专利名称:磁致伸缩式负荷传感器的制作方法
技术领域:
本发明涉及一种利用磁致伸缩效果对负荷进行电磁测量的磁致伸缩式负荷传感器。
背景技术:
一直以来,作为检测负荷的传感器,已经开发出一种磁致伸缩式负荷传感器(参照例如特开2003-57128号公报),该传感器将施加了负荷的部件的磁性变化转换为电压变化,通过输出该电压变化而对负荷进行检测。
特开2003-57128号公报的磁致伸缩式负荷传感器包括板金制造的壳体、由磁性体构成的检测杆和缠绕在绕线管上的线圈。
壳体包括大致钟状的上侧壳体和大致圆盘状的承受侧壳体。在上侧壳体的上端部上形成有孔部。而且,在上侧壳体的下端部整个周边上形成有壳体法兰部。在承受侧壳体的外周部上以规定间隔形成有4个切起部。
检测杆包括上下方向延伸的棒状部和形成在其下端部上的杆凸缘部。棒状部和杆凸缘部相互形成为一体。在缠绕了线圈的绕线管的中央部上形成沿线圈轴线沿上下方向延伸的通孔。
在制作上述磁致伸缩式传感器时,将检测杆插入绕线管的通孔内。然后将检测杆的杆凸缘部设置在承受侧壳体的规定部位上(大致中央部),使上侧壳体覆盖所述承受侧壳体。由此,上侧壳体的壳体法兰部与承受侧壳体的外周部接触。而且,检测杆棒状部的上端从上侧壳体上端部的孔部向上方突出。
在此状态下,将承受侧壳体上的4个切起部向上侧壳体的壳体法兰部上曲折并铆紧,由此将承受侧壳体和上侧壳体相互固定。
而且在上侧壳体的下端部上设置有切口。在该切口中形成以规定长度向壳体侧方延伸的筒状罩部。
为了降低磁阻和防止外部干扰,使从壳体内线圈中引出的引线取出部通过上述罩部而引出到壳体外部。由此,引线取出部由所述罩而密封,同时可防止在所述引线取出部上出现破裂和损伤。
因而,可以将从收容在壳体内的线圈引出的引线引出出到壳体外的结构用于特开2002-313205号公报的起动装置用电磁开关。在这种起动装置用电磁开关中,连接到励磁线圈的引线上的端子通过以从开关盒沿规定方向延伸的方式连接的模制罩内部而引出到开关盒的外部。
在这种现有磁致伸缩式负荷传感器中,通过使电流流过所述线圈,对检测杆进行磁化。在此状态下,如果向检测杆的上端部施加负荷,则检测杆变形,同时其磁性变化。
由此,检测杆的磁性变化作为在线圈上所产生的电压变化而体现出来,因而根据在线圈上所产生的电压变化,可以检测出施加在检测杆上的负荷。
在这种现有磁致伸缩式负荷传感器中,如果在壳体内检测杆和线圈的位置产生偏移,则磁致伸缩式负荷传感器的感度(灵敏度)产生偏差,由磁致伸缩式负荷传感器检测出的负荷(检测)精度下降,可靠性下降。因而,必须将检测杆和线圈在壳体内正确地进行定位。
但是在将杆凸缘部设置在承受侧壳体的规定部位上的状态下,在对承受侧壳体上的切起部进行曲折并铆紧时,杆凸缘部可能从承受侧壳体的规定部位上偏移。
使杆凸缘部位置不偏移地将承受侧壳体铆紧在上侧壳体上的固定作业非常困难,需要操作非常熟练。因而,磁致伸缩式负荷传感器的生产量难以提高。
而且,由于用于将从线圈引出的引线引出到壳体外部的罩本体具有细长形状,因此,磁致伸缩式负荷传感器的小型化十分困难。
发明内容
本发明的目的是提供一种具有高可靠性且制造简单的磁致伸缩式负荷传感器。
本发明的另一目的是提供一种具有高可靠性、制造简单并能小型化的磁致伸缩式负荷传感器。
(1)根据本发明一方面的磁致伸缩式负荷传感器包括具有通孔的线圈;具有用于承受负荷的一端并插入所述线圈的所述通孔内、由磁性材料制成的棒状部件;与棒状部件的另一端一体形成并支撑线圈的台座;壳体部件,该壳体部件以收容线圈的方式嵌合(配合)在台座上,并具有能够使棒状部件的一端承受负荷的开口。
在这种磁致伸缩式负荷传感器中,通过电流流经线圈而产生磁场。由此,由磁性材料构成的棒状部件被磁化。如果棒状部件的一端通过壳体部件的开口而承受负荷,则该棒状部件歪扭(变形)。由此,线圈的电感变化,在线圈上感应的电压变化。因而,根据电压的变化,可以检测出负荷。
具有用于承受负荷的一端的棒状部件与支撑线圈的台座一体形成,由此在对磁致伸缩式负荷传感器进行装配时,棒状部件可以正确轻易地插入线圈的通孔的规定位置,因而磁致伸缩式负荷传感器的制造变得简单。
而且,由于棒状部件与支撑线圈的台座一体形成,即使在壳体部件和台座嵌合时,也可以防止棒状部件和支撑在台座上的线圈的位置偏移。
由此,降低了磁致伸缩式负荷传感器的感度波动,提高磁致伸缩式负荷传感器的负荷检测精度,从而获得高可靠性。
(2)台座和壳体部件由磁性材料制成,作为由线圈产生的磁场的磁通路而发挥作用。
此时,通过电流流经线圈而产生磁场。由此,由磁性材料构成的棒状部件被磁化,并且由磁性材料制成的台座和壳体部件被磁化而作为磁通路发挥功能,因而,提高了磁致伸缩式负荷传感器的感度。
(3)壳体部件在与台座的嵌合部上可以具有使该壳体部件的内部和外部连通的切口。此时能够减少使台座和壳体部件嵌合所必需的负荷。由此,台座和壳体部件的嵌合变得容易,因此,磁致伸缩式负荷传感器的制造变得简单。
而且,降低了在台座和壳体部件的嵌合部上产生的残余应力,由此,降低了台座和壳体部件的嵌合部上的磁阻,因而提高了磁致伸缩式负荷传感器的感度。
此外,由于通过降低在台座和壳体部件的嵌合部上产生的残余应力,而减少了壳体部件的磁性变化,所以可以减少磁致伸缩式负荷传感器的感度波动。
而且,可以将从线圈引出的导线通过所述切口从壳体部件的内部向外部轻易地取出。
(4)切口在与棒状部件大致平行的第1方向上的长度可以比切口在与第1方向垂直的第2方向上的长度长。
通过切口在第1方向上的长度比切口在第2方向上的长度长,增大了由壳体部件形成的磁通路的截面面积。由此减少了由切口形成所引起的壳体部件的磁阻增大,因而提高了磁致伸缩式负荷传感器的感度。
(5)线圈可包括具有由台座支撑的法兰的绕线管、缠绕在绕线管上的导线。绕线管的法兰包括导线取出部,该导线取出部形成有将从线圈引出的导线引导到壳体部件外部的通路。导线取出部可形成为与切口嵌合。
此时,当台座和壳体部件嵌合时,绕线管的法兰所包括的导线取出部和壳体部件的切口嵌合。从线圈引出的导线通过由导线取出部形成的通路被引导到外部。
由此,当台座和壳体部件嵌合时,可以防止从线圈引出的导线断线。由于线圈的导线不通过引线脚(ピン)地直接引出到壳体部件的外部,可以实现磁致伸缩式负荷传感器的小型化。
(6)法兰可包括用于将导线向上述导线取出部的通路内进行导向的导向槽。此时,从线圈引出的导线通过导向槽被引导向导线取出部的通路。由此,在台座和壳体部件嵌合时,可以防止从线圈引出的导线断线。
(7)至少在通过导向槽和导线取出部的通路范围内还可包括对导线进行覆盖的被覆管。此时,从线圈引出的导线至少在通过导向槽和导线取出部的通路范围内由被覆管覆盖。由此,可以防止从线圈引出的导线断线。
(8)壳体部件在和台座的嵌合部上可具有1个或多个狭缝。此时减少了使台座和壳体部件嵌合所必需的负荷。由此,台座和壳体部件嵌合变得容易,因此,磁致伸缩式负荷传感器的制造变得简单。
而且,降低了在台座和壳体部件的嵌合部上产生的残余应力,由此,降低了台座和壳体部件的嵌合部上的磁阻,因而提高了磁致伸缩式负荷传感器的感度。
此外,由于通过降低在台座和壳体部件的嵌合部上产生的残余应力,而减少了壳体部件的磁性变化,所以可以减少磁致伸缩式负荷传感器的感度波动。
(9)壳体部件在和台座的嵌合部上可具有多个狭缝,其中上述多个狭缝等间距地形成。此时减少了使台座和壳体部件嵌合所必需的负荷。由此,台座和壳体部件嵌合变得容易,因此,磁致伸缩式负荷传感器的制造变得简单。
而且,降低了在台座和壳体部件的嵌合部上产生的残余应力,由此,降低了台座和壳体部件的嵌合部上的磁阻,因而提高了磁致伸缩式负荷传感器的感度。
此外,由于通过降低在台座和壳体部件的嵌合部上产生的残余应力,而减少了壳体部件的磁性变化,所以可以减少磁致伸缩式负荷传感器的感度波动。
此外,由于等间距地形成多个狭缝,在壳体部件与台座部的嵌合部上作用的负荷变得均匀。因而,在台座和壳体部件嵌合时,可以防止壳体部件的变形。
(10)棒状部件可在另一个端部上具有朝向上述台座截面逐渐增大的扩大(扩展)部。在此情况下,在装配磁致伸缩式负荷传感器时,向线圈的通孔内插入棒状部件时,由所述扩大部可以对线圈的位置偏移进行调整,由此,棒状部件更容易正确地插入到线圈通孔的规定位置上。
(11)棒状部件的扩大部一侧的通孔的端部可具有朝向上述台座逐渐增大的截面。在此情况下,在装配磁致伸缩式负荷传感器时,向线圈的通孔内插入棒状部件时,由朝向台座逐渐增大的通孔的截面形状和棒状部件的扩大部对线圈的位置偏移进行调整,由此,棒状部件更容易正确地插入到线圈通孔的规定位置上。
(12)磁致伸缩式负荷传感器可在棒状部件的外面和通孔内面之间设置有间隙,棒状部件的扩大部的最大截面具有与通孔的最大截面相同的尺寸。在此情况下,向线圈的通孔内插入棒状部件时,以棒状部件的扩大部的最大截面位置和通孔的最大截面位置一致的方式将棒状部件自动地定位在线圈的通孔内。由此线圈的定位变得容易。
(13)磁致伸缩式负荷传感器还可包括以覆盖上述开口的方式安装在上述壳体部件上的弹性盖。此时,由于由弹性盖封闭壳体部件的开口,可以实现磁致伸缩式负荷传感器的防尘和防水,提高可靠性。
(14)磁致伸缩式负荷传感器还可包括设置在壳体部件的内侧端面和线圈的端面之间的弹性部件。由此,在台座和壳体部件嵌合时,可以防止由伴随着嵌合作业的振动而使线圈移动。因此,由于可靠地防止线圈的位置偏移,可以充分地降低磁致伸缩式负荷传感器的感度波动。而且防止从线圈引出的导线断线。从而充分提高了磁致伸缩式负荷传感器的可靠性。
(15)壳体部件可以在比棒状部件热处理温度高的温度下进行热处理。当壳体部件由磁性材料制造时,通过以比棒状部件热处理温度高的温度对壳体部件进行热处理,可以使壳体部件的硬度比棒状部件的硬度低。
因而在台座和壳体部件嵌合时,减少了使台座和壳体部件嵌合所必需的负荷,降低了在台座和壳体部件的嵌合部上产生的残余应力,由此,降低了台座和壳体部件的嵌合部上的磁阻,因而提高了磁致伸缩式负荷传感器的感度。
此外,由于通过降低在台座和壳体部件的嵌合部上产生的残余应力,而减少了壳体部件的磁性变化,所以可以减少磁致伸缩式负荷传感器的感度波动。
图1是根据本发明一实施例的磁致伸缩式负荷传感器的外观透视图;图2a和2b分别是图1的磁致伸缩式负荷传感器的侧视图和俯视图;图3是图1的磁致伸缩式负荷传感器的组装图;图4是从下方看到的在图1磁致伸缩式负荷传感器中使用的绕线管的外观透视图;图5是沿图1中磁致伸缩式负荷传感器的A-A线的截面图;图6是用于说明图1的磁致伸缩式负荷传感器的动作的视图;图7、图8a和8b是根据本发明一实施例的磁致伸缩式负荷传感器的其它结构示例的视图;图9是根据本发明一实施例的磁致伸缩式负荷传感器的另一结构示例的视图;图10是示出有关压入负荷、狭缝的数目、厚度和热处理条件关系的实验结果的图形;图11a和11b是示出磁致伸缩式负荷传感器的感度和初期阻抗的偏差的图形。
具体实施例方式
下文对根据本发明一实施例的磁致伸缩式负荷传感器进行说明。
(1)磁致伸缩式负荷传感器的大致结构图1是根据本发明一实施例的磁致伸缩式负荷传感器的外观透视图,图2a和2b分别是图1的磁致伸缩式负荷传感器的侧视图和俯视图。
如图1、图2a和2b所示,根据本实施例的磁致伸缩式负荷传感器100具有下述结构,即在由上侧壳体10和下侧壳体20组成的壳体K内收容下文所述多个部件。在图1和图2a中,收容在壳体K内的多个部件(下文所述的线圈40、绕线管50和弹性环60)由虚线表示。
在具有大致钟状的上侧壳体10的上端部上形成有孔部10H。将下文所述下侧壳体20的棒状部件20b插入该孔部10H内。孔部10H形成得孔径比棒状部件20b的直径大。下侧壳体20的棒状部件20b的上端部从上侧壳体10的上端部向上方突出。
弹性盖30安装(粘附)成覆盖上述孔部10H和下侧壳体20的棒状部件20b的上端部。由此,弹性盖30的大致中央部沿从上侧壳体10突出的棒状部件20b的形状向上方突出。其突出面成为磁致伸缩式负荷传感器100的负荷承压部PS。
在上侧壳体10的下端部上形成沿规定方向的切口部10W。从壳体K的内部通过切口部10W,将引线40R引出到外部。引线40R在该取出部的规定范围内由收缩管70覆盖。
(2)磁致伸缩式负荷传感器的详细结构下文对磁致伸缩式负荷传感器的结构和其装配方法进行说明。图3是图1的磁致伸缩式负荷传感器100的组装图,图4是从下方看到的在图1磁致伸缩式负荷传感器100中使用的绕线管50的外观透视图。
如图3所示,磁致伸缩式负荷传感器100包括上侧壳体10、下侧壳体20、弹性盖30、线圈40、绕线管50和弹性环60。
如上所述,上侧壳体10大致具有钟状。在上侧壳体10的上端部形成有孔部10H,在上侧壳体10的下端部形成有切口部10W。切口部10W周向上的长度比上下方向的长度短,上侧壳体10的下端部除了切口部10W之外的部分成为壳体压入部11。
作为制造上侧壳体10的材料,例如可以使用铁类材料、铁铬类材料、铁镍类材料、铁钴类材料、铁硅类材料、铁铝类材料、纯铁、强磁性铁镍合金或超磁致伸缩材料等磁性材料。由此,在磁致伸缩式负荷传感器工作时,上侧壳体10作为磁通路发挥功能。下文对此将详细说明。
而且,上侧壳体10由锻造形成,上述磁性材料在600~1100℃的温度范围内进行热处理,但是,上侧壳体10在比下文所述的下侧壳体20的棒状部件20b更高的温度下进行热处理。
弹性盖30是圆形盖,由具有弹性的硅树脂等形成。在对磁致伸缩式负荷传感器100进行装配时,弹性盖30以覆盖孔部10H的方式安装在上侧壳体10的上端部上(参考图3中箭头F1)。
下侧壳体20具有将圆盘形部件20a和棒状部件20b一体形成的结构。圆盘形部件20a具有绕线管台座22。在绕线管台座22下端部的整个周边上形成有壳体法兰部21。
圆柱形棒状部件20b形成为从绕线管台座22的中央部向上方延伸。棒状部件20b的下端部以从上方向下方增大直径的方式向外方扩大。也就是棒状部件20b下端部的外周面弯曲成凹状并连接到绕线管台座22的上面。下文将棒状部件20b的下端部称作扩大部23r。
作为制造下侧壳体20的材料,例如可以使用铁类材料、铁铬类材料、铁镍类材料、铁钴类材料、铁硅类材料、铁铝类材料、纯铁、强磁性铁镍合金或超磁致伸缩材料等磁性材料。由此,在磁致伸缩式负荷传感器工作时,下侧壳体20作为磁通路发挥功能。下文对此将详细说明。而且,下侧壳体20的棒状部件20b由热处理而消除磁致伸缩。
如图3和4所示,绕线管50具有筒状轴部50J(图4)、上侧法兰部51和下侧法兰部53。
在筒状轴部50J的上端部上一体形成有上侧法兰部51。在上侧法兰部51的上面中央上,还一体形成有环状突出部52(图3)。弹性环60安装在环状突出部52上(参考图3中的箭头F2)。弹性环60由具有弹性的硅树脂等制造。
在筒状轴部50J的下端部上一体形成有下侧法兰部53。因而,上侧法兰部51和下侧法兰部53相对。而且,下侧法兰部53与下侧壳体20的绕线管台座22几乎具有相同的尺寸。
在上侧法兰部51和下侧法兰部53之间,通过将导线缠绕在筒状轴部50J上,形成线圈40。在本实施例中,线圈40发挥励磁线圈功能,同时还发挥检测线圈功能。下文将详细说明,将用于防止线圈40解开的胶带41(图3)安装在线圈40的外周部上,而且在图4中没有示出胶带41。
在下侧法兰部53的外周部上在规定位置上形成有引线取出部54和绕线管切口部55。而且在下侧法兰部53的下面侧上,形成有从绕线管切口部55至引线取出部54的引线导向槽56(图4)。
在绕线管切口部55,从外周部向内周部将下侧法兰部53切下一部分。如图4所示,缠绕在筒状轴部50J上的线圈40的引线40R从绕线管切口部55向下方引出。引出的引线40R通过引线导向槽56被引导到引线取出部54。
引线取出部54具有下面敞开的大致马蹄形的截面(垂直截面),形成为从下侧法兰部53的外周部向外方突出。引线取出部54的内部空间构成引线导向槽56的一部分。
由此从线圈40引出的引线40R从引线取出部54引出到绕线管50的外部。
在图4中,在引线导向槽56的范围内,引线40R由收缩管70覆盖。也就是由收缩管70覆盖的引线40R嵌入在引线导向槽56内。由此,在磁致伸缩式负荷传感器100的组装时或工作时,即使产生振动,也可以防止通过引线导向槽56的引线40R断裂。
而且在本示例中,绕线管切口部55和引线取出部54以下侧法兰部53的中心为基准彼此偏离90°的位置关系形成。
位于线圈40的轴心上并沿上下方向延伸的筒状轴部50J的通孔50H与棒状部件20b的扩大部23r相同,从上方向下方扩大直径地向外方扩大。也就是通孔50H的下端部的内周面弯曲成凸状而连接到下侧法兰部53的下面。下文将通孔50H的下端部称作扩大部50r。
在具有上述结构的绕线管50上,当对磁致伸缩式负荷传感器100进行装配时,将下侧壳体20的棒状部件20b插入通孔50H中(参考图3中的箭头F3)。由此,将绕线管50载置在下侧壳体20的绕线管台座22上。
在此状态下,由上侧壳体10覆盖下侧壳体20而进行连接(参考图3中的箭头F4)。像下述那样进行上侧壳体10和下侧壳体20的连接。
首先,使下侧壳体20的棒状部件20b和上侧壳体10的孔部10H位置一致(对齐)。而且使载置在绕线管台座22上的绕线管50的引线取出部54和上侧壳体10的切口部10W位置一致。
虽然在上文中没有说明,但是,下侧壳体20的棒状部件20b在上下方向的长度(高度)比绕线管50和上侧壳体10的上下方向长度(高度)稍大。
此外,绕线管50的引线取出部54和上侧壳体10的切口部10W形成得能够相互嵌合。如上所述,引线取出部54具有大致马蹄形截面,因而,切口部10W也形成为大致马蹄形。由此,由于引线取出部54和切口部10W具有圆弧形角部,因而引线取出部54和切口部10W容易嵌合。
如上所述,在上侧壳体10和下侧壳体20位置相互一致的状态下,将上侧壳体10的壳体压入部11压入(压配合于)壳体法兰部21上。
由此,上侧壳体10和下侧壳体20相连,将线圈40、绕线管50和弹性环60收容在壳体K内。而且棒状部件20b的上端部在由弹性盖30覆盖的状态下通过上侧壳体10的孔部10H的上方突出。
而且,切口部10W和引线取出部54嵌合。由此,壳体K内部的线圈40的引线40R通过所述引线取出部54被引出到壳体K的外部。
从磁致伸缩式负荷传感器100延伸的引线40R与图中未示的振荡电路、整流电路、放大电路和中央演算处理电路(CPU)等周边电路相连。
(3)磁致伸缩式负荷传感器的内部结构下文根据图5,对上述那样制造的磁致伸缩式负荷传感器100中的引线取出部54、棒状部件20b的扩大部23r、通孔50H的扩大部50r的结构进行详细说明。
图5是沿图1中磁致伸缩式负荷传感器100的A-A线的截面图。如图5所示,引线取出部54以和上侧壳体10的侧壁厚度几乎相同的长度从下侧法兰部53的外周部突出(图3)。
因而,通过将上侧壳体10和下侧壳体20相连,引线取出部54的前端部和上侧壳体10的外周面几乎成为一个面。
由此,在根据本实施例的磁致伸缩式负荷传感器100中,由于引线40R从上侧壳体10中直接取出,可以实现磁致伸缩式负荷传感器100的小型化。
棒状部件20b的扩大部23r的外周面在垂直截面中从上向下以规定的曲率半径弯曲。而且,绕线管50的扩大部50r的内周面也在垂直截面中从上向下以规定的曲率半径弯曲。
棒状部件20b的扩大部23r的外周面曲率半径和通孔50H的扩大部50r的内周面曲率半径不同。具体地说,图1的磁致伸缩式负荷传感器100的A-A线截面中的扩大部23r的外周面曲率半径设定得比扩大部50r的内周面曲率半径小。
通孔50H的扩大部50r的最下端的直径与棒状部件20b的扩大部23r的最下端的直径相同。从通孔50H的扩大部50r的最下端朝向上方,通孔50H的扩大部50r的直径与棒状部件20b的扩大部23r的直径相比逐渐增大。
由此,由于通孔50H的扩大部50r的最下端的直径与棒状部件20b的扩大部23r的最下端的直径相同,所以可以对棒状部件20b相对于通孔50H的位置进行自动调整,以使棒状部件20b的中心轴和通孔50H的中心轴一致。
因而,在绕线管50的通孔50H的内周面和棒状部件20b的外周面之间形成均匀的间隙G。而且,在上侧壳体10的孔部10H的内周面和棒状部件20b的外周面之间也形成均匀的间隙G。
由此,在根据本发明实施例的磁致伸缩式负荷传感器100中,由于绕线管50容易相对于棒状部件20b进行正确地定位,所以提高了磁致伸缩式负荷传感器100的装配性。
(4)磁致伸缩式负荷传感器的动作图6是用于说明图1的磁致伸缩式负荷传感器100的动作的视图。
如上所述,从磁致伸缩式负荷传感器100延伸出的引线40R与图中未示的周边电路相连。
在磁致伸缩式负荷传感器100动作时,由图中未示出的周边电路通过引线40R向线圈40内流动交流电。更具体地说,由周边电路的振荡电路驱动线圈40。此时,线圈40作为励磁线圈发挥功能,棒状部件20b被磁化。由此,上侧壳体10和圆盘状部件20作为磁通路发挥功能。
在图6中,在线圈40被驱动时磁致伸缩式负荷传感器100内的磁场由白底箭头M示出。
此时,如图6中的粗箭头P所示,一旦将负载施加在磁致伸缩式负荷传感器100的受压部PS上,则压缩力作用在棒状部件20b上。因而,一旦压缩力作用在棒状部件20b上,由磁致伸缩效果,棒状部件20b的磁导率下降,线圈40的电感改变。
当棒状部件20b由上述超磁致伸缩材料构成时,其磁致伸缩效果系数为几百~几千ppm。此外,当棒状部件20b由超磁致伸缩材料之外的材料构成时,其磁致伸缩效果小于等于几十ppm。
因而在线圈40上产生的感应电动势(电压)变化,此时线圈40作为检测线圈发挥功能。线圈40上的电压变化通过引线40R由图中未示出的周边电路检测出来。
具体地说,线圈40的电压通过引线40R而输送到整流电路。由整流电路整流后的电压由放大电路进行放大。根据放大后的电压,CPU计算作用在棒状部件20b上的压缩力,由此,检测出施加在磁致伸缩式负荷传感器100的受压部PS上的负载。
(5)实施例的效果在根据本实施例的磁致伸缩式负荷传感器100中,可以被施加负载的棒状部件20b与下侧壳体20的圆盘状部件20a一体形成。由此,在对磁致伸缩式负荷传感器100进行装配时,由于可将下侧壳体20的棒状部件20b轻易并正确地插入到绕线管50的通孔50H中,磁致伸缩式负荷传感器100的制造变得容易。
而且,如上所述,由于通孔50H的扩大部50r的最下端直径和棒状部件20b的扩大部23r的最下端直径相等,在将下侧壳体20的棒状部件20b插入到绕线管50的通孔50H中时,可对棒状部件20b相对于通孔50H的位置进行自动调整,以使棒状部件20b的中心轴和通孔50H的中心轴一致。由此,能够保持棒状部件20b和绕线管50处于正确的定位状态。
因而即使在将上侧壳体10压入下侧壳体20时,也可以防止棒状部件20b和绕线管50的位置偏移,所以能够降低磁致伸缩式负荷传感器100的感度的波动(变化)。提高磁致伸缩式负荷传感器100的可靠性。
而且安装在绕线管50上的弹性环60位于绕线管50上面和上侧壳体10的上端部内面之间。由此,在将上侧壳体10压入下侧壳体20时,可以防止由伴随着压入作业的振动而使绕线管50沿上下方向移动,也可以防止引线40R断线。
因而,由于可靠地防止了棒状部件20b和绕线管50的位置偏移,所以能够充分降低磁致伸缩式负荷传感器100的感度波动,充分提高磁致伸缩式负荷传感器100的可靠性。
而且,由于上侧壳体10具有切口部10W,所以降低了将上侧壳体10的法兰压入部11压入壳体法兰部21所必需的负荷(下文简称为压入负荷),由此,可以降低在上侧壳体10上产生的残留应力。
此外,在将上侧壳体10的法兰压入部11压入壳体法兰部21时,可以在上侧壳体10的上端部上施加负载。另一方面,在上述压入时,并没有向在磁致伸缩式负荷传感器100动作时被施加负载的棒状部件20b的上端部上施加用于压入的负载。
因而在法兰压入部11的压入时,可以降低由压力在棒状部件20b内所产生的残留应力。从而控制由残留应力引起的棒状部件20b的磁性变化,充分降低了磁致伸缩式负荷传感器100的感度的波动。
而且,由于法兰压入部11与圆盘状部件20a的整个外周部相连,可以确保增大由上侧壳体10形成的磁通路的截面积。从而,即使由压入在法兰压入部11上产生残留应力,也使由残留应力引起的磁阻增加减少。
此外,上侧壳体10在比下侧壳体20的棒状部件20b更高的温度下进行热处理。由此,上侧壳体10的硬度比棒状部件20b的硬度低。因而能够以小负荷将上侧壳体10的法兰压入部11压入到壳体法兰部21上。因而,可以防止由压入作业引起的上侧壳体10和下侧壳体20的位置偏差,同时进一步降低在上侧壳体10上产生的残留应力,并进一步降低磁致伸缩式负荷传感器100的感度波动。
磁性材料的磁阻随热处理温度上升而下降。因而在上侧壳体10的热处理温度比下侧壳体20的热处理温度高时,棒状部件20b的磁阻比上侧壳体10的磁阻大。此时,棒状部件20b的磁阻相对于磁通路的整体阻抗的比值变大。因而,提高了磁致伸缩式负荷传感器100的感度。
由于不通过引线脚(ピン)就将线圈40的引线40R取出到上侧壳体10的外部,可以使切口部10W周向长度比上下方向长度短。也就是可以缩短切口部的周向长度。
由此,由上侧壳体10形成的磁通路的截面积变大,因而进一步降低了上侧壳体10的磁阻的增加。从而也提高了磁致伸缩式负荷传感器100的感度。
而且从线圈40的引线取出部54将引线40R取出。由此在将上侧壳体10的法兰压入部11压入壳体法兰部21时,引线40R由引线取出部54保护,可以防止在引线40R上施加负荷。
从而在组装磁致伸缩式负荷传感器100时,可以防止引线40R断线,所以提高了磁致伸缩式负荷传感器100的合格率,降低了制造成本。
而且将弹性盖30安装在上侧壳体10的上端部上。由此,在通孔50H内周面和棒状部件20b的外周面之间所形成的间隙G、在孔部10H的内周面和棒状部件20b的外周面之间所形成的间隙G由弹性盖30封闭。由此,可以实现磁致伸缩式负荷传感器100的防尘和防水,提高可靠性。
如上所述,根据本实施例的磁致伸缩式负荷传感器100具有高可靠性同时易于制造,能够小型化。
(6)磁致伸缩式负荷传感器的其它结构示例本示例的磁致伸缩式负荷传感器在下述各点上与图1的磁致伸缩式负荷传感器100结构不同。此外,本示例的磁致伸缩式负荷传感器的外观与图1的磁致伸缩式负荷传感器100的外观几乎相同。
图7、图8a和8b是用于说明根据本发明一实施例的磁致伸缩式负荷传感器的其它结构示例的视图。
在图7中示出了本示例的磁致伸缩式负荷传感器100在垂直方向的截面图。图7相当于图1的A-A线截面图。图8a示出了磁致伸缩式负荷传感器100的俯视图,图8b示出了图7中的磁致伸缩式负荷传感器100的B-B线截面图。
如图8a所示,从上方看时,本示例的磁致伸缩式负荷传感器100的外观与图1的磁致伸缩式负荷传感器100的外观相同。
如图7和图8b所示,在磁致伸缩式负荷传感器100中,上侧壳体10的形状与图1中的上侧壳体10的形状不同。下文对此进行详细说明。
在上侧壳体10的下端部上,与图1中上侧壳体10相同,形成有用于将引线40R取出的切口部10W。
而且在上侧壳体10的下端部上形成狭缝10a。所述狭缝10a,以上侧壳体10的中心轴线为基准,形成在与切口部10W相反的一侧上。
狭缝10a的上下方向的长度(高度)比法兰压入部11的上下方向的长度(高度)高。而且,狭缝10a的周向长度比狭缝10a的上下方向的长度短。
在本示例的磁致伸缩式负荷传感器100中,上侧壳体10的下端部除了切口部10W和狭缝10a之外的部分成为法兰压入部11。
由于上侧壳体10具有切口部10W和狭缝10a,与图1的上侧壳体10相比,可以更充分地减少压入负荷。由此,进一步降低了上侧壳体10内产生的残留应力。
从而可以控制由残留应力引起的上侧壳体10的磁性变化,进一步降低磁致伸缩式负荷传感器100的感度波动。
(7)磁致伸缩式负荷传感器另一结构示例在上侧壳体10的下端部上如下所述也可以形成多个狭缝10a。
图9是用于说明根据本发明一实施例的磁致伸缩式负荷传感器的另一结构示例的视图,在图9中示出了本示例的磁致伸缩式负荷传感器100的水平方向截面图,图9相当于图7的B-B线截面图。
在图9的上侧壳体10的下端部上,以相互之间形成相等间隔的方式形成有切口部10W和3个狭缝10a。也就是切口部10W和3个狭缝10a以上侧壳体10的中心轴线为基准形成在彼此间隔90°的位置上。
由于上侧壳体10具有切口部10W和3个狭缝10a,与图7的上侧壳体10相比,压入负荷更为降低。由此进一步降低了上侧壳体10上产生的残留应力。
从而可以控制由残留应力引起的上侧壳体10的磁性变化,进一步降低磁致伸缩式负荷传感器100的感度波动。
而且,可以使用于压入的负荷在上侧壳体10的整个下端部上均匀分布。
由此,可以防止在压入时法兰压入部11变形。在上侧壳体10的外周部在水平截面上形成为正圆时,即使在压入操作后,仍可以维持圆度。
不限于此,在上侧壳体10上也可以形成2个狭缝10a,也可以形成大于等于4个的狭缝10a。此时对应于形成在上侧壳体10上的狭缝10a的数目(个数)而使得压入负荷降低。
(8)压入负荷、狭缝数目、厚度和热处理条件压入负荷的大小取决于形成在上侧壳体10上的狭缝10a的数目。而且,压入负荷的大小也取决于上侧壳体10的厚度和热处理条件。
本发明人为了调查压在磁致伸缩式负荷传感器100中入负荷、狭缝10a的数目、厚度和热处理条件之间的关系,进行了下述试验。
本发明人制造了狭缝10a的数目、厚度和热处理条件不同的7个上侧壳体S1、S2、S3、S4、S5、S6、S7。上侧壳体S1~S7的结构和热处理条件分别如下所述。
上侧壳体S1不在比下侧壳体20的棒状部件20b的热处理温度高的温度下进行热处理的方式制造。在上侧壳体S1上也没有形成狭缝10a。
上侧壳体S2在比棒状部件20b的热处理温度高的温度下进行热处理而制造。在上侧壳体S2上没有形成狭缝10a。上侧壳体S2相当于图1中的上侧壳体10。
上侧壳体S3在比棒状部件20b的热处理温度高的温度下进行热处理而制造。在上侧壳体S3上形成1个狭缝10a。上侧壳体S3相当于图7中的上侧壳体10。
上侧壳体S4在比棒状部件20b的热处理温度高的温度下进行热处理而制造。在上侧壳体S4上形成3个狭缝10a。上侧壳体S4相当于图9中的上侧壳体10。
上侧壳体S5以不在比棒状部件20b的热处理温度高的温度下进行热处理的方式制造。在上侧壳体S5上与上侧壳体S3相同也形成了1个狭缝10a。
上侧壳体S6以不在比棒状部件20b的热处理温度高的温度下进行热处理的方式制造。在上侧壳体S6上与上侧壳体S4相同也形成了3个狭缝10a。
上述上侧壳体S1~S6的外周部的厚度都是1.0毫米。
上侧壳体S7在比棒状部件20b的热处理温度高的温度下进行热处理而制造。在上侧壳体S7上没有形成狭缝10a。上侧壳体S7的外周部的厚度比其它的上侧壳体S1~S6的外周部的厚度薄,为0.6毫米。
将上述那样制造的上侧壳体S1~S7分别压入下侧壳体20上,对其压入负荷进行测量。
图10是示出对压入负荷、狭缝10a数量、厚度和热处理条件的关系的实验结果的图形。在图10中,纵轴表示压入负荷,横轴分别表示各个上侧壳体S1~S7。
在图10中,将上侧壳体S1~S7的符号赋予横轴,同时示出了各个上侧壳体S1~S7的狭缝10a的数目、热处理条件和厚度。
如图10所示,不在比棒状部件20b的热处理温度高的温度下进行热处理且也没有形成狭缝10a的上侧壳体S1的压入负荷比其它的上侧壳体S2~S7的压入负荷大。
与此相对,在具有狭缝10a的上侧壳体S5、S6中,狭缝10a的数量越多,压入负荷越低。
而且在比棒状部件20b的热处理温度高的温度下进行了热处理的上侧壳体S2、S3、S4中,压入负荷进一步降低。
而且与上侧壳体S1的压入负荷相比,在比棒状部件20b的热处理温度高的温度下进行了热处理且厚度薄的上侧壳体S7的压入负荷降低为大约一半。
根据上述结果可以得知,通过将上侧壳体10的厚度设定得薄,在比棒状部件20b的热处理温度高的温度下对上侧壳体10进行热处理,同时在上侧壳体10上形成更多的狭缝10a,能够降低压入负荷。
因而,通过将上侧壳体10的厚度设定得薄,在比棒状部件20b的热处理温度高的温度下对上侧壳体10进行热处理,同时在上侧壳体10上形成更多的狭缝10a,能够使磁致伸缩式负荷传感器100的装配性提高。
而且在减少上侧壳体10的厚度时,虽然磁阻增大,但是通过在比棒状部件20b的热处理温度高的温度下对上侧壳体10进行热处理,可以降低磁阻的增大。
(9)感度和阻抗的波动在本实施例中,由在磁致伸缩式负荷传感器100上不施加负荷时线圈40的阻抗(初期阻抗Z0)除在将规定负荷施加在磁致伸缩式负荷传感器100上时线圈40的阻抗变化量(阻抗变化量ΔZ),计算获得磁致伸缩式负荷传感器100的感度。
磁致伸缩式负荷传感器100的感度波动取决于是否在上侧壳体10上形成狭缝10a、上侧壳体10的厚度和热处理条件。而且磁致伸缩式负荷传感器100的初期阻抗Z0波动也取决于是否在上侧壳体10上形成狭缝10a、上侧壳体10的厚度和热处理条件。
为了调查磁致伸缩式负荷传感器100的感度波动、初期阻抗Z0波动、压入负荷、狭缝10a的数目、厚度和热处理条件之间关系,本发明人进行了下述试验。
本发明人制造了狭缝10a的数目、厚度和热处理条件不同的2种上侧壳体T1、T2,上侧壳体T1、T2的各自结构和热处理条件如下所述。
上侧壳体T1以不在比下侧壳体20的棒状部件20b的热处理温度高的温度下进行热处理的方式制造。在上侧壳体T1上没有形成狭缝10a。此外,上侧壳体T1的厚度是1.0毫米。该上侧壳体T1相当于上侧壳体S1。
通过在比棒状部件20b的热处理温度高的温度下进行热处理同时形成狭缝10a,或在比棒状部件20b的热处理温度高的温度下进行热处理同时减少厚度,制作上侧壳体T2。上侧壳体T2相当于上述上侧壳体S3、S4、S7。而且在减少厚度时,上侧壳体T2的厚度是0.6毫米。
制造大量上述上侧壳体T1、T2,以大量制造磁致伸缩式负荷传感器100。对大量生产的各个磁致伸缩式负荷传感器100,测量线圈40的初期阻抗Z0。而且对每个磁致伸缩式负荷传感器施加600N负荷,测量从初期阻抗Z0的阻抗变化量ΔZ,从而计算每个磁致伸缩式负荷传感器100的感度。
图11a和11b是示出磁致伸缩式负荷传感器100的感度和初期阻抗Z0的波动的图形。在图11a和11b中,纵轴表示磁致伸缩式负荷传感器100的初期阻抗Z0,横轴表示磁致伸缩式负荷传感器100的感度。
在图11a中,由虚线T1表示具有上侧壳体T1的磁致伸缩式负荷传感器100的感度和初期阻抗Z0的波动范围。
在具有上侧壳体T1的磁致伸缩式负荷传感器100中,在跨过大约50%的范围SE1中感度出现波动。而且,在具有上侧壳体T1的磁致伸缩式负荷传感器100中,在跨过大约12Ω的范围Z01内初期阻抗Z0出现波动。
在图11b中,由虚线T2表示具有上侧壳体T2的磁致伸缩式负荷传感器100的感度和初期阻抗Z0的波动范围。
在具有上侧壳体T2的磁致伸缩式负荷传感器100中,在跨过大约20%的范围SE2中感度出现波动。而且,在具有上侧壳体T2的磁致伸缩式负荷传感器100中,在跨过大约7Ω的范围Z02内初期阻抗Z0出现波动。
此外,本发明人对在具有下述上侧壳体T3的磁致伸缩式负荷传感器100也进行了感度波动测量。
通过在比棒状部件20b的热处理温度高的温度下进行热处理而制作上侧壳体T3。在上侧壳体T3上没有形成狭缝10a。上侧壳体T3的厚度是1.0毫米。上侧壳体T3相当于上述上侧壳体S2。
此时在具有上侧壳体T3的磁致伸缩式负荷传感器100中,在大约24%的范围内感度出现波动(图中未示出)。
根据上述结果,与具有上侧壳体T1的磁致伸缩式负荷传感器100相比,在具有上侧壳体T3的磁致伸缩式负荷传感器100中能够降低感度波动。而且与具有上侧壳体T3的磁致伸缩式负荷传感器100相比,具有上侧壳体T2的磁致伸缩式负荷传感器100可进一步降低感度波动。
因而通过在比棒状部件20b的热处理温度高的温度下对上侧壳体10进行热处理,可以降低磁致伸缩式负荷传感器100的感度波动。如果进一步在上侧壳体10上设置狭缝10a或减少上侧壳体10的厚度,则可以进一步降低磁致伸缩式负荷传感器100的感度波动。
而且与具有上侧壳体T1的磁致伸缩式负荷传感器100相比,具有上侧壳体T2的磁致伸缩式负荷传感器100降低了初期阻抗Z0的波动。
如上所述,通过在比棒状部件20b的热处理温度高的温度下对上侧壳体10进行热处理、在上侧壳体10上设置狭缝10a或减少上侧壳体10的厚度,可以进一步降低磁致伸缩式负荷传感器100的初期阻抗Z0的波动。
(10)其它实施例在根据上述实施例的磁致伸缩式负荷传感器100中,虽然上侧壳体10的水平截面大致具有圆形的钟形形状,但是上侧壳体10的水平截面也可以具有椭圆的大致钟形状,或具有大致长方体形状。
而且在上述内容中,下侧壳体20的棒状部件20b的上下方向的长度比绕线管50和上侧壳体10的上下方向的长度大,但是,棒状部件20b的上下方向的长度和绕线管50以及上侧壳体10的上下方向的长度之间的关系并不局限于此。例如下侧壳体20的棒状部件20b的上下方向的长度也可以和上侧壳体10的上下方向的长度相同。
而且下侧壳体20的棒状部件20b的上下方向的长度也可以比上侧壳体10的上下方向的长度短。此时棒状部件20b不从上侧壳体10的孔部10H突出。因而通过其它部件向受压部PS施加负荷。
而且,棒状部件20b的形状并不局限于圆柱形。棒状部件20b也可以具有四角柱形状,也可以具有椭圆柱形状。
(11)权利要求中各个结构元件与实施例的各个部分的对应在根据上述实施例的磁致伸缩式负荷传感器100中,绕线管50的通孔50H相当于通孔,线圈40和绕线管50相当于线圈,棒状部件20b相当于棒状部件,绕线管台座22相当于台座,上侧壳体10的孔部10H相当于开口,上侧壳体10相当于壳体部件。
此外,壳体压入部11相当于壳体部件的嵌合部,上侧壳体10的切口部10W相当于切口,与棒状部件20b大致平行的垂直方向相当于第1方向,水平方向相当于第2方向。
而且,下侧法兰部53相当于法兰部,形成线圈40的导线和引线40R相当于导线。引线取出部54相当于导线取出部,引线导向槽56相当于导向槽。
此外,收缩管70相当于被覆管,扩大部23r相当于扩大部。通孔50H的下侧法兰部53侧的端部相当于通孔的端部,弹性环60相当于弹性部件。
权利要求
1.一种磁致伸缩式负荷传感器,包括具有通孔的线圈;具有用于承受负荷的一端并插入所述线圈的所述通孔内、由磁性材料制成的棒状部件;与所述棒状部件的另一端一体形成并支撑上述线圈的台座;和壳体部件,该壳体部件以收容所述线圈的方式嵌合在所述台座上,并具有能够使所述棒状部件的所述一端承受负荷的开口。
2.如权利要求1所述的磁致伸缩式负荷传感器,其特征在于,所述台座和所述壳体部件由磁性材料制成,作为由所述线圈产生的磁场的磁通路而发挥作用。
3.如权利要求1所述的磁致伸缩式负荷传感器,其特征在于,所述壳体部件在与所述台座的嵌合部上具有使所述壳体部件的内部和外部连通的切口。
4.如权利要求3所述的磁致伸缩式负荷传感器,其特征在于,所述切口在与所述棒状部件基本平行的第1方向上的长度比所述切口在与所述第1方向垂直的第2方向上的长度长。
5.如权利要求3所述的磁致伸缩式负荷传感器,其特征在于,所述线圈包括具有由所述台座支撑的法兰的绕线管、缠绕在所述绕线管上的导线;所述绕线管的法兰包括导线取出部,该导线取出部形成有将从所述线圈引出的所述导线引导到所述壳体部件的外部的通路;所述导线取出部形成为嵌合在所述切口中。
6.如权利要求5所述的磁致伸缩式负荷传感器,其特征在于,所述法兰包括用于将所述导线导向所述导线取出部的通路的导向槽。
7.如权利要求6所述的磁致伸缩式负荷传感器,其特征在于,至少在通过所述导向槽和所述导线取出部的通路范围内进一步包括对所述导线进行覆盖的被覆管。
8.如权利要求1所述的磁致伸缩式负荷传感器,其特征在于,所述壳体部件在和所述台座的嵌合部上具有1个或多个狭缝。
9.如权利要求1所述的磁致伸缩式负荷传感器,其特征在于,所述壳体部件在和所述台座的嵌合部上具有多个狭缝,上述多个狭缝等间距地形成。
10.如权利要求1所述的磁致伸缩式负荷传感器,其特征在于,所述棒状部件在所述另一端上具有朝向所述台座截面逐渐增大的扩大部。
11.如权利要求10所述的磁致伸缩式负荷传感器,其特征在于,所述棒状部件的所述扩大部一侧的上述通孔的端部具有朝向所述台座逐渐增大的截面。
12.如权利要求11所述的磁致伸缩式负荷传感器,其特征在于,在所述棒状部件的外面和所述通孔的内面之间设置有间隙,所述棒状部件的扩大部的最大截面具有与所述通孔的最大截面相同的尺寸。
13.如权利要求1所述的磁致伸缩式负荷传感器,其特征在于,还包括以覆盖上述开口的方式安装在所述壳体部件上的弹性盖。
14.如权利要求1所述的磁致伸缩式负荷传感器,其特征在于,还包括设置在所述壳体部件的内侧端面和所述线圈的端面之间的弹性部件。
15.如权利要求1所述的磁致伸缩式负荷传感器,其特征在于,所述壳体部件在比所述棒状部件的热处理温度高的温度下被进行热处理。
全文摘要
磁致伸缩式负荷传感器包括上侧壳体、下侧壳体、线圈和绕线管。上侧壳体具有大致钟形形状,同时在上端部形成有孔部,在下端部上形成有切口部。下侧壳体具有圆盘状部件和棒状部件一体形成的结构。通过将导线缠绕在绕线管上而形成有线圈。在绕线管的规定位置上形成用于将线圈的导线取出的导线取出部。在制造磁致伸缩式负荷传感器时,将棒状部件插入绕线管的轴心中,使上侧壳体覆盖下侧壳体而连接。由此,上侧壳体的切口部和绕线管的导线取出部嵌合。棒状部件的上端部从上侧壳体的孔部突出。
文档编号G01G3/15GK1715849SQ20051007714
公开日2006年1月4日 申请日期2005年6月14日 优先权日2004年6月14日
发明者水野裕, 原田佳典, 石川里美 申请人:雅马哈发动机株式会社