专利名称:双重检测式电流传感器的制作方法
技术领域:
本实用新型涉及一种电流传感器,适于检测包括以下方面的直流和交流电流电力电子设备中用于电流反馈、截流控制、稳流调节以及直流侧过流和短路保护中的暂态电流信号检测。
背景技术:
在直流输电系统、变频调速装置、UPS电源、逆变焊机、电解电镀、数控机床、微机监测系统、电网监控系统和需要隔离检测非正弦电流的各个领域中,精确检测和控制非正弦电流,是设备安全可靠运行的根本保证和首先要解决的问题。
Rogowski线圈,它的磁路不含铁芯,是一种特殊结构的空心线圈,亦称空心互感器。由于它的磁路不含铁芯,无饱和问题,暂态性能好,频带宽,受外磁场的影响和被测载流导体的位置影响小,不存在动力和热力的稳定性问题,具有良好的电磁屏蔽特性,与高压回路有良好的绝缘,结构简单,易于加工等优点,配合外部积分电路,能准确地测量因幅值太大或者太高di/dt引起铁芯饱和的暂态电流如脉冲电流,闪电电流。目前广泛用它作为空气绝缘开关和继电保护中,一种简单而有效的测量很大的暂态电流或者高di/dt电流的传感器。但因为Rogowski线圈的磁路不含铁芯,对于被测电流太小(例如≤100A)或者di/dt不大时,由于互感系数太小,从Rogowski线圈中感应获得的电压信号太弱,测量误差较大。因此,必须采取措施提高Rogowski线圈的互感系数。
现在研究出了诸如电流比较仪、电流互感器、分流器等电流测量设备;也出现了以磁光效应和核磁共振等物理效应为基础的一些测量设备。
使用分流器的最大问题就是输入与输出没有隔离,并且,用分流器测量高频或强电流时,不可避免地带有电感性。因此,接入分流器后,既会影响被测电流波形,又不能真实传递非正弦信号。
对于目前大量采用的变压器式电流互感器而言,具有绝缘强度高、工作可靠、价格低廉等优点。但当暂态电流或者di/dt太大时,磁路容易出现饱和现象,副方电流不能无失真地反映被测电流;它能够适应的频率范围很窄,尤其不能传递直流;并且,由于互感器的非理想性,使得变比和相位都存在较大的误差,需要采用硬件或软件的方法补偿,从而增加了系统的复杂程度;此外,电流互感器工作时存在激磁电流,所以,它是电感性元件,在测量高频或强电流时存在和分流器一样地缺点。后来在此基础上研制了带气隙的电流互感器,这种互感器由于在磁路上开了一段气隙,其磁阻增加,剩磁减小,等效磁化曲线实现了线性化,使磁路在暂态电流或者di/dt很大时也不至于饱和,因此副方能够基本无失真地反应暂态电流,但是,其结构尺寸比较庞大。
对于含铁芯式电流比较仪,性能稳定,功率消耗较小(与分流器相比),能承受较大的负载,安装时可不断开被测电路。但是由于使用铁芯材料,并非具有理想的磁化特性,易饱和,对被测电流的大小有所限制,并且其屏蔽结构复杂,外形尺寸较大,一般多用作电流的实验室标定装置。
除了上述电流传感器之外,还出现了磁平衡式霍尔电流传感器,它是基于霍尔效应发展起来的测量控制电流的新一代工业用电流传感器,其实质是一个电流-磁-电压变换器,其作用与传统的电流互感器相同,它的输入和输出间具有良好的电隔离,绝缘耐压超过3kV。它是利用霍尔元件测量被测电流在铁芯(围绕被测载流导体)气隙里的磁感应强度来判定被测电流大小的。它的特点是结构简单,安装时可不断开被测电路;并且具有精度高、线性好、频带宽、响应快、过载能力强和不损失被测电路能量等诸多优点。但是,霍尔元件的输入电阻和输出电阻的数值不是恒定不变的,因此它存在磁阻效应,它是随磁感应强度而不断增长的。在单个霍尔元件除了霍尔电势之外,在输出电压中还存在其他几种剩余电势。霍尔元件的霍尔系数、输入电阻、输出电阻和剩余电势都与温度有关,因此霍尔元件存在着较大的温度误差。因此,必须采取措施克服霍尔元件的霍尔电势、霍尔元件对被测电流载流导体位置比较敏感和温度误差等不利因素的影响。
随着电力电子技术在直流输电系统、变频调速装置、逆变装置、UPS电源、逆变焊机、变电站、电解电镀、数控机床、微机监测系统、电网监控系统等领域中的广泛应用,对于宽频谱(包含直流分量)、小幅值、高di/dt非正弦电流波形的传递与检测就显得尤为重要。对于幅值不是太大的暂态电流,如果在电力电子回路中串入分流器势必会改变回路的电气参数,将对被测电流环路产生影响;如果单独采用比较仪、电流互感器、Rogowski线圈和霍尔元件等常规传感器件,已不能满足上述特殊波形电流的检测要求。
发明内容
本实用新型的目的在于克服上述现有技术的不足之处,提供一种双重检测式电流传感器。该传感器由霍尔元件和串联联接的Rogowski线圈构成,它明显改善传感器的饱和特性、线性度和抗干扰能力,对小电流较敏感,能准确测量di/dt不是太大的瞬态电流,当然也可以测量大电流或者di/dt相当高的瞬态电流。
为达到上述目的,本实用新型采用的技术方案是一种双重检测式电流传感器,包括环形铁芯、霍尔元件,在上述环形铁芯上均匀、对称开有空气隙,对称两个通道中的反馈绕组相串联,串联后的一端接地,另一端接对应采样电阻的一端;上述空气隙中,对称放置的两个霍尔元件为一组,每个霍尔元件由恒流源控制,每组中两个霍尔元件的输出端分别与运算放大器的正、负输入端相接,经运算放大器放大后进行滤波、电压-电流变换、电流放大处理,其输出端接上述采样电阻的另一端,将该采样电阻两端的检测电压信号送到计算机;它还包括串联联接的Rogowski线圈,在线圈的两个出线端接采样电阻,该采样电阻的两端分别接运算放大器的正、负输入端,正输入端接地,采样电阻的检测电压信号经该运算放大器放大后,再进行滤波、积分放大处理,送到计算机;由计算机处理上述各组数据,处理后将被测电流大小送到显示器显示。
在上述反馈绕组和串联联接的Rogowski线圈的绝缘层及保护层之外,专门设置地线层以代替上述地线,在该地线层外面依次设置绝缘层及保护层、电磁屏蔽层、最外层的绝缘层及保护层。
本实用新型的优点在于(1)因霍尔元件对称性地放置在空气隙中,当来自同方向的干扰磁场进入霍尔元件时,磁通密度会在两个对称分布的霍尔元件上面产生相反的霍尔干扰电势,并在电路中自行抵消,有效改善了传感器的抗干扰性能。
(2)因霍尔元件对称性地放置在空气隙中,有效的克服了霍尔元件对被测电流载体位置比较敏感的缺点。
(3)因霍尔元件对称性地放置在空气隙中,能够有效抑制霍尔元件的温度误差。
(4)该传感器利用霍尔传感器的无电感和快速响应特性,测量电力电子线路中幅值不太大或者不太高di/dt的电流(即满足不会因幅值太大或者太高di/dt引起铁芯的磁饱和的电流检测要求),可以避免因传感器的接入而改变原有的di/dt值,因此,它特别适于电力电子设备中用于电流反馈、截流控制、稳流凋节以及直流侧过电流的检测。
(5)利用串联联接的Rogowski线圈,可以有效地提高它对被测小电流的敏感度。
(6)该传感器利用不含铁芯的串联联接的Rogowski线圈无饱和问题、频带宽、快速响应特性。由于串联联接之后的Rogowski线圈的分布电容随着串联线圈的数量增加近似成线性减少,串联电感随着线圈的数量增加而线性增加,理论证明,这样做,对Rogowski线圈的频响特性影响不大,却可以明显提高Rogowski线圈的互感系数。
(7)按照串联联接方式获得的Rogowski线圈不仅可以测量电力电子线路中因幅值不是太大或者di/dt不是太高的非正弦暂态电流检测,还可以完成当回路中因测电流幅值太大或者太高di/dt引起铁芯磁饱和,导致霍尔传感器不能正常工作时的电流检测任务,即可以克服铁芯饱和的不足,还不会对电力电子回路产生不良影响,不会使整个传感器瘫痪。
(8)该传感器采用不含铁芯的串联联接的Rogowski线圈,可以测量大电流或者di/dt相当高的瞬态电流,只需减少串联Rogowski线圈的个数。
(9)该传感器采用具有较强的带负载能力的电压-电流转换的恒流源电路,为了使输出电流稳定,除各个环节引入深度负反馈外,还从输出电流取样经电压跟随器反馈加法器,形成一个大的外反馈,进一步增强了输出电流的稳定度,使恒流源在负载变化较大范围内输出电流具有高稳定度。
总之,明显改善了传感器的饱和特性和线性度;精度优于0.5%,功耗小,温度附加误差<0.1%/10℃,抗磁干扰能力强;结构简单,重量轻,价格低,安装、校准、调试、维护均十分方便。
图1为本实用新型一种实施例的结构示意图。
图2为图1中三个骨架芯的位置示意图。
图3为图1中对称布置的霍尔元件H1、H2和串联Rogowski线圈电路图。
图4(a)为图1中霍尔元件H1的恒流源电路图。
图4(b)为图1中霍尔元件H2的恒流源电路图。
图5为图1中圆形截面骨架芯F1的结构示意图。
具体实施方式
由图1所示,1为显示器,2为处理来自两组并联通道检测电压信号的计算机;3为处理来自对称布置的两个霍尔检测元件的霍尔电压的滤波、电压-电流变换、电流放大电路;4为处理来自串联联接的Rogowski线圈的感应电压的滤波、积分放大电路;5为被测电流母线;6为专用地线层;F1、F2和F3为三个骨架芯;A1和A2为运算放大器;RS1和RS2为两组检测通道的采样电阻;IF1和IF2为两组检测通道中流过的电流;US1为采样电阻RS1的端电压;US2为电路4的输出电压;UR1和UR2为采样电阻RS2的端电压,H1和H2为两个霍尔元件;UH1和UH2为两个霍尔元件所输出的霍尔电压;W1和W2为通道的两个反馈绕组;W31和W32分别为两个串联联接线圈Rog1和Rog2的匝数。
骨架芯F1为环形铁芯,在铁芯F1的直径方向开设两个空气隙,气隙均匀、对称分布,每个通道的铁芯长度相等,霍尔元件H1和H2分别置于气隙中。在铁芯F1的外绝缘材料上,均匀密绕反馈绕组,绕制反馈绕组时,必须注意线圈绕向,确保传感器实现零磁通检测原理。两个反馈绕组W1和W2相串联,串联后一端接采样电阻RS1的一端,另一端接地。对称布置的霍尔元件H1和H2均由恒流源控制,两个霍尔元件H2、H1的输出端分别与运算放大器A1的正、负输入端相接,放大后送到电路3进行滤波、电压-电流变换、电流放大处理,电路3的输出端接采样电阻RS1的另一端,采样电阻RS1两端的电压送到计算机2。
在本实用新型中,均匀、对称分布的气隙数目为多个,一般气隙数目可选为大于等于2且不超过10的偶数。因为开口愈多,空气隙的总长度愈大,铁芯才愈不会饱和,但考虑开口多会使传感器的准确度下降,另一方面还会增加制造成本,且使铁芯的机械强度下降。所以,铁芯F1的开口数量应尽可能少。由于开口越大,铁芯F1越不易饱和。但开口大了以后,空气隙中的磁场会分散,这样铁芯F1就失去了聚磁环的作用,而且铁芯F1开口太大会不利于传感器的准确度。因此,气隙长度可小于铁芯F1截面积平方根的10~15倍,兼顾被测电流大小和铁芯尺寸大小要求,否则会影响传感器测量精度。为了增强传感器感应信号,在不改变传感器其它尺寸前提下,可以尽可能增大铁芯F1轴向厚度,则气隙长度也可以相应增大。
骨架芯F2和F3为非铁磁材料,在F2和F3的外绝缘材料上均匀密绕Rogowski线圈,再由骨架芯F2和F3中心引出回绕线。两个串联联接线圈Rog1和Rog2的结构参数可一样,可不一样。在线圈Rog1和Rog2的两个出线端接采样电阻RS2,采样电阻RS2的两端分别接运算放大器A2的正、负输入端,正输入端接地,运算放大器A2的输出通过滤波、积分放大电路4送到计算机2。
选择运算放大器A2应考虑它的摆率、上升速度、漂移和精度,一般选择较高速低漂移精密运算放大器,例如,OP27。电路4为通常的滤波、积分放大电路。选择Rogowski线圈串联联接个数时,既要考虑被测电流幅值或者di/dt大小,即从Rogowski线圈中感应获得的电压信号不要太弱(否则测量误差较大),又要考虑串联联接Rogowski线圈的动态特性,还要考虑整个传感器的结构尺寸。
由计算机2处理上述两组不同的数据,处理后将被测电流大小送到显示器1显示。
如果骨架芯F1的气隙数为十个,串联联接的Rogowski线圈为六个,这时对称布置的两个霍尔元件作为一组,则共有五组,输入到计算机2中的就有五组数据,再加上从六个串联联接Rogowski线圈输出的一组,计算机2将处理六组不同的数据,处理后将被测电流的大小送到显示器1显示。
由图2所示,为了安装方便,三个骨架芯F1、F2和F3宜选取同样尺寸,13为骨架芯F2的回线槽(当然骨架芯F3的也有回线槽)。为了说明三个骨架芯的位置关系,图2夸大了它们之间的间隔距离d1和d2,当F1、F2和F3缠好各自的绝缘层及保护层、地线层、地线层绝缘层及保护层、电磁屏蔽层和最外层的绝缘层及保护层后,可将它们固定在一起形成一个整体。
由图3所示,I+和I-为正负电源,分别供电流给两个对称放置的霍尔元件H1和H2;RF1和RF2表示恒流源I+和I-的反馈电阻;a1、c1端子表示霍尔元件H1的直流控制电流输入、输出端,b1、d1端子表示霍尔元件H1的霍尔电压输出端,a2、c2端子表示霍尔元件H2的直流控制电流输入、输出端,b2、d2端子表示霍尔元件H2的霍尔电压输出端;运算放大器A1可以选用如INA128仪用运算放大器或者由OP07、OP27等精密运算放大器构成仪用运算放大器电路结构;RK表示运算放大器A1的放大倍数控制电阻,可以选用高精度电阻;电路3为通常的滤波、电压-电流变换、电流放大电路;*号表示四个绕组W1、W2、W31、和W32的同名端。
霍尔元件H1的a1端与恒流源(供给H1的电流为I+)反馈电阻RF1相接,另一端c1接地,霍尔元件H2的c2端与恒流源(供给H2的电流为I-)反馈电阻RF2相接,另一端a2接地,霍尔元件H1的b1端与霍尔元件H2的d2端相接,霍尔元件H1的d1端、霍尔元件H2的b2端分别与运算放大器A1的负输入端、正输入端相接。由于将霍尔元件H1、H2的b1与d2相接,c1与a2相接并接地,当来自同方向的干扰磁场进入霍尔元件时,磁场会在两个对称分布的霍尔元件H1、H2上面产生相反的霍尔干扰电势,并在电路中自行抵消。当霍尔元件H1、H2的直流控制电流输入端a1、c1和a2、c2流过来自恒流源的直流电流,其垂直表面有磁场并有磁力线穿过时,其霍尔电压输出端b1、d1和b2、d2端子便产生霍尔电压,运算放大器A1可以放大霍尔电势差,即UH=UH1-UH2,其放大倍数由控制电阻RK控制,放大倍数近似为1+50kΩ/RK,再送入电路3处理。
由图4(a)所示,霍尔元件H1的恒流源电路具体接法为,运算放大器A3的正输入端通过电阻R2接到基准源Uref1,且正输入端通过电阻R3接地,运算放大器A3的负输入端通过电阻R4接到其输出端,且负输入端通过电阻R1接到运算放大器A5的输出端,运算放大器A3的输出端通过电阻R5接到运算放大器A4的负输入端。运算放大器A4的负输入端通过电阻R6接到功率放大管T2的发射极,正输入端通过电阻R7接到功率放大管T1的发射极,并接地,输出端通过电阻R8接到功率放大管T1的基极。功率放大管T1的集电极接功率放大管T2的基极,且通过电阻R9接功率放大管T2的集电极和+15V电源。运算放大器A5的输出端通过电阻R10接到其负输入端,其正输入端通过电阻RF1接到功率放大管T2的发射极。霍尔元件H1的直流控制电流输入端a1与运算放大器A5的正输入端相接,直流控制电流输出端c1接地。
图4(a)的工作原理简述如下基准源Uref1经过加法器A3、反馈放大器A4,由电流放大驱动电路(T1、T2)输出高稳定的电流。因为运算放大器A5构成跟随电路,其输入阻抗很高(≥1012Ω),则流过反馈电阻RF1的电流全部流向霍尔元件H1。为了使输出电流稳定,除各个环节引入深度负反馈外,还从输出电流取样经电压跟随器A5反馈给运算放大器A3,形成一个大反馈,进一步增强了输出电流的稳定度,使恒流源在负载变化较大范围内输出电流具有高稳定度。
由图4(b)所示,霍尔元件H2的恒流源电路具体接法为,运算放大器A6的正输入端通过电阻R12接到基准源Uref2,且正输入端通过电阻R13接地,运算放大器A6的负输入端通过电阻R14接到其输出端,且负输入端通过电阻R11接到运算放大器A8的输出端,运算放大器A6的输出端通过电阻R15接到运算放大器A7的负输入端。运算放大器A7的负输入端通过电阻R16接到功率放大管T4的发射极,正输入端通过电阻R17接到功率放大管T3的发射极,并接地,输出端通过电阻R18接到功率放大管T3的基极。功率放大管T3的发射极接功率放大管T4的基极,其集电极通过电阻R19接功率放大管T4的集电极和-15V电源。运算放大器A8的输出端通过电阻R20接到其负输入端,其正输入端通过反馈电阻RF2接到功率放大管T4的发射极。霍尔元件H2的直流控制电流输出端c2与运算放大器A8的正输入端相接,直流控制电流输入端a2接地。
图4(b)的工作原理简述如下基准源Uref2经过加法器A6、反馈放大器A7,由电流放大驱动电路(T3、T4)输出高稳定的电流。因为运算放大器A8构成跟随电路,其输入阻抗很高(≥1012Ω),则流过反馈电阻RF2的电流全部流经霍尔元件H2。为了使输出电流稳定,除各个环节引入深度负反馈外,还从输出电流取样经电压跟随器A8反馈给运算放大器A6,形成一个大反馈,进一步增强了输出电流的稳定度,使恒流源在负载变化较大范围内输出电流具有高稳定度。
上述所讲的恒流源,其元器件选择方法可为,R1~R7、R11~R17选用高精密电阻;R8、R9、R18、R19选用炭膜电阻;反馈电阻RF1和RF2选用高精密电阻,并且其阻值接近霍尔元件的输入电阻值RHi(i=1,2),满足RF+RHi<<R1;基准源Uref1和Uref2可以选用PMI公司生产的REO2P芯片产生获得,该芯片是+5V精密电压基准/温度传感器;A3~A8全部采用高精度、低漂移、动态校零CMOS型斩波稳零式ICL7650(或CF7650)集成运算放大器。
由图5所示,骨架芯F1加工成圆形截面的环形状,当然,也可加工成矩形截面的环形状,骨架芯F1可以选取硅钢片或者坡莫合金叠片组成。在骨架芯F1的绝缘层及保护层7之外均匀密绕多圈成螺旋状的反馈绕组8,再在绕组8外面绕制绝缘层及保护层9,其外,再专门设置传感器的地线层6,在该地线层6外面依次设置绝缘层及保护层10、电磁屏蔽层11,最外层的绝缘层及保护层12。这种结构形式提高了传感器的抗电磁干扰能力。
骨架芯F2和F3加工成矩形截面的环形状,当然,也可加工成圆形截面的环形状,骨架芯F2和F3可以选取柔软橡皮带或者环氧树脂棒。Rogowski线圈在绕制时回绕一圈,从骨架芯回线槽中心引出。在两个骨架芯F2和F3的绝缘层及保护层之外密绕Rogowski线圈,再在线圈外面绕制绝缘层及保护层,其外,再专门设置传感器的地线层,在该地线层外面依次设置绝缘层及保护层、电磁屏蔽层,最外层的绝缘层及保护层。
权利要求1.一种双重检测式电流传感器,包括环形铁芯、霍尔元件,其特征在于在上述环形铁芯上均匀、对称开有空气隙,对称两个通道中的反馈绕组相串联,串联后的一端接地,另一端接对应采样电阻的一端;上述空气隙中,对称放置的两个霍尔元件为一组,每个霍尔元件由恒流源控制,每组中两个霍尔元件的输出端分别与运算放大器的正、负输入端相接,经运算放大器放大后进行滤波、电压-电流变换、电流放大处理,其输出端接上述采样电阻的另一端,将该采样电阻两端的检测电压信号送到计算机;它还包括串联联接的Rogowski线圈,在线圈的两个出线端接采样电阻,该采样电阻的两端分别接运算放大器的正、负输入端,正输入端接地,采样电阻的检测电压信号经该运算放大器放大后,再进行滤波、积分放大处理,送到计算机;由计算机处理上述各组数据,处理后将被测电流大小送到显示器显示。
2.根据权利要求1所述的电流传感器,其特征在于接到上述每组中,一个霍尔元件的恒流源电路为,运算放大器A3的正输入端通过电阻R2接到基准源Uref1,且正输入端通过电阻R3接地,运算放大器A3的负输入端通过电阻R4接到其输出端,且负输入端通过电阻R1接到运算放大器A5的输出端,运算放大器A3的输出端通过电阻R5接到运算放大器A4的负输入端,运算放大器A4的负输入端通过电阻R6接到功率放大管T2的发射极,正输入端通过电阻R7接到功率放大管T1的发射极,并接地,输出端通过电阻R8接到功率放大管T1的基极,功率放大管T1的集电极接功率放大管T2的基极,且通过电阻R9接功率放大管T2的集电极和+15V电源,运算放大器A5的输出端通过电阻R10接到其负输入端,其正输入端通过电阻RF1接到功率放大管T2的发射极,霍尔元件H1的直流控制电流输入端a1与运算放大器A5的正输入端相接,直流控制电流输出端c1接地;另一个霍尔元件的恒流源电路为,运算放大器A6的正输入端通过电阻R12接到基准源Uref2,且正输入端通过电阻R13接地,运算放大器A6的负输入端通过电阻R14接到其输出端,且负输入端通过电阻R11接到运算放大器A8的输出端,运算放大器A6的输出端通过电阻R15接到运算放大器A7的负输入端,运算放大器A7的负输入端通过电阻R16接到功率放大管T4的发射极,正输入端通过电阻R17接到功率放大管T3的发射极,并接地,输出端通过电阻R18接到功率放大管T3的基极,功率放大管T3的发射极接功率放大管T4的基极,其集电极通过电阻R19接功率放大管T4的集电极和-15V电源,运算放大器A8的输出端通过电阻R20接到其负输入端,其正输入端通过反馈电阻RF2接到功率放大管T4的发射极,霍尔元件H2的直流控制电流输出端c2与运算放大器A8的正输入端相接,直流控制电流输入端a2接地。
3.根据权利要求1或2所述的电流传感器,其特征在于在上述反馈绕组和串联联接的Rogowski线圈的绝缘层及保护层之外,专门设置地线层以代替上述地线,在该地线层外面依次设置绝缘层及保护层、电磁屏蔽层、最外层的绝缘层及保护层。
专利摘要本实用新型公开了一种双重检测式电流传感器,在环形铁芯上均匀、对称开有空气隙,对称两个通道中的反馈绕组串联后,一端接地,另一端接对应采样电阻的一端;对称布置的两个霍尔元件的输出经运放放大后,进行滤波、电压-电流变换、电流放大处理,输出接上述采样电阻的另一端,将该电阻两端的电压信号送到计算机;还包括串联联接的Rogowski线圈,线圈的两端接采样电阻,该电阻的电压信号经运放放大后,进行滤波、积分放大,送到计算机;计算机将上述各组数据处理后,将被测电流的大小送到显示器显示。本实用新型可克服因传感器铁芯饱和而造成的不足;精度优于0.5%,功耗小,温度附加误差<0.1%/10℃,抗磁干扰能力强;结构简单。
文档编号G01R19/00GK2689240SQ20042001794
公开日2005年3月30日 申请日期2004年4月28日 优先权日2004年4月28日
发明者毛承雄, 李维波, 陆继明 申请人:华中科技大学