专利名称:压缩机的制作方法
技术领域:
本发明涉及涡旋式压缩机,特别是,涉及限制将高压油导入固定涡旋盘与可动涡旋盘的镜板之间的推力轴承中的高压油导入通道中的给油量的方法。
背景技术:
以往,作为用冷冻循环压缩致冷剂的压缩机的例子,例如,可以使用专利文献特开平5-312156号公报所揭示的涡旋式压缩机。涡旋式压缩机在机壳内具有凸出设置的、互相啮合的涡旋状涡卷的固定涡旋盘和可动涡旋盘的压缩机构。固定涡旋盘固定在机壳上,可动涡旋盘则连接在驱动轴的偏心轴部分上。
此外,可动涡旋盘只相对于固定涡旋盘进行公转,而不进行自转。通过这种公转,减少在两个涡卷之间形成的压缩室的容积,压缩其内部的致冷剂。
可是,在这种涡旋式压缩机中,由于致冷剂的压缩,在可动涡旋盘上作用着轴向力,即推力载荷,以及与其垂直相交的横向力,即径向载荷。其中的推力载荷作用在固定涡旋盘和可动涡旋盘的镜板之间的推力轴承上,具有使可动涡旋盘离开固定涡旋盘。为抵抗这种推力载荷,例如,在可动涡旋盘的镜板背面一侧设置了用密封环隔开来的高压气体室,和供应从高压油供应装置过来的高压油的高压油工作空间(油室)。借助于在这个油室中的高压油的压力和高压气体的压力所形成的背压,对可动涡旋盘施加压向固定涡旋盘的压紧力。
此时,上述压紧力很小,作用在可动涡旋盘上的力的合力的矢量常常是通过推力轴承外圆周的外侧。在这种情况下,即,由于所谓倾覆力矩的作用,可动涡旋盘倾斜(倾覆),产生了致冷剂泄漏、效率降低的问题。
为了解决这个问题,常常是把施加在可动涡旋盘上的背压增加到规定的压力以上。虽然这种背压所产生的压紧力受到密封环的尺寸的制约,并决定于倾覆限度的设定,但是,在高速运转时,也常常会发生压紧力过大的情形。因此,提出了把高压油导入固定涡旋盘与可动涡旋盘之间的推力轴承中,以减小压紧力的结构。
可是,本来,在上述推力轴承上只有很小的一点间隙,这个间隙就成了高压油的流动阻力。可是,即使是以上那样的技术方案,在压缩前与压缩后的致冷剂的压力差较小的低压差运转时,仍然有可动涡旋盘倾覆的可能性。在发生这种倾覆的情况下,对推力轴承的润滑油的流动阻力消失了,大量润滑油从高压油供应装置流入上述压缩室内。由于吸入这些润滑油,压缩室会发生过热,压缩机的性能大幅度降低。当润滑油的流量进一步增加时,就会产生划分压缩室的涡卷破损的问题。
此外,还有必要通过调节从高压油供应装置流入推力轴承中的油量,以便在提高压缩室内的密封效果与因吸入加热而产生的性能恶化之间寻求平衡。
因此,考虑过借助于在高压油导入通道中设置节流孔之类的节流机构,或者设置毛细管之类的增加阻力的管子,以便经常性的适当限制所通过的润滑油的流量。
可是,在这种情况下,在设置上述节流孔时,例如,必须在高压油导入通道中设置直径为0.6mm以下的若干个并排的节流孔,才能获得充分的节流效果。即使这样,如果在润滑油中混入杂质的话,就很容易把节流孔堵塞。
另一方面,当设置上述毛细管时,为了能获得很充分的节流效果,需要使毛细管本身的长度必须很长。为了确保这样长的长度,就需要必要的空间,而且加工的费用也很高,因而不容易实施。
发明内容
本发明就是有鉴于以上这些问题而提出来的,其目的是,设计一种结构,它不会堵塞高压油导入通道,而且在低压差运转时即使可动涡旋盘倾覆,也不会有大量的润滑油流入压缩室内,不仅不会降低压缩机的性能,而且还能向推力轴承稳定地供油。
为达到上述目的,在第一发明中,提供了一种压缩机,它具有固定涡旋盘24,和与该固定涡旋盘24啮合的可动涡旋盘26,并将该可动涡旋盘26压紧在上述固定涡旋盘24上,使压缩机呈对称型,并且它还具有把从高压油供应装置55排出的润滑油排到上述固定涡旋盘24与可动涡旋盘26的镜板24a、26a之间的推力轴承28上的高压油导入通道60;在上述高压油导入通道60中,插入其外圆周上形成螺旋状通道60a的流量限制部件70。
按照上述结构,把流量限制部件70插入高压油导入通道60中,在这个高压油导入通道60的小小的空间内,就形成了螺旋状通道60a。借助于这条螺旋状通道60a,就能保证充分的通道长度。这样,即使通道的断面积比以往的节流孔大,却仍能获得足够的节流效果。因此,即使有杂质混入高压油中的情况下通道也不会堵塞。
此外,在压缩前与压缩后的致冷剂的压力差很小的低压差运转时,由于可动涡旋盘26倾覆,即使对推力轴承28中的润滑油流动的阻力没有了,仍能借助于流量限制部件70的螺旋状通道60a获得充分的节流效果。这样,就不会有大量的润滑油从高压供油装置55流入压缩室40内。进而,作为流量限制部件70,利用螺旋状通道60a的节距的变化,能很容易地改变流动阻力的大小。结果,就能用减少推力轴承28上的机械损失的适当的力量,把可动涡旋盘26从固定涡旋盘24向着离开它的方向推压。
因此,就不会发生由于润滑油被吸入到压缩室40内所造成的过热而大幅度降低压缩机1的性能,以及构成压缩室40的涡卷24b、26b破损的事情。
在第二发明中,上述高压油导入通道60设置在固定涡旋盘24或者可动涡旋盘26的镜板24a、26a的内部。在这种镜板24a、26a的外圆周面上,开有与高压油导入通道60连通的插入孔64。上述流量限制部件70从这个插入孔64以密封状态插入并固定在高压油导入通道60中。
按照以上的结构,由于流量限制部件70从镜板24a、26a的外圆周面上开口的插入孔64插入并固定在高压油导入通道60中,所以结构简单,成本低。此外,由于流量限制部件70从插入孔64插入并进行了密封,所以高压油不会泄漏到固定涡旋盘24或者可动涡旋盘26的镜板24a、26a的外面来。因此,流量限制部件70能很容易地获得理想的布置和结构。
在第三发明中,在上述流量限制部件70的后端部分上设有直径比插入孔64大的大直径部分74。上述流量限制部件70,由夹在流量限制部件70的大直径部分74与插入孔64的开口周围的镜板24a、24b的外圆周面之间的平面密封件80进行密封。此外,在第四发明中,上述流量限制部件70用设置在流量限制部件70后端部分上的密封部件81密封。另外,在第五发明中,流量控制部件70用拧在流量控制部件70的后端部的插入孔64中的PT螺纹(管用锥形螺纹)来进行密封。借助于以上各个发明中的结构,就能很容易地获得理想的具体实施方式
。
-发明的效果-如上所述,按照第一发明的压缩机,把高压油供应装置供应的润滑油导入用于供应给固定涡旋盘和可动涡旋盘的镜板之间的推力轴承的高压油导入通道中,并把外圆周上形成螺旋状通道的流量限制部件插入其中,采用这样的结构,即使有杂质混入高压油中,通道也不会堵塞。此外,也没有因为润滑油被吸入压缩室中而过热,使得压缩机的性能大幅度降低,或者使构成压缩室的涡卷破损等等的情形。
按照第二发明,把流量限制部件从内部设有高压油导入通道的固定涡旋盘或者可动涡旋盘的镜板外圆周面上的插入孔插入并固定在这条高压油导入通道中,并且与该插入孔之间形成密封状态,就能很容易地获得理想的流量限制部件的具体的布置和结构。
在第三发明中,把流量限制部件做成能借助于夹在其后端部的大直径部分与插入孔的开口周围的镜板外圆周面之间的平面密封件进行密封。在第四发明中,用设置在流量限制部件后端部的密封材料来密封流量限制部件。在第五发明中,用设置在流量限制部件后端的PT螺纹来密封流量限制部件。按照这些发明,都能获得流量限制部件的理想结构。
图1是高压油导入通道的周围部分放大后的剖面图;图2是流量限制部件的整体构造的正视图;图3是本发明的第一实施例的压缩机的正视剖面图;图4是第二实施例的关键结构的放大剖面图;图5是第三实施例的与图4相对应的图。
具体实施例方式
-第一实施例-下面,参照
本发明的第一实施例。
图3表示第一实施例的压缩机1,这种压缩机1连接在致冷剂在其中循环运行、进行冷冻循环运转工作的致冷剂回路(图中未表示)上,对致冷剂进行压缩。
这种压缩机1具有纵向长的圆筒形密闭拱顶型的机壳10。这种机壳10由下列各部分构成压力容器具有上下方向延伸的轴线的圆筒形筒身的机壳主体11;以气密的方式焊接在机壳主体的上端部、结合成一体并具有向上方凸出的凸面的碗状的上壁部分12;以气密的方式焊接在机壳主体11的下端部,结合成一体,并具有向下方凸出的凸面的碗状的底壁部分13;其内部形成空腔。
在上述机壳10的内部容纳了压缩致冷剂的涡旋压缩机构15,和布置在该涡旋压缩机15下方的驱动电机16。上述涡旋压缩机构15与驱动电机16用布置在机壳10内部且向上下方向延伸的驱动轴17连接起来。而且,在涡旋压缩机构15与驱动电机16之间形成了间隙空间18。
上述涡旋压缩机构15具有下列部件上侧敞开且大致呈有底的筒状的收纳部件,即壳体23;布置成紧密连接在该壳体23的上面的固定涡旋盘24;以及布置在上述固定涡旋盘24与壳体23之间,啮合在固定涡旋盘24上的可动涡旋盘26。壳体23的整个外圆周面都压入并固定在机壳主体11中。即,机壳主体11与壳体23的整个圆周紧密接触,呈气密状态。而且,在本实施例1中,机壳10的内部划分成壳体23下方的高压空间30,和壳体23上方的低压空间29,也就是说,压缩机1是所谓的高低压拱顶式的结构。
在上述壳体23上形成了其上面中央凹下的壳体凹部31,和从下面中央向下方延伸的径向轴承部分32。而且,在壳体23上还设有贯穿在上述径向轴承部分32的下端面与壳体凹部31的底面之间的径向轴承孔33。上述驱动轴17的上端部,通过径向轴承34嵌入并支承在这个径向轴承孔33中,能够转动。
在上述机壳10的上壁部12上,以气密的方式贯穿并固定着将致冷剂回路中的致冷剂导入涡旋压缩机构15的吸入管19,此外,在机壳主体11上,则以气密的方式贯穿并固定着将机壳10内的致冷剂排出机壳10外的排出管20。上述吸入管19在上述低压空间29内沿着上下方向延伸,其内端部穿过涡旋压缩机构15的固定涡旋盘24,与后述的压缩室40连通。借助于这根吸入管19把致冷剂吸入压缩室40内。
上述驱动电机16是直流电机,具有固定在机壳10的内壁上的环状定子51,和在该定子51的内侧构成的,能自由转动的转子52。涡旋压缩机构15的可动涡旋盘26通过上述驱动轴17连接在上述转子52上。
上述驱动电机16下方的下部空间保持在高压状态,在与驱动电机下端部相当的底壁部分13的内底部中储存着润滑油。在上述驱动轴17内,形成了作为高压油供应装置的一部分的供油通道55。这条供油通道55与后述的可动涡旋盘26背面上的油室27连通,借助于上述下部空间内气体的压力对润滑油的油面加压,产生高压油。这种高压油,利用与后述的第一空间S1之间的压差被抽吸到油室27中。利用压差抽吸上来的润滑油,通过供油通道55供应给后述的涡旋压缩机构15的各个滑动部分和油室27。
上述固定涡旋盘24由镜板24a,和在该镜板24a的下面形成的涡旋状(渐开线状)的涡卷24b所构成。另一方面,上述可动涡旋盘26则由镜板26a,和在该镜板26a的上面形成的涡旋状(渐开线状)的涡卷26b所构成。而且,上述固定涡旋盘24的涡卷24b与可动涡旋盘26的涡卷26b互相啮合,借此,在固定涡旋盘24与可动涡旋盘26之间的两个涡卷24b、26b的接触部分之间形成了压缩室40。
上述可动涡旋盘26通过十字圆环39支承在壳体23上,在其镜板26a下面的中心部分上设有凸出的有底的圆筒形轮毂部分26c。另一方面,在上述驱动轴17的上端设有偏心轴部17a,这个偏心轴部17a嵌入上述可动涡旋盘26的轮毂部分26c中,能够转动。还有,在上述壳体23的径向轴承部分32下侧的驱动轴17上,设置了为获得可动涡旋盘26和偏心轴部17a等的动平衡用的平衡重部分17b。驱动轴17借助于平衡重部分17b的重量在旋转时获得了平衡,而可动涡旋盘26则在壳体23内部进行公转,但不进行自转。而且,上述压缩室40随着可动涡旋盘26的公转,使得两个涡卷24b、26b之间的容积逐渐向中心部分缩小,以压缩由上述吸入管19吸入的致冷剂。
此外,在上述涡旋压缩机构15中,还形成了横亘固定涡旋盘24和壳体23,连接上述压缩室40与间隙空间18的气体通道(图中未表示)。在压缩室40中经过压缩的致冷剂便通过这条气体通道流入间隙空间18内。
在上述可动涡旋盘26的镜板26a的背面侧(下面侧),在上述可动涡旋盘26的轮毂部分26c与上述驱动轴17的偏心部分17a之间,划分出润滑油室27。这个润滑油室27由上述供油通道55供应高压油。
并且,在上述壳体23的壳体凹部31中,设有借助于弹簧42压接在可动涡旋盘22的镜板22a的背面(下面)上的密封部件43。借助于这个密封部件43,壳体凹部31划分为密封部件43的外径一侧的第一空间S1,和内径一侧的第二空间S2。
在上述第二空间S2中,使得由图中未表示的通道导入的高压气体保持高压。该高压气体的压力与上述润滑油室27的高压油的压力之间的背压,便成为将可动涡旋盘26压向固定涡旋盘24的轴向推压力。因此,这个第二空间S2便构成了对可动涡旋盘26的镜板26a的背面(下面)施加推压力的高压空间,而另一方面,上述第一空间S1则构成了低压空间。
此外,上述固定涡旋盘24和可动涡旋盘26的两块镜板24a、26a的外圆周面处于互相相对的可以滑动接触的状态。这两个滑动面构成了推力轴承28。
如图1所示,在上述可动涡旋盘26的镜板26a的上面,在涡卷26b外圆周一侧的成为推力轴承28的滑动接触面上,形成了环状油槽41。此外,在镜板26的内部,设有高压油导入通道60。这条高压油导入通道60在镜板26a内沿着半径方向延伸,其一端与上述油室27连通,其另一端在上述推力轴承28的滑动接触面的油槽41上开口。从供油通道55过来的润滑油通过上述高压油导入通道60导入油槽41中,通过从这条油槽41向推力轴承28排出润滑油,借助于比朝向上述固定涡旋盘24的上述第二空间S2中的高压气体的压力和润滑油室27中的高压油的压力的背压所造成的推压力小的力,把可动涡旋盘26顶回去。借助于这个顶回去的力可以减小施加在推力轴承28上的轴向力,降低推力轴承28上的机械损失。
此外,如图1中放大后所详细表示的,上述高压油导入通道60具有以下各部分在镜板26a内部沿着半径方向延伸的轴插入部分62;其一端与上述轴插入部分62的镜板中心部分连接而其另一端在镜板背面一侧开口并与上述可动涡旋盘26背面的润滑油室27连通的入口部分61;以及其一端连接在上述轴插入部分62的镜板的外圆周一侧上而其另一端在上述油槽41(推力轴承28的滑动面)上开口的出口部分63。
此外,外圆周上形成螺旋状通道60a的流量限制部件70插入上述高压油导入通道60内。即,在镜板26a上形成了插入孔64,这个插入孔就像是把上述高压油导入通道60的轴插入部分62向镜板的外圆周面上延长。这个插入孔64的一端与轴插入孔62连通,其另一端在镜板26a的外圆周面上开口。在这个插入孔64的内圆周面的开口附近,形成了内螺纹64a,流量限制部件70就从这个插入孔64插入。
如图2所示,上述流量限制部件70具有下列各部分位于高压油导入通道60的轴插入部分62内的前端一侧的主体71;连接在该主体71的后端上并布置成与上述出口部分63相对应的小直径部分72;连接在该小直径部分72的后端并能与上述插入孔64上的内螺纹64a配合的外螺纹部分73;以及连接在该外螺纹部分73的后端且位于镜板26a的外侧而直径大于插入孔64的大直径部分74。在上述主体71的外圆周面上,设有断面呈台形的、连续成螺旋状的螺旋槽71a。此外,上述大直径部分74做成圆盘状,在其外表面上设有与工具结合用的工具结合部分74a。
此外,如图1所示,这种流量限制部件70在从插入孔64的开口插入高压油导入通道60中之后,转动结合在上述工具结合部分74a中的工具,把外螺纹部分73拧在插入孔64的内螺纹64a上,使其连接固定在镜板26a中。此时,在大直径部分74的内表面与插入孔64的开口边缘部分的镜板26a的外圆周表面之间,安装了具有能穿过流量限制部件70的中心孔的圆板状的平面密封件80。借助于这个平面密封件80,把流量限制部件70相对于插入孔64的开口密封住。
接着,说明这种高低压拱顶式压缩机1的运转工作过程。
当启动驱动电机16时,转子52便相对于定子51转动,从而驱动轴17转动。当驱动轴17转动时,涡旋压缩机构15的可动涡旋盘26便相对于固定涡旋盘24作公转,而不进行自转。这样,低压致冷剂便通过吸入管19,从压缩室40的周围吸入压缩室40内。这些致冷剂随着压缩室40容积的变化而被压缩。然后,经过压缩的致冷剂从成为高压的压缩室40中排出,通过气体通道流向间隙空间18。
然后,间隙空间18中的致冷剂流入排出管20中,再排出机壳10的外部。排出到机壳10外的致冷剂,在致冷剂回路中进行循环之后,再次通过吸入管19吸入压缩机1中进行压缩。如此反复地进行致冷剂的循环。
另一方面,说明润滑油的流动。储存在机壳10中的底壁部分13的底部的润滑油,由下部空间内的气体压力进行加压。处于高压下的润滑油,由于与低压空间,即第一空间S1之间有压差,便将高压油通过供油通道55供应给涡旋压缩机构15的各个滑动部分和油室27。
此时,可动涡旋盘26由于导入第二空间S2中的高压气体的压力和在油室27内的高压油的压力所造成的背压,以预定的推压力压向固定涡旋盘24。这种推压力就成了与在压缩室40中由于压缩致冷剂而在可动涡旋盘26上产生的轴向力,即推力载荷相对抗的力。
此外,上述油室27的一部分油,进一步通过可动涡旋盘26的镜板26a内部的高压油导入通道60,供应给在推力轴承28的滑动面上开口的油槽41。利用从这条油槽41排出来的油,以比固定涡旋盘24上的第二空间S2中的高压气体的压力和润滑油室27中的高压油的压力的背压所造成的推压力小的力,把可动涡旋盘26压回去。这样,就能使施加在推力轴承28上的轴向力不会过大,从而能减少在推力轴承28上发生的机械损失。
此时,由于在上述高压油导入通道60中插入了流量限制部件70,所以还能产生以下的作用。即,在这个流量限制部件70的外圆周面的螺旋槽71a与高压油导入通道60的轴插入部分62的内圆周面之间,形成了螺旋状通道60a。这条螺旋状通道60a的断面积很小,但,在高压油导入通道60这样小的空间内却能保持足够的通道长度。因此,即使螺旋状通道60a的断面积比以往的节流孔大,仍能获得充分的节流效果。此外,即使是在高压油中混入了杂质的情况下,通道也不会堵塞。
此外,由于能借助于流量限制部件70上的螺旋状通道60a获得充分的节流效果,所以在用涡旋压缩机构15压缩致冷剂之前和压缩之后的压力差小的压缩机1的低压差运转时,即使可动涡旋盘26倾倒、对推力轴承28中的润滑油的流动阻力没有了,也不会有大量的润滑油从润滑油室27流入压缩室40内。
因此,不会发生由于润滑油吸入压缩室40内温度过高而使压缩机1的性能大幅度地降低,使得构成压缩室40的涡卷24b、26b破损那样的事情。
此外,由于流量限制部件70是从镜板24a、26a的在外圆周面上开口的插入孔64插入并固定在高压油导入通道60中的,所以能降低上述控制上述润滑油的流量的结构的成本。
还有,在流量限制部件70的后端部分上设有大直径部分74,借助于设置在这个大直径部分74与插入孔64的开口边缘的镜板24a、24b的外圆周面之间的表面密封件80,把流量限制部件70密封起来,所以能防止高压油的泄漏。
还有,利用流量限制部件70上不同螺距的螺旋状通道60a,就能很容易地对付流动阻力大小的改变。结果,就能用减少推力轴承28上的机械磨损的适当的力,把可动涡旋盘26向离开固定涡旋盘24的方向推压开去。
-第二实施例-图4表示本发明的第二实施例。第二实施例改变了流量限制部件70的插入孔64和密封件的结构。另外,在以下各实施例中,与图1~图3相同的部分都标以同样的标号,并省略其详细的说明。
即,在第二实施例中,在流量限制部件70的外圆周面与插入孔64的内圆周面之间,是把用粘接剂等构成的密封材料81卷绕在流量限制部件70的螺纹部分73的外圆周面上,再拧入插入孔64的内螺纹64a中进行密封的。另外,在图2中,为便于表示密封材料81,在密封材料上加上了阴影线。其他结构则都与上述第一实施例相同。
因此,在这个实施例中,高压油不会泄漏到可动涡旋盘26的镜板26a的外面来,是能获得与上述第一实施例同样的密封结构的具体例子。
-第三实施例-图5是本发明的第三实施例,第三实施例中的流量限制部件70的螺纹部分73使用了PT螺纹(管用锥形螺纹),把这个PT螺纹拧入插入孔64中,进行密封。由于这种PT螺纹的螺纹部分具有锥面,所以密封性好,高压油不会泄漏到可动涡旋盘26的镜板26a的外面来。
-其它实施例-在上述各种实施例中,都是在机壳10内划分为在壳体23下方的高压空间30,和在壳体23上方的低压空间29的高低压拱顶式压缩机1,但是,把用压缩室40所压缩的致冷剂排到壳体23的上方那样的高低压拱顶式压缩机,也能达到本发明的效果。
此外,在上述各实施例中,作为高压油供应装置55,是利用压差来供应润滑油的,但,如使用离心泵、容积式泵等,也能达到本发明的效果。
此外,在上述各实施例中,把油槽41设置在可动涡旋盘26的镜板26a上,但,也可以把这种油槽设置在固定涡旋盘的镜板上。
此外,在上述各实施例中,在可动涡旋盘26的镜板26a的内部设置了连通润滑油室27到推力轴承28的高压油导入通道60。这种高压油导入通道60也可以是以下那样的结构,即,在固定涡旋盘24的镜板24a或者可动涡旋盘26的镜板26a上形成通向推力轴承28的滑动面的油槽。而且,高压油导入通道可以在壳体23内,从其径向轴承部分32一直延伸到压接在固定涡旋盘24的镜板24a下面的推力轴承28的外侧的壳体23的上面。还有,上述高压油导入通道也可以在固定涡旋盘24的镜板24a内部,从压接在上述壳体23上面的下面一直延伸到在推力轴承28的滑动面上开口的油槽。
如上所述,按照本发明的压缩机可以用于进行冷冻循环的压缩机,特别是,适用于把高压油导入固定涡旋盘与可动涡旋盘的镜板之间的推力轴承中的压缩机。
权利要求
1.一种压缩机,它具有固定涡旋盘(24),和与该固定涡旋盘(24)啮合的可动涡旋盘(26),并将该可动涡旋盘(26)压紧在上述固定涡旋盘(24)上,其特征在于,它具有把从高压油供应装置(55)排出的润滑油排到上述固定涡旋盘(24)与可动涡旋盘(26)的镜板(24a、26a)之间的推力轴承(28)上的高压油导入通道(60);在上述高压油导入通道(60)中,插入外圆周上形成螺旋状通道(60a)的流量限制部件(70)。
2.如权利要求1所述的压缩机,其特征在于,上述高压油导入通道(60)设置在固定涡旋盘(24)或者可动涡旋盘(26)的镜板(24a、26a)内;上述高压油导入通道(60)连通的插入孔(64)开口于上述镜板(24a、26a)的外圆周面;上述流量限制部件(70)以密封状态从上述插入孔(64)插入并固定在高压油导入通道(60)中。
3.如权利要求2所述的压缩机,其特征在于,在上述流量限制部件(70)的后端部上设有比插入孔(64)的直径大的大直径部分(74);上述流量限制部件(70)由夹在流量限制部件(70)的大直径部分(74)与插入孔(64)的开口周围的镜板(24a、24b)的外圆周面之间的表面密封件(80)进行密封。
4.如权利要求2所述的压缩机,其特征在于,上述流量限制部件(70)由设置在流量限制部件(70)的后端部分的密封材料(81)进行密封。
5.如权利要求2所述的压缩机,其特征在于,上述流量限制部件(70)由设置在流量限制部件(70)的后端部分并拧入插入孔(64)中的PT螺纹进行密封。
全文摘要
在可动涡旋盘(26)的镜板(26a)内部,外圆周面上形成了螺旋状通道(60a)的流量限制部件(70),插入用于使从供油通道(55)送来的润滑油导入推力轴承(28)中而设置的高压油导入通道(60)的内部。
文档编号F04C23/00GK1578878SQ0380144
公开日2005年2月9日 申请日期2003年6月18日 优先权日2002年7月29日
发明者山路洋行, 上川隆司, 古庄和宏 申请人:大金工业株式会社