专利名称:双头活塞式压缩机的制作方法
技术领域:
本发明涉及一种例如在车辆空调装置中使用的双头活塞式压缩机,特别是有关降低冷媒气体排出脉动用的结构。
一般,双头活塞式压缩机都带有支撑在壳体内部的驱动轴。壳体带有相互接合的前后一对缸体和位于各缸体的外端,通过阀板进行接合的前和后壳体。在两个缸体之间形成有曲轴室。前壳体及后壳体内部分别形成有吸入室和排出室。各缸体中形成有多个缸孔。前后缸体中的缸孔分别前后对应地配置在同一轴线上。在前后一对缸孔内可往复移动地收容有双头活塞。各缸孔在活塞端面与阀板之间形成压缩室。另外,分别在压缩机的前侧及后侧设置n个压缩室,上述驱动轴上可一体旋转地安装有斜板。斜板用于压缩冷媒气体,将驱动轴的旋转变换为活塞的往复运动。
在压缩运行时,压缩了的冷媒气体从各压缩室向排出室依次排出。排出室内的压力在冷媒气体从压缩室排出时会瞬时变高。因此,排出室内的压力呈周期性变化,也就是说,产生排出脉动。将这种排出脉动通过高速傅里叶变换(FFT)进行解析,得到了从0次到高次的很宽的频率成分。在这些频率成分中,作为主成分的是与单侧压缩室数目n相对应的n次频率成分。该n次频率成分在驱动轴转一圈期间,表示出周期性地产生n次的变动成分。在压缩机按常规的旋转数进行运转时,该n次频率成分与通过压缩机及该压缩机上通过皮带等连接的交流发电机等各种辅机的固有振动频率相近。这样,会由于共振现象而产生噪音,使车辆驾驶室内的噪音级上升。
日本实开昭60-84799号公报揭示了一种带有较低排出脉动结构的压缩机。在该压缩机中,在前侧及后侧双侧排出室上分别连接着具有大致相同长度的管路的根部。该管路的前端开口对着缸体的内部。
在这种压缩机中,具有排出通路功能的两根管路的长度做得大致相同,同时,通过从两根管路排出的冷媒气体的相互中突,来降低排出脉动。但是,要大大降低作为振动及噪音的主要因素的n次频率成分,仅有上述结构是不行的。
即,例如图7(b)所示,从前侧压缩室中排出的冷媒气体的脉动降低率与从后侧压缩室中排出的冷媒气体的脉动降低率不同的情况下,就不能够大大降低n次频率成分。在上述公报的压缩机中,从两根管路(排出通路)排出的冷媒气体在排出消声器等一个室内合流之后送到外部冷媒回路。另外,从两根管中排出的冷媒气体中脉动的n次频率成分的相位互不相同。但是,由于脉动降低率不同的原因,从两根管中排出的冷媒气体中脉动的n次频率成分相互有很大的不同,并且,导入一个室内的冷媒气体的脉动频率成分中共同存在有互相的相位相差很大的两个n次频率成分。因此,在上述公报的压缩机中没有记载有关从前侧及后侧的压缩室中排出冷媒气体的脉动降低率,从而不能大大降低n次频率成分。
本发明的目的是提供一种降低与单侧压缩室数目n相对应的排出脉动的n次频率成分,振动及噪音小的双头活塞式压缩机。
为了实现上述目的,本发明的压缩机具有驱动轴、设置于该驱动轴上的驱动板、设置于上述驱动轴周围的多个第1缸孔、与上述第1缸孔一一对应而设置于驱动轴周围的多个第2缸孔、连接上述驱动板而动作的多个活塞。各活塞可往复运动地收容在各第1缸孔以及与该第1缸孔相对应的第2缸孔内。上述驱动板将驱动轴的旋转变换为活塞的往复运动,各活塞压缩供入第1及第2缸孔内的气体,同时,将该压缩了的气体从第1及第2缸孔内排出。整个缸孔中排出的气体的排出时间互不相同。压缩机具有分别降低第1缸孔中排出的气体的脉动以及第2缸孔中排出的气体的脉动的一对脉动降低机构。两个脉动降低机构以互相大致相同的降低率进行脉动的降低。
图1表示的是将本发明具体化的第1实施例的压缩机整体,是沿图2中1-1线的剖视图;图2是沿图1中2-2线的剖视图;图3是沿图2中3-3线的剖视图;图4是从后侧看前部缸体的视图;图5沿图4中5-5线的剖视图;图6是表示图1的压缩机中脉动降低机构的简图;图7(a)是排出脉动的降低率在压缩机的前侧及后侧相等情况下的说明图;图7(b)是排出脉动的降低率在压缩机的前侧和后侧不同情况下的说明图;图8是表示本发明第2实施例的脉动降低机构的简图9是表示本发明第3实施例的脉动降低机构的简图;图10是表示本发明第4实施例的脉动降低机构的简图;图11是表示本发明第5实施例的脉动降低机构的简图。
下面根据图1-图7说明将本发明具体化的第1实施例。
如图1及图3所示,前缸体21及后缸体22以相对的端面相互接合。在前缸体21的前端面上通过阀板23与前壳体24接合。后缸体22的后端面上通过阀板23与后壳体25相接合。缸体21、22、壳体24、25以及阀板23通过多根螺栓26固定为一体。缸体21、22、壳体24、25以及阀板23形成了压缩机壳体。
在上述两缸体21、22之间形成有曲轴室37。驱动轴38通过一对径向轴承39,可旋转地支撑在两缸体21、22的轴孔21a、22a上。驱动轴38的前端穿过前壳体24的插通孔24a突出于外部。在驱动轴38前端侧外周面与前壳体24的插通孔24a的内周面之间配置有唇形密封件24b。该唇形密封件24b防止了冷媒气体从曲轴室37向压缩机外部泄漏。插通孔24a与上述轴孔21a相连通。驱动轴38通过离合器(图中未示)与车辆发动机等外部驱动源相连接驱动。
如图3及图4所示,各缸体21、22上以相互平行延伸的方式贯通形成有奇数个(本实施例中为5个)缸孔27A、27B。各5个缸孔27A、27B绕着驱动轴38的轴线等角度间隔配置。前后缸体21、22中的缸孔27A、27B分别相对于前后配置在同一轴线上。在前后一对缸孔27A、27B内可往复运动地收容有双头活塞28。各缸孔27A、27B在活塞28的端面和阀板23之间形成压缩室29A、29B。本实施例的压缩机是前侧及后侧分别带有5个压缩室29A、29B的10气缸型压缩机。从10个压缩室29A、29B排出的冷媒气体的排出时间各不相同。
如图2及图3所示,吸入室33、34设置在上述前壳体24及后壳体25内的外周部分上。排出室35、36则位于吸入室33、34的更靠内周一侧地设置在前壳体24及后壳体25的内部。前壳体24及后壳体25的内周面上形成有大致呈环状的分隔壁32。该分隔壁32划分出吸室33、34及排出室35、36。
在上述阀板23上,对应于各缸孔27A、27B形成吸出阀机构30及排出阀机构31。各吸入阀机构30具有将压缩室29A、29B与吸入室33、34相连通的吸入口以及有选择地打开及关闭该吸入口的吸入阀板。各排出阀机构31具有将压缩室29A、29B与排出室35、36相连通的排出口以及有选择地打开及关闭该排出口的排出阀板。
如图3所示,上述驱动轴38的中间部位上嵌合固定着斜板40。该斜板40通过一对滑靴41与上述各活塞28连接。斜板40将驱动轴38的旋转变换为活塞28在缸孔27A、27B内的往复运动。斜板40的轮壳部40A与两缸体21、22的内壁之间配置有一对轴向推力轴承42。作用在斜板40上的轴线方向上的载荷通过轴向推力轴承42由两缸体21、22承受。
如图1至图5所示,吸入通路43为将曲轴室37与吸入室33、34相连接,形成于两缸体21、22及两阀板23上。吸入口44为了将曲轴室37与外部冷媒回路(图中未示)相连接,而形成于后缸体22的上部。油气分离器47及排出消音器49设置在两缸体21、22的上部。排出通路45a、46a为了将排出室35、36与油气分离器47相连接,而形成于两阀板23及两缸体21、22上。排出口50为了将排出消音器49与外部冷媒回路相连接,而形成于后缸体22的上部。
下面对上述油气分离器47进行详述。断面制成圆形的槽孔52沿着驱动轴38的轴线延伸且相互位于同一轴线上地形成于各缸体21、22上。通过两缸体21、22的接合,两个槽孔52形成一个油气分离室52a。油气分离筒45、46从槽孔52的内部底面上向着两缸体21、22的接合面延伸,与缸体21、22形成一体。上述排出通路45a、46a的一部分形成于该分离筒45、46内。排出通路45a、46a的出口以相互接近且面对的方式开口于分离筒45、46前端中的槽孔52(换言之,是油气分离室52a)内。分离筒45、46以及排出通路45a、46a沿着驱动轴38的轴线延伸,同时,相互配置在同一轴线上。
连通孔48在与各分离筒45、46的根部相对应的位置处形成于油气分离室52a和排出消音器49之间的隔壁51上。油气分离室52a通过其连通孔48与排出消音器49相连接。
上述排出室35、36以及排出通路45a、46a具有作为降低压缩室29A、29B排出的冷媒气体脉动的机构的功能。在本实施例中,压缩机前侧排出室35的容积与后侧排出室36的容积相等。而压缩机前侧排出通路45a的长度及截面积分别与后侧排出通路46a的长度及截面积相等。
例如,在压缩机的整体排出容量为100-200cc程度的情况下,各排出室35、36容积最好20-100cc,60-80cc侧更好。各排出通路45a、46a的长度最好为13-60mm,40-50mm则更好。排出通路45a、46a的内径最好为7-12mm,4-6mm则更好。另外,在压缩机整体排出容量都为100-200cc程度的情况下,两分离筒45、46的前端之间的距离最好为3-20mm,5-8mm则更好。
如图1及图4所示,粗糙面53形成于位于油气分离室52a与离该油气分离室52a最近的第1螺栓孔54之间的两缸体21、22的接合端面上。该粗糙面53在相互接合的两缸体21、22之间形成连通油气分离室52a与第1螺栓孔54的小的间隙。第1螺栓孔54的内径比插入该螺栓孔54中的螺栓26的外径要大。这样,在第1螺栓孔54与螺栓26之间形成允许润滑油通过的间隙。
有底桶状的罩57嵌入后缸体22的轴孔22a中。储油室56形成于该罩57的内部,阀板23及后壳体25的中央部。上述第1螺栓孔54通过形成于后缸体22后端面的第1供油槽55与该储油室56相连通。另外,储油室56通过形成于罩57上的通孔58与后缸体22的轴孔22a相连通。这样,储油室56通过配置于通孔58及轴孔22a内的径向轴承39而与曲轴室37相连通。
另外,储油室56通过形成于后缸体22后端面上的第2供油槽59而与位于缸体21、22最下部的第2螺栓孔60相连通。在第2螺栓孔60与插入该孔60中的螺栓26之间形成允许润滑油通过的间隙。该第2螺栓孔60通过形成于前缸体21前端面的第3供油槽61与前缸体21的轴孔21a相连通。这样,上述储油室56附加在后缸体22的轴孔22a上,也与前缸体21的轴孔21a相连通。
下面对上述结构的双头活塞式压缩机的动作进行说明。
通过车辆发动机等外部驱动源一旦使驱动轴38旋转,这种旋转就通过斜板40以及滑靴41变换为活塞28在缸孔27A、27B内的往复运动。随着该活塞28的往复运动,从外部冷媒回路经吸入口44而导入曲轴室37的冷媒气体通过吸入通路43导入两吸入室33、34中。在活塞28从上死点向下死点移动的吸入行程中,随着压缩室29A、29B内的压力的降低,吸入室33、34内的冷媒气体通过吸入阀机构30而吸入到压缩室29A、29B内。在活塞28从下死点向上死点移动的压缩行程中,压缩室29A、29B内的冷媒气体被压缩直到到达预定压力之后,通过排出阀机构31排出到排出室35、36中。排出室35、36内的压缩冷媒气体通过排出通路45a、46a导入油气分离室52a内。
从前侧排出通路45a排出到分离室52a内的冷媒气体与从后侧排出通路46a排出到分离室52a的排出冷媒气体相冲突。冲突后的冷媒气体的气流方向发生反转,一边绕着分离筒45、46的外周面旋转,一边流向连通孔48。该旋转的冷媒气体上所作用的离心力使冷媒气体中所含的雾状润滑油从冷媒气体中分离。这样,不含有润滑油的冷媒气体从分离室52a通过连通孔48排出到排出消声器49内。排出消声器49内的压缩冷媒气体通过排出口50供入到外部冷媒回路上的冷凝器、膨胀阀及蒸发器(均未示出)中,以供车辆室内的空调使用。
上述分离室52a内的压缩冷媒气体的压力是高压。另一方面,上述储油室56中通过通孔58导入曲轴室37内低压(吸入压)。根据该分离室52a内的压力与储油室56内的压力的压差,在分离室52a内分离出的润滑油通过由两缸体21、22的接合面上的粗糙面53所形成的间隙、第1螺栓孔54及第1供油槽45,导入储油室56中暂时储存起来。储油室56内的润滑油通过罩57的通孔58而供入后缸体22的轴孔22a内,对后侧径向轴承39进行润滑及冷却。另外,储油室56内的润滑油通过第2供油槽49、第2螺栓孔60及第3供油槽61供给到前缸体21的轴孔21a内。该润滑油则对前侧径向轴承39及唇形密封24b进行润滑及冷却。
本实施例的压缩机的单侧压缩室29A、29B的数目为5个,因此,压缩机运转时驱动轴38每转一圈从压缩室29A、29B吐出的压缩冷媒气体向各排出室35、36进行5次排出。由此,如图7(a)所示,压缩冷媒气体的排出程度中,各排出室35、36内的压力瞬间变为高压,从而产生所谓的排出脉动。将由各排出室35、36产生的排出脉动通过高速傅里叶变换(FFT)进行解析,得到了从0次到高次范围的很宽的频率成分。在这些频率成分中,作为主成分的是与单侧压缩到29A、29B的数目(5个)相对应的5次频率成分。该5次频率成分在驱动轴38旋转一周期间,表示为5次周期性产生的变动成分。
然而,各压缩室29A、29B内的冷媒气体均是在压缩到达大致相同压力的情况下之后、通过排出阀机构31排出到具有预定容积的排出室35、36中的。排出到排出室35、36中的压缩冷媒气体略微有些膨胀,通过这种膨胀可以降低排出脉动中的5次频率成分。
排出室35、36中的压缩冷媒气体通过具有预定长度及截面积的排出通路45a、46a导入到分离室52a中。压缩冷媒气体在通过排出通路45a、46a时,由于受到阻尼作用而降低了排出脉动中的5次频率成分。
从上述排出通路45a排入到分离室52a中的冷媒气体与从后侧排出通路46a排出到分离室52a内的冷媒气体相冲突。冲突后的冷媒气体其流动方向发生反转。通过这种冲突及流动方向的反转降低了排出脉动中的5次频率成分。这样,降低排出脉动的压缩冷媒气体通过连通孔48从分离室52a中导入到排出消音器49内。
本实施例的压缩机在前侧及后侧分别带有奇数个(5个)压缩室29A、29B,各5个压缩室29A、29B以驱动轴38的轴线为中心等角度间隔配置。这样,驱动轴38每旋转72°(=360°/5个),单侧5个压缩室29A、29B出来的冷媒气体依次排出到排出室35、36中。换言之,由单侧排出室35、36产生的排出脉动中的5次频率成分的峰值表示为驱动轴38每72°旋转产生一次。而由于各活塞28配置在前侧缸孔27A内的上死点上,在驱动轴38旋转180°之后,各活塞28配置在对应的后侧缸孔27B内的上死点上。换言之,由于从前侧各压缩室29A排出的冷媒气体在驱动轴38旋转180°之后,从对应的后侧各压缩室29B中将冷媒气体排出。因此,前侧排出室35产生的排出脉动中的5次频率成分的相位与后侧排出室36产生排出脉动的5次频率成分的相位相对,相差180°。因此,10个压缩室29A、29B中的冷媒气体的排出时间是分别不同的。
另外,在本实施例的压缩机中,如图6的简图所示,前侧排出室35的容积与后侧排出室36的容积相等,并且,前侧排出通路45a的长度及截面积与后侧排出通路46a的长度及截面积分别相等。由此,从前侧压缩室29A排出的冷媒气体的脉动降低率与后侧压缩室29B排出的冷媒气体的脉动降低率大致相等。这样,从前侧及后侧压缩室29A、29B分别排出的冷媒气体在排出消音器49内合流的时刻,来自前侧压缩室29A的冷媒气体的排出脉动中5次频率成分与来自后侧压缩室29B的冷媒气体的排出脉动的5次频率成分大致相同。
这样,在驱动轴38的旋转角度上每72°便有一个峰值,但是有相互180°相位差并且具有大致相同大小的两个5次频率成分在排出消音器49内合成。因此,导入排出消音器49内的冷媒气体的脉动的频率成分中相对于驱动轴38的旋转角度每36°有一个峰值,生成新的10次频率成分。从而使脉动频率成分中的5次频率成分消失。
其结果是,在压缩机及该压缩机中通过皮带而连接的交流发电机等各种辅机的共振现象引起的振动及噪音被降低,从而抑制了车内的噪音级。另外,与排出口50相连接的管路(图中未示)通过脉动而产生共振,这种管路的振动传递到车辆上,通过使脉动的频率成分中5次频率成分消失,而抑制了管路的振动。
将前后排出室35、36的容积作成相等,同时,将前后排出通路45a、46a的长度及截面积也作成相等,这种简单的结构便使得脉动的降低率在压缩机前侧及后侧形成大致相等。这样,以简单的结构便能够抑制脉动中的5次频率成分。
前后排出通路45a、46a的出口以相互接近的状态对置。由此,不受油气分离室52a及排出消音器49的形状的影响,使得从两排出通路45a、46a排出的冷媒气体实现冲突,从而能够降低脉动中的5次频率成分。另外,冲突后的冷媒气体的流动方向由于发生反转,会进一步降低脉动中的5次频率成分。
油气分离器47以与排出通路45a、46a相连接的方式设置。来自两排出通路45a、46a而向分离室52a排出的冷媒气体中所含的润滑油在分离室52a内与冷媒气体相分离并被回收。该回收的润滑油供入到两个径向轴承39及唇形密封件24b中,对它们进行润滑。这样,还提高了两径向轴承39及唇形密封24b的耐久性。
再有,本发明可具体化为以下形式。
(1),图8是本发明的第2实施例。在该实施例中,前侧排出通路45a比后侧排出通路46a长,另外,前侧排出通路45a的截面积比后侧排出通路46a的截面积大。而前侧排出室35的容积则与后侧排出室36的容积相等。
排出通路45a、46a变长的程度或者说排出通路45a、46a截面积变小的程度使得排出通路45a、46a的阻尼作用变大,从而使得脉动的降低率变大。因此,即使在图8所示的第2实施例的结构中,冷媒气体在通过前侧排出通路45a时和通过后侧排出通路46a时,其脉动的降低率大致相等,其结果是使脉动的降低率在压缩机的前侧及后侧大致相等。
(2),图9示出了本发明的第3实施例。在该实施例中,前侧排出室35的容积比后侧排出室36的容积小。另外,前侧排出通路45a的截面积比后侧排出通路46a的截面积小。而前侧排出通路45a的长度与后侧排出通路46a的长度相等。
排出室35、36的容积变大的程度使得从压缩室29A、29B向排出室35、36排出的冷媒气体的膨胀率变大,从而使得脉动的降低率变大。另外,如前所述,排出通路45a、46a的截面积变小的程度使得脉动降低率变大。因此,即使在图9所示的第3实施例的结构中,其结果是也会使脉动的降低率在压缩机的前侧及后侧大致相等。
(3),图10示出了本发明的第4实施例。在该实施例中,前侧排出室35的容积比后侧排出室36的容积要小。另外,前侧排出通路45a比后侧排出通路46a要长。而前侧排出通路45a的截面积与后侧排出通路46a的截面积相等。
如前所述,排出室35、36的容积变大的程度会使脉动的降低率变大,而排出通路45a、46a变长的程度会使脉动降低率变大。因此,在图10所示的第4实施例的结构中,其结果是也会使脉动的降低率在压缩机的前侧及后侧大致相等。
(4),图11示出了本发明的第5实施例。在该实施例中,前侧排出室35的容积比后侧排出室36的容积要小。另外,前侧排出通路45a比后侧排出通路46a要长。另外,前侧排出通路45a的截面积比后侧排出通路46a的截面积要小。
这样,前后排出室35、36的容积不同,同时前后排出通路45a、46a的长度及截面积也不同,其结果是也可以使脉动的降低率在压缩机的前侧及后侧大致相等。
在上述图8-图11所示的第2-第5实施例的结构中,与第1实施例的相同,使排出脉动的5次频率成分消失。特别是在图11所示的第5实施例中,对应于压缩机的排出室35、36及以排出通路45a、46a以外的结构要素的大小及形状或者压缩机的搭载机座的制约等情况,能够对排出室35、36以及排出通路45a、46a的大小及形状作适宜的变更。从而提高了压缩机整体结构的自由度。
(5),在上述第1-第5实施例中,将油气分离器47及由该油气分离器47回收的润滑油供给到轴承等的结构也可以被省略。通过这样的结构可以简化压缩机的结构。
(6),在上述第1-第5实施例中,在各缸体21、22上,也可以设置例如2、4、6个等隅数个缸孔27A、27B。在这种情况下,来自全部压缩室29A、29B的冷媒气体的排出时间作成各不相同,也可以将缸孔27A、27B绕着驱动轴38的轴线不等角度间隔设置。通过这种结构,防止了排出室49内合成的两个n次频率成分中的峰值形成一致。这样,会降低脉动中的n次频率成分,从面抑制振动及噪音。
(7),在上述第1-第5实施例中,也可以将各缸体21、22的缸孔27A、27B的数目作例如3、7个等除5以外的奇数个变更。
(8),也可以将本发明具体化为可变容量型双头活塞式压缩机。
(9),也可以将本发明具体化为不使用斜板,而采用带有波形凸轮面的凸轮板式的双头活塞式压缩机。
权利要求
1.一种双头活塞式压缩机,带有驱动轴(38)、设置于该驱动轴(38)上的驱动板(40)、设置于所述驱动轴(38)周围的多个第1缸孔(27A)、与所述第1缸孔(27A)一对应而设置于驱动轴(38)周围的多个第2缸孔(27B)、连接所述驱动板(40)而动作的多个活塞(28),各活塞(28)可往复运动地收容在各第1缸孔(27A)以及与该第1缸孔(27A)相对应的第2缸孔(27B)内,所述驱动板(40)将驱动轴(38)的旋转变换为活塞(28)的往复运动,各活塞(28)压缩供入第1及第2缸孔(27A、27B)内的气体,同时,将该压缩了的气体从第1及第2缸孔(27A、27B)内排出,整个缸孔(27A、27B)中排出的气体的排出时间互不相同,其特征在于它还具有分别降低第1缸孔(27A)中排出的气体的脉动以及第2缸孔(27B)中排出的气体的脉动的一对脉动降低机构(35、36、45a、46a),两个脉动降低机构(35、36、45a、46a)以互相大致相同的降低率进行脉动的降低。
2.如权利要求1所述的压缩机,其特征在于所述第1及第2缸孔(27A、27B)分别设有奇数个。
3.如权利要求2所述的压缩机,其特征在于所述第1及第2缸孔(27A、27B)分别以驱动轴(38)的轴线为中心等角度间隔配置。
4.如权利要求1-3之一所述的压缩机,其特征在于所述各脉动降低机构具有接受从对应的缸孔(27A、27B)排出的气体用的排出室(35、36)和将气体从排出室(35、36)排出而与该排出室(35、36)相连接的排出通路(45a、46a)。
5.如权利要求4所述的压缩机,其特征在于所述脉动降低机构的排出室(35、36)具有相等的容积,同时,两脉动降低机构的排出通路(45a、46a)具有相等的长度及截面积。
6.如权利要求5所述的压缩机,其特征在于在压缩机的整体排出容量为100-200cc程度的情况下,各排出室(35、36)容积设定为20-100cc,各排出通路(45a、46a)的长度设定为13-60mm,排出通路(45a、46a)的内径设定为7-12mm。
7.如权利要求4所述的压缩机,其特征在于所述两脉动降低机构的排出室(35、36)的容积、排出通路(45a、46a)的长度以及排出通路(45a、46a)的截面积中任一个是互相相等的,而其它两个互不相同。
8.如权利要求4所述的压缩机,其特征在于所述两脉动降低机构的排出室(35、36)具有相互不同的容积,同时两脉动降低机构排出通路(45a、46a)具有互不相同的长度以及截面积。
9.如权利要求4所述的压缩机,其特征在于所述两脉动降低机构的排出通路(45a、46a)具有互相接近且面对的出口。
10.如权利要求9所述的压缩机,其特征在于在压缩机整体排出容量为100-200cc程度的情况下,两排出通路(45a、46a)的出口之间的距离设定为3-20mm。
11.如权利要求9所述的压缩机,其特征在于它还带具有与所述两排出通路(45a、46a)的出口相连接的油气分离器(47),该油气分离器(47)从由两排出通路(45a、46a)排出的气体中将润滑油分离出来。
12.如权利要求11所述的压缩机,其特征在于它还具有接受来自所述油气分离器(47)中气体的排出消音器(49),从两排出通路(45a、46a)排出的气体通过油气分离器(47)在排出消音器(49)内合流。
13.如权利要求12所述的压缩机,其特征在于所述油气分离器(47)还具有与所述两排出通路(45a、46a)的出口相连接的油气分离室(52a),在该油气分离室(52a)内相对配置的一对圆筒(45、46),且各圆筒(45、46)具有带有所述排出通路(45a、46a)的出口的前端以及位于其前端相反一侧的基端,将油气分离室(52a)与所述排出消音器(49)相连接,设置在与各圆筒(45、46)的基端相对应位置处的连通通路(48),并且从两圆筒(45、46)的前端排出的气体在互相冲突之后,绕圆筒(45、46)的周围一边旋转一边朝着连通通路(48)流动。
全文摘要
压缩机的前及后缸体分别具有奇数个缸孔。在前后一对缸孔内收容有双头型活塞。来自所有缸孔的冷媒气体的排出时间互不相同。压缩机具有分别降低从前侧缸孔以及后侧缸孔中排出的气体的脉动的一对脉动降低机构,两个脉动降低机构以互相大致相同的降低率进行脉动的降低。各脉动降低机构带有接受从对应缸孔排出的气体的排出室,以及将气体从排出室排出而与该排出室相连接的排出通路。两脉动降低机构的排出室具有相等的容积。两脉动降低机构的排出通路具有相等的长度及截面积。
文档编号F04B27/10GK1187584SQ97121499
公开日1998年7月15日 申请日期1997年9月29日 优先权日1996年9月30日
发明者中村雅哉, 川村尚登, 山口哲也, 川上素伸, 池田勇人 申请人:株式会社丰田自动织机制作所