过使排出压力的流体减压,第2背压室内压力为排出压力和吸入压力间的压力。因此,第2背压室内压力与吸入压力场合相比能得到更加充足的推力,有效地抑制内部泄漏的发生。另外,与在第1背压室和第2背压室的压力都是排出压力的场合相比,因在通常运转压力比运转场合的推力变小,不会过分地把一方涡卷推向另一方涡卷。
较佳为具有密封第1背压室和第2背压室间的密封件,排出压力的流体从第1背压室通过靠近密封件的间隙流到第2背压室被减压。
此时不必要有复杂的机构就能容易地使流体减压。
附图简要说明图1是表示本发明实施形态1的包括涡卷式压缩机的冷冻循环构造的图。
图2是同一实施形态中图1所示涡卷式压缩机的部分纵剖面图。
图3是表示同一实施形态中控制部的流程的图。
图4是表示同一实施形态中对应于可动涡卷位置的压缩室压力和背压的分布的图。
图5是表示本发明实施形态2的涡卷式压缩机的部分纵剖面图。
图6是表示同一实施形态中对应于可动涡卷压缩室压力和背压的分布的图。
图7是本发明实施形态3的涡卷式压缩机的部分纵剖面图。
图8是以往涡卷式压缩机的部分纵剖面图。
图9是表示以往涡卷式压缩机对应于可动涡卷压缩室压力和背压分布的图。
图10是表示以往涡卷式压缩机中为说明存在问题的对应于可动涡卷压缩室压力和背压分布图。
为实际发明的最佳形态实施形态1现说明本发明的实施形态1中有关涡卷式压缩机。首先说明包含涡卷式压缩机的冷冻循环。参考图1,一般冷冻循环由涡卷式压缩机1、冷凝器35、膨胀阀34及蒸发器33四个主要部件组成。
冷凝器35的一端连接到涡卷式压缩机的排出管21,另一端通过膨胀阀34连接到蒸发器33的一端。蒸发器33的另一端与吸入管20连接。在涡卷式压缩机1中,将由吸入管20吸入的低压制冷剂气体在涡卷压缩部中压缩,再将变成高压的制冷剂气体从排出管21送出。
在涡卷式压缩机1中设有为引导压缩中的制冷剂气体到吸入口侧的卸荷机构11。并设有为使卸荷机构11动作用的控制部31。在蒸发器33和冷凝器35中装有分别为测取在蒸发器33和冷凝器35中流动的气体(制冷剂)的温度的温度传感器37a、37b。把这些温度传感器37a、37b接到控制部31。
在排出管21和吸入管20间设有旁通30。从旁通30管路中分路接到卸荷机构11。
其分路点与吸入管20之间设有为将高压制冷剂气体送到卸荷机构11的电磁阀32。在电磁阀32中输入从控制部31来使其开闭的信号。当电磁阀32关闭时,在排出管21内的排出压力作用在卸荷机构11的活塞的装涡卷侧和对侧部分。电磁阀32打开时吸入压力作用在卸荷机构11的活塞部分。另外旁通30的排出管21和分路间设有减压毛细管36。
以下更详细地说明涡卷式压缩机1。参考图2,在涡卷式压缩机的外壳22内的上部装有可动涡卷4和固定涡卷2。可动涡卷4的镜板4b上,突设有可动涡卷齿4a。固定涡卷2的镜板2b上突设有固定涡卷齿2a。可动涡卷齿4a和固定涡卷齿2a啮合形成压缩室16。
在固定涡卷2的外周部分上设有为将吸入管20送来的制冷剂气体送到压缩室16的吸入口13。在可动涡卷4的中央附近设有为排出压缩成高压的制冷剂气体的排出口9。
从外壳22内的电动机24延设的驱动轴5的上端侧轴承支承在构架6中。驱动轴5的偏心部分5b插嵌在滑动轴衬52内孔中、滑动轴衬52可转动地插入轴承销金属51内表面中,轴承金属51固定在设于可动涡卷4的镜板4b上的轮毂部4c中。
在驱动轴5中形成为引导从排出口9排出的制冷剂的排出气体通道5a和排出气体口(未图示)。并设有为把外壳22内流出的高压制冷剂气体送出外壳22的排出管21。
在构架6和可动涡卷4间形成第1背压室14和第2背压室15。第1背压室14是曲轴室7,容纳轮毂部4和偏心部件5b。第2背压室在第1背压室外周处形成。第1背压室和第2背压室由密封圈8密封。高压(排出压力)作用在第1背压室14上。吸入压力的制冷剂气体经连通孔10流入,第2背压室上而作用吸入压力。
因此,排出压力作用在密封圈8内侧的可动涡卷4的镜板4b的背面上,吸入压力作用在密封圈8外侧的背面上。
在固定涡卷2的镜板2b上设有用于将压缩中的压缩室16a的制冷剂气体引导到吸入口13侧的卸荷机构11。在镜板2b上设有用于连接通过圆顶22a内空间的压缩室16a和吸入口13侧的通道12a、12b。通道12a的中间形成气缸11a,里面装有活塞11b。该活塞11b的一侧设有弹簧11c,活塞11b的另一侧连接从旁通30分出的管道。
以下说明有关上述涡卷式压缩机的动作。
随着电动机24的转动,使可动涡卷4相对于固定涡卷2公转驱动,由可动涡卷齿4a和固定涡卷齿2a形成的压缩室16从外周向中心一边作涡卷状收缩一边移动。
由此,从吸入管20经吸入口13向压缩室16送入的低压气体被压缩成高压的制冷剂气体。高压的制冷剂气体从排出口8排出。从排出口8排出的制冷剂气体通过设在驱动轴5中的排气通道5a,并从排气出口(未图示)流到外壳22内。
流到外壳22内的制冷剂气体由排出管21送出外壳101。在涡卷式压缩机中进行这样一系列压缩动作。
以下一系列压缩动作中控制部31的处理按图3表示的流程图详细说明的检测、算出或预测。在控制部31中,步骤S1中进行吸入压力和排出压力的检测、算出或预测。这里,先由设在蒸发器33中的温度传感器33a得到的蒸发温度Te求得蒸发压力Pe。同样根据设在冷凝器35中的传感器37b得到的冷凝温度Tc求得冷凝压力Pc。吸入压力Ps与蒸发压力Pe大致相等。排出压力Pd与冷凝压力Pc大致相等。这样求得吸入压力Ps和排出压力Pd。
然后,根据求得的吸入压力Ps和排出压力Pd,在步骤S2中算出推力和分离力。设排出压力Pd由第1背压室14作用于镜板4b的面积(驱动轴方向的投影面积)为Sd。设吸入压力Ps由第2背压室15作用于镜板4b的面积为Ss1,则推力Fbp可由下式求得。
Fbp=Pd·Sd+Ps·Ss1另一方面,分离力可由作用于各室的压力与其压力作用面积的积的总和求得。也就是设可动涡卷4和固定涡卷2形成的压缩室内压力为Pc、其压力作用于镜板4b的面积(驱动轴方向的投影面积)为Sc、吸入压力Ps作用于镜板4b的面积为Ss2,则分离力Fth可由下式求得。
Fth=∑Pc·Sc+Ps·Ss2另外,压缩室内的压力Pc由下式求得。
Pc=(Vs/Vc)k·Ps这里,Vc是压力为吸入压力Pc时压缩室的体积、Vs是吸入结束时(压缩开始时)的压缩室体积。体积Vc、Vs由涡卷齿根据几何关系决定。K为比热比。根据吸入压力Ps和排出压力Pd、可求得推力Fbp和分离力Fth。
然后在步骤S3中判断分离力是否大于推力。如分离力小于推力则进入步骤S4,向电磁阀32送关闭信号。
另一方面,在步骤S3中,如分离力大于推力则进入步骤S5,向电磁阀32送打开信号。控制部31反复进行有适当周期的这样的处理。
关于涡卷式压缩机的压缩动作,在以标准运转压力比运转时,如现有技术中说明那样,推力相对于分离力是很大的。为此控制部31从步骤3进入步骤4,维持电磁阀32关闭或打开的状态。
此时,由于作为背压的排出压力Pd作用于活塞11b,将活塞11b向下推而使卸荷机构11不动作。因此,推力相对于分离力很大时,保证各涡卷齿2a、4a与镜板2b、4b的密封性,抑制内部泄漏。
以下详细说明涡卷式压缩机在以低运转压力比运转时,发生过压缩现象,分离力大于推力而使卸荷机构11动作的情况。
如前所述,低运转压力比是在运转压力比小于设计压力比的状态下运转,其压力比值在3以下。此时,由于排出压力Pd下降,压缩中的压缩室压力为最高,有时产生过压缩现象。尤其在其值小于2时的运转状态,过压缩现象变得非常显著。
现说明此时作用于可动涡卷4的镜板4b上力的分布情况。首先在镜板4b的背面上,排出压力Pd作用在密封圈8的内侧范围,吸入压力Ps作用在外侧范围。根据这些力在镜板4b上作用推力。因此在低运转压力比时,由于排出压力下降,推力比标准运转压力比小。
另一方面,根据吸入行程中吸入压力Ps、压缩中压力Pm和排出行程中排出压力Pd,分离力作用在镜板4b上。由于排出压力Pd比压缩中的压力Pm低,推力相对于分离力不十分充足。
此时,分离力大于推力时,从控制部31向电磁阀32送打开信号。电磁阀32打开,作为背压的吸入压力Ps作用在活塞11b上。因此,活塞11b因弹簧11c的弹力而上升,使压缩中的压缩室16a和吸入口13侧与通道12a和圆顶22a内腔接通。
图4表示对应于镜板4b位置的压缩室内部压力分布,压缩中压缩室16a内的压力降到吸入压力Ps,分离力下降。
另一方面,在卸荷机构11动作前后,相应于镜板位置的背面压力分布不变。因此,即使推力小,也可通过对应分离力下降而得到充足的推力,使对应的镜板2b、4b上各涡卷齿2a、4a能良好密封而抑制内部泄漏。
另外,根据卸荷机构11动作,由于压缩开始晚,各涡卷齿2a、4a决定的设计压力比也小,能使过压缩减小,涡卷式压缩机运转效率提高。
此外,在控制部31中,为求得吸入压力Ps和排出压力Pd,要测得蒸发温度Te和冷凝温度Tc。其他还可在涡卷式压缩机内和冷冻循环内的所定位置上设置适当的压力传感器,可直接测出吸入压力Ps和排出压力Pd。
在上述控制部31中是根据分离力与推力比较使卸荷机构11动作,考虑到相对于固定涡卷和可动涡卷倾斜时的力距,也可使卸荷机构11动作,现对此作说明。
在上述涡卷式压缩机中,可动涡卷4的镜板4b的一侧形成可动涡卷齿4a,另一侧形成轮毂部4c。这样,公转驱动可动涡卷4的部分离开作用在可动涡卷齿4a的制冷剂气体的压力负荷及作用在可动涡卷4的重心上的离心力的作用点。因此在可动涡卷4上产生相对于固定涡卷2的使可动涡卷4倾斜的力距。
通常,作用在可动涡卷4的推力设定为稍大些,以不仅能抵抗基于压缩室内压力的分离力而且足够能对抗此力距,但在推力不能抵抗此力距时也可控制成使卸荷机构11动作。即在可动涡卷4相对于固定涡卷2倾斜前就使卸荷机构11动作。
因此,由于压缩中的压缩室压力降到吸入压力Ps,此力距变小,防止可动涡卷4相对于固定涡卷2倾斜。其结果能防止因可动涡卷4相对于固定涡卷2的倾斜引起的内部泄漏。
另外,也可对在冷冻循环中的蒸发温度Te和冷凝温度Tc随时间变化的状态进行检测,此后在引起推力不足的运转状态时使卸荷机构11动作。
再者,在上述涡卷式压缩机中,要除霜运转那样吸入压力Ps和排出压力Pd同时低的场合,用控制部31使卸荷机构11动作,以不使排出流量降低、即使低的排出压力也能克服卸荷机构11的弹簧11c的弹力而推下活塞11b,希望将弹簧11c的弹力设定得较小。由于不使卸荷机构11动作,能够防止长时间除霜运转。
实施形态2以下说明本发明的实施形态2的涡卷式压缩机。参考图5,在本涡卷式压缩机中,尤其在第2背压室15中对排出压力Pd减压的中间压力Pmb的制冷剂气体等加以引导。在固定涡卷2上形成用于将第2背压室15的制冷剂气体导入压缩室的通道42,该压缩室压力为吸入压力室16b或涡卷最外周的接近吸入压力的压力。
在通道42中途形成气缸40并装有活塞41。活塞41的一侧装有弹簧43,并作用的吸入压力Ps和弹簧43的弹力。活塞41另一侧作用有作为活塞背压的第2背压室15的压力。
从第1背压室14内的高压制冷剂气体经密封圈旁的间隙减压后流入第2背压室15中。除制冷剂外,也流入供给轮毂部4c的具有大致为排出压力的润滑油。再者,在该涡卷式压缩机中连接有如图1所示的控制部等。
除此以外的构造与实施形态1说明的图1或图2所述涡卷式压缩机相同,同一部分采用相同符号,其说明省略。
该涡卷式压缩机的一系列动作与实施形态1中说明的涡卷式压缩机的压缩动作相同。在该压缩动作中根据控制部31按图3所示流程图作预定的处理。
这里,涡卷式压缩机在标准运转压力比下运转时,如实施形态1说明的那样,因推力相对于分离力很大,卸荷机构11不动作。因此,当推力相对于分离力很大时,可确保各涡卷齿2a、4a和镜板2b、4b的密封性,抑制内部泄漏发生。
以下详细说明当涡卷式压缩机在低运转压力比运转时卸荷机构11的动作。
在本涡卷式压缩机的场合,尤其第1背压室14内的高压制冷剂气体经密封圈8旁的间隙减压后流入第2背压室。由于制冷剂气体的流入,使第2背压室内的压力上升。
因此,当第2背压室内的压力比弹簧43的弹力和作用在活塞41上的吸入压力Ps之和大时,活塞41上升,第1背压室15和吸入压力室16b或者接近涡卷最外周的吸入压力的压力室通过通道42相连。因此第2背压室15内的制冷剂气体流入到压力室16b。
由于制冷剂气体流入吸入压力室16b,使第2背压室内压力下降、活塞41下降从而使通道42关闭。因此制冷剂气体通过密封圈8的间隙流入第2背压室15中。以下反复进行同样的动作,使第2背压室的压力维持在排出压力Pd和吸入压力Ps之间的中间压力Pmb。
涡卷式压缩机以低运转压力比运转时,卸荷机构11动作,将压缩室16a内的制冷剂气体导入吸入口13侧。因此,如图6所示,根据吸入行程中的吸入压力Ps和排出行程中排出压力Pd使分离力作用在镜板4b上。
推力根据第1背压室内的排出压力Pd和第2背压室内的中间压力Pmb作用在另一方的镜板4b上。分离力与实施形态1中涡卷式压缩机的场合实际上相同。然而,推力是第2背压室15内的排出压力pd与吸入压力ps之间的中间压力Pmb。
为此,与对应压力为吸入压力Ps的实施形态1的涡卷式压缩机相比,推力更大,各涡卷齿2a、4a与对向的镜板2b、4b的密封更为良好、能有效的抑制内部泄漏的发生。
另外,在该涡卷式压缩机中,在通过选择弹簧43的弹簧常数适当调整第2背压室15内的压力的同时,通过调整第1背压室14和第2背压室受压面积,尤其在高运转压力比时,能防止推力与分离力相比过分大、压缩效率降低、各涡卷齿2a、4a与对向的镜板2b、4b烧粘等不合适情况。
在该涡卷式压缩机中也考虑了可动涡卷的倾斜力距及除霜运转等并通过卸荷机构11来控制,能得到与实施形态1中说明的同样的效果。
实施形态3在本实施形态中,对能使卸荷机构自动动作的涡卷式压缩机加以说明。
参考图7,卸荷机构11设在固定涡卷2的镜板2b上。在镜板2b上设有经圆顶22a内的空间连接压缩室16a和吸入口侧的通道12d。在通道12d的中途形成气缸11a,内装有活塞11b。
在该活塞11b的一侧装有弹簧11c、并作用有因吸入压力Ps和弹簧11c引起的弹性力。活塞11b的另一侧与排出行程中的压缩室相连,并作用有作为活塞背压的排出压力Pd。在固定涡卷2上设有第2背压室与吸入口侧连通的通道。其他的结构与实施形态1中说明的涡卷式压缩机相同,相同部件采用相同符号说明从略。
该涡卷式压缩机的一系列压缩动作,也与实施形态1中说明的涡卷式压缩机的压缩动作相同。
该涡卷式压缩机以标准运转压力比运转时,因排出压力Pd较大、根据排出压力Pd和吸入压力Ps的压差作用于活塞11b的受压面上的力比根据弹簧11c的弹性力大。
此时活塞11b位于向着纸面的左端位置,卸荷机构11不动作。因此,压缩室16a处于密封状态,其压力为压缩中的中间压力Pm。
于是,由于推力相对于分离力很大,能确保各涡卷齿2a、4a与镜板2b、4b的密封并抑制内部泄漏发生。
其次,说明涡卷式压缩机以低运转压力比运转时卸荷机构11自动动作的情况。
在低运转压力比运转时,因排出压力Pd下降,压缩中的压缩室压力变为最高,有时会产生过压缩现象。
排出压力Pd由压缩中途压力Pm降低时,因排出压力Pd和吸入压力Ps的压差作用于活塞11b的受压面上的力比弹簧11c的弹力小时,活塞11b向纸面右方自动移动,卸荷机构11动作。因此压缩室16a与吸入口13侧连通、使压缩室16a的压力约等于吸入压力Ps。
此时,作用在可动涡卷4的镜板4b上的压缩室压力分布与图3相同。
另一方面,在作用于镜板4b的背面室压力分布中,如实施形态1中说明的那样,在密封圈8内侧范围受排出压力Pd作用,外侧范围受吸入压力Ps作用。镜板4b上受这些力的推力作用,此推力在卸荷机构11动作前后不变化。
这样压缩室16a内压力Pm降到吸入压力Ps,分离力也下降。而且由于压缩室16a内的压力下降,也使过压缩现象得到缓和。
因此,即使推力低,通过分离力下降可得到相对充足的推力,能使各涡卷齿2a、4a与对向的镜板2b、4b上良好地密封并抑制内部泄漏发生。
然而,作为该卸荷机构11中的弹簧11c则希望弹性力较小,现说明如下。
例如在除霜运转时,排出压力Pd和吸入压力Ps都低时,弹簧的弹性力根据比这些压力的力大,变成由弹簧的弹性力控制。
此时,如运转压力比大,而且根据弹簧的弹力使活塞11b自动地向纸面的右端移动,卸荷机构11动作。
这样,需要长时间的除霜运转。而且此时按转换器控制进行高速运转时,因在除霜运转中排出量少,必须使电动机非常高速地运转,从而产生电动机的可靠性、噪音和振动问题。
这里,在低运转压力比运转下各涡卷齿2a、4a与对向镜板2b、4b分离力不大时,作为弹簧11c希望选择具有使卸荷机构11不动作的小的弹性力。
因设有这样的弹簧11c,在除霜运转时,也能使卸荷机构11不动作,可短时间结束除霜运转。
还有,如实施形态2中说明的涡卷式压缩机那样,也可设置为在第2背压室15中,在经密封圈8的间隙使第1背压室14内的流体减压、引导的同时,将第2背压室15内的压力保持为吸入压力Ps和排出压力Pd间的压力的机构。
在该场合,与第2背压室15对应的背压变大、推力变得更大、各涡卷齿2a、4a与对向的镜板2b、4b更加良好地密封,能有效地抑制内部泄漏的发生。
另外,以上各实施形态中,已说明了把可动涡卷推向固定涡卷侧的情况,对于将固定涡卷推向可动涡卷侧的结构,也可根据上述设置控制部和卸荷机构,来抑制内部泄漏。
还有,在上述各涡卷式压缩机中,像以往涡卷式压缩机那样,也可设置向排出口侧开放压缩中的压缩室制冷剂气体的减压口和减压阀(均未图示)。
在由减压口和减压阀抑制过压缩的同时,经通道12a、12d在压缩室后(外侧)继续的压缩室由卸荷机构11降到吸入压力,相对于分离力得到充足的推力、能比以往的涡卷式压缩机更能抑制内部泄漏的发生。
还有,即使卸荷机构11动作,在运转压力比非常小时,也会发生过压缩现象,此时把过压缩的压缩室制冷剂气体排放到排出口13侧,可更加缓和过压缩现象。
再则,用变速电机(转换器控制)驱动涡卷式压缩机,卸荷机构不动作、由于除霜运转时电机转速上升、使涡卷式压缩机的排量增加,可较短时间结束除霜。
另外,一般在运转压力比低时,冷冻空调机中热负荷也小,涡卷式压缩机的排出量小,从耗电小的观点来说是好的,在本涡卷式压缩机中,根据转换器控制使电动机24转速降低,而且通过使卸荷机构11动作得到合适的排出量,能使过压缩减小、效率提高。
再则,在各实施形态中,对卸荷机构设有把压缩中的压缩室16a和吸入压缩室或吸入口侧连接的通道作了说明,此通道从涡卷最外周形成的压缩开始状态的空间连通到已进行压缩状态的空间,预压缩损失可望抑制为最小。
以上对本发明实施形态进行了说明,但并不限于上述实施形态。本发明的范围不仅是以上说明而由权利要求的范围表示,并包括与权利要求范围相同的意图和所有的变更。
工业上利用的可能性本发明有效地适用于减少涡卷式压缩机内部泄漏的结构。
权利要求
1.一种涡卷式压缩机,具有包括形成压缩室(16、16a)的固定涡卷(2)及可动涡卷(4),将流体吸入到所述压缩室(16、16a)的吸入口(13),排出在所述压缩室(16、16a)中压缩的流体的排出口(9),将压缩中的压缩室(16a)中流体引导到所述吸入口(13)的卸荷部(11),使所述卸荷部(11)动作的控制装置(31),及设于所述固定涡卷(2)和所述可动涡卷(4)的任一方涡卷背面、引导从所述排出口(9)排出的有排出压力的流体的第1背压室(14),其特征在于,所述控制装置(31)对所述吸入压力和所述排出压力进行检测、算出或预测,根据检测、算出或预测所述吸入压力和所述排出压力,将使固定涡卷(2)与可动涡卷(4)分离的分离力与将一方涡卷推向另一方涡卷的推力进行比较,所述推力相对于所述分离力不足或即将不足时,使所述卸荷部件(11)动作,并将压缩中的所述压缩室(16a)内的流体向所述吸入口(13)侧开放。
2.如权利要求1所述的涡卷式压缩机,其特征在于,在所述控制装置(31)中,所述排出压力和吸入压力分别由在外壳(22)的外面的送出排出流体的排出管(21)和接收流体的吸入管(20)间连接的蒸发器(33)和冷凝器(35)中流动的流体的温度算出或预测。
3.如权利要求1所述的涡卷式压缩机,其特征在于,所述卸荷部件(11)具有设在连通压缩中的所述压缩室(16a)和所述吸入口(13)侧的第1通道(12a、12b)的中间、用于进行所述排出压力的流体或所述吸入压力的流体的所述通道(12a)开闭动作的第1开闭部件(11),所述第1开闭部件(11)通过将所述吸入压力的流体导入所述第1开闭部件(11)打开,所述第1开闭部件(11)通过将所述排出压力的流体导入所述第1开闭部件(11)关闭。
4.如权利要求1所述的涡卷式压缩机,其特征在于,在所述任一个涡卷背面上还装有引导所述排出压力的流体减压的第2背压室(15)。
5.如权利要求4所述的涡卷式压缩机,其特征在于,在所述第1背压室(14)和所述第2背压室(15)间装有密封件(8),所述排出压力的流体通过从所述第1背压室(14)通过密封件(8)旁的间隙流到所述第2背压室(15)而减压。
6.如权利要求1所述的涡卷式压缩机,其特征工于,驱动所述可动涡卷(4)的电机(24)是可变速电机。
7.如权利要求1所述的涡卷式压缩机,其特征在于,具有将压缩中的所述压缩室内流体直接引到所述排出口(9)侧的减压口、设于所述减压口中途或出口、并在压缩中的所述压缩室内压力比所述排出口(9)侧压力高时打开所述减压口的减压阀。
8.一种涡卷式压缩机,具有用于形成压缩室(16,16a)的固定涡卷(2)和可动涡卷(4),将流体吸入所述压缩室(16、16a)用的吸入口(13),排出在所述压缩室(16、16a)中压缩的流体用的排出口(9),将压缩中的压缩室(16a)内的流体引导到所述吸入口(13)侧的卸荷部(11),以及设于所述固定涡卷(2)和所述可动涡卷(4)任一方涡卷背面、引导从所述排出口(9)排出的有排出压力的流体的第1背压室(14),其特征在于,所述卸荷部件(11)包括通过使排出压力作用在活塞部件(11b)的一侧,使吸入压力和弹性力作用在另一侧进行开闭的开闭部(11),排出压力比吸入压力和弹性力小时,所述开闭部(11)打开,所述压缩室(16a)的流体向所述吸入口(13)侧开放。
9.如权利要求8所述的涡卷式压缩机,其特征在于,所述任何一方涡卷背面上还装有引导所述排出压力的流体减压的第2背压室(15)。
10.如权利要求9所述的涡卷式压缩机,其特征在于,所述第1背压室(14)和第2背压室(15)间装有密封用的密封件(8),所述排出压力的流体通过从所述第1背压室(14)通过所述密封件(8)旁的间隙流到所述第2背压室(15)而减压。
全文摘要
由固定涡卷(2)和可动涡卷(4)形成压缩室(16)。在可动涡卷(4)的背面形成第1背压室(14)。在第1背压室中引导排出压力的流体。设有用于将压缩中的压缩室(16a)的制冷剂气体导入吸入口(13)侧的卸荷机构(11)。设有控制卸荷机构(11)用的控制部(31)。分离力大于推力时,由控制部对其检测后使卸荷部动作,并将压缩中的压缩室的流体引导至吸入口侧,因此,即使推力下降,也可通过分离力下降也得到相对充分的推力,能得到内部泄漏减少的涡卷式压缩机。
文档编号F04C28/00GK1339088SQ00803512
公开日2002年3月6日 申请日期2000年10月4日 优先权日1999年12月6日
发明者芝本祥孝, 梶原幹央, 北浦洋, 石黑傑 申请人:大金工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1