专利名称:用于确定方位指示器的方位的方法
技术领域:
本发明涉及一种根据权利要求1的前序部分所述的用于确定方位指示器的方位的方法,并且涉及一种根据权利要求9的前序部分所述的方位指示器,以及该方法的使用和方位指示器的使用。
背景技术:
获知结构的方位在许多应用中是至关重要的,例如在勘测中通过可能不在目标点上方垂直直立的反射器杆测量距目标点的距离时,例如在航空和航天中停靠飞行器来补给燃料时,或者在对监控新建道路进程的机器的自动控制中。在这些领域中,通常通过诸如经纬仪、照相机或激光测距仪的光学测量器具确定目标点的空间位置。为了测量,通常将具有光发射和/或光反射点的感触工具定位在目标点处。
因此,在WO 91/16598中公开了一种用于确定表面状况的系统,其中该系统包括至少两个光电子传感器和一工具,所述工具配备有至少两个光源和三个接触点或一接触区域。该工具通过接触点固定至一表面,并通过测得的光源的空间坐标和它们相对于接触点的已知位置来确定表面的方位。然而,对于这种用于确定方位的工具,在目标位置处需要电源,该电源在目标难以接近时通常不能提供。
在EP 0 880 674中,公开了一种可用于通过激光测距和摄影测量的组合来确定目标点的空间坐标的方法。在该方法中,在目标点处定位具有几个反射点的感触工具。激光区域探测器将测量距一个或几个反射点的距离,同时照相机拍摄反射点的照片。在照相机顶部上固定闪光灯,作为用于照亮反射点的目标照明。通过照相机传感器中的反射点图像,计算感触工具的位置和方位。该系统最佳地主要用于短距离测量,特别是用于汽车工业和飞行器工业,因为将照明范围较小的闪光灯用于照明,所以测量范围也较小。此外,在长距离测量中,难以或不可能测量分开的距离,因为几个反射点将进入EDM的视野。而且在利用反射器而不是主动发出辐射的测量点作为照相机的测量点时该方法存在误差,因为目标照明不会与照相机的光轴耦合。这里在确定测量点位置时引起的误差与目标照明源距照相机光轴的距离在一个数量级上。因此,缺少主动发光测量点的该方法不适用于测地学的相关测量精度。
发明内容
因此本发明的任务在于弥补现有技术的缺陷并提供一种方法,该方法可用于以一般所需的精度确定方位指示器的方位和/或位置(即使超出了测地相关距离,包括目标点的位置不能直接看见的情况),其也可以用于自动控制诸如建筑机械的自动控制车辆。
本发明的另一任务在于提供一种具有反射段的方位指示器,该方位指示器以可定位在目标点处的方式实现,并且其方位可通过测量器具(更具体的是视距仪)在长距离上和短时间内高精度地确定。
分别通过权利要求1和9的主题,或者通过从属权利要求的主题解决这些任务,或者进一步改进解决方案。
在根据本发明的用于确定方位指示器的方位和/或位置的方法中,使用一测量器具,该测量器具具有测距传感器和图像获取传感器,更具体的是视距仪或具有集成的测距仪和集成的照相机的望远镜瞄准具。优选的是,所述测距传感器、图像获取传感器以及用于目标照明的测量光束是同轴的,即,所述测距传感器和所述图像获取传感器的光轴以及测量光束的中心光线在良好的近似度上都位于所述测量器具外的一个轴线上。
为所述方位指示器设置一结构,该结构包括至少三个反射段并且可定位和/或固定在目标点处。通过所述测量器具获取所述至少三个反射段的一个图像并测量距一个反射段的距离。与所述段相对彼此的位置无关地形成用于测量距离的所述段,使得该段可以与其它段区别开来。例如可通过区域的几何形状或光谱特性来实现可区别性。所述结构可具有三个以上的反射段。一反射段应理解成反射从辐射源发出并照在该段上的辐射的段。该段当然可以以这样的方式反射辐射,使得该辐射到达检测器。优选的是,使用后向反射器作为所述反射段。然而,也可以使用不定向反射辐射的反射器、或者定向反射辐射的反射器,或者这两者的组合。
所述反射段具有已知的相互几何关系,并且以这样的方式设置,使得所述图像获取传感器可同时分辩它们。所述反射段的特别有利的结构是不共线的结构,更具体的是,所述反射段应以使它们不会彼此完全遮挡的方式设置在从所述测量器具到所述方位指示器的视线上。当然是否可满足该要求取决于所述方位指示器的方位以及其相对于所述图像获取传感器的方位。对于包括三个以上的反射器的结构,一般这不是一个问题,即,将它们以不共线的方式设置使得在所述结构的任何位置或方位所有反射段都不会彼此遮挡。然而,当存在大量反射段时复杂性增加,因为个体段为了被识别而必须能够与其它段区别开来。而且,必须确保可分辩所述图像获取传感器产生的图像。因此,事实上对于反射段数量的任何增加,都将确保可捕获至少三个段,但同时由于复杂性更高而必须付出更多的劳动。因此,所述反射段的形状和结构应该考虑这两个矛盾需求。
在测量器具处,辐射被朝向所述方位指示器的所述反射段定向发射,并且被这些反射段反射和/或散射,并且被所述测量器具中的所述传感器获取为反射辐射和/或散射辐射。优选使用激光器作为辐射发射器。用于电子测距的所述传感器和用于图像获取的传感器同轴,即在所述器具外部所述传感器的光轴以良好的近似度重合。用于测距的所述辐射发射器和用于图像获取或方向测量的所述辐射发射器以这样的方式引入,使得它们的虚像从所述器具外部看去也位于所述轴线上,从而目标的同轴照明可用于测距和图像获取。使用同轴的辐射发射器/目标照明器,人们可实现例如满足测地要求的测量精度。特别是由于在许多测地应用中使用反射段来代替主动发射的测量点,所以为了满足一般的测量精度要求需要精密的测量器具。在用于测距和获取图像的具有可以以限定方式变化的视野的接收器中,例如在视距仪中,并且在同轴的目标照明器中,该目标照明器朝向所述接收器的当前视野取向。与未经修改的目标照明相比,通过将发射的辐射集中于所述接收器的视野,并且将所述目标照明取向成所述接收器的视野,可以实现较大的测量范围和较低的功耗。
测距和图像获取同时发生,测量距一个反射段的距离,并获取至少三个反射段的图像。也可以获取来自三个以上的反射段的图像。例如,可设置四个反射段,测量距第一反射段的距离并对于第二、第三和第四段获取图像并且/或者测量方向。为了较好地分离测距和图像获取,从所述测量器具发射两个不同的光束第一准直光束和第二发散光束。而且两个光束的波长或偏振,或者波长和偏振不同。这里,所述发散光束所具有的发散度优选与所述图像获取传感器的通常用于测地应用的视野相对应并且比所述测距传感器的视野宽。目标照明所需的相对较小的发散度在不违反激光安全规定的情况下为所述方法提供了长距离能力。准直光束理解成具有例如0.5°的通常较小的孔径角的光束。
在覆盖长距离的测量中,可能有超过仅一个的反射段进入所述测距传感器的视野范围,从而不能正确或选择性地测量距离。因此,通常合适的是将滤光器与所述反射段相关联或将滤光器引入光束路径中。通过将所述滤光器引入传感器与方位指示器之间的光路中而实现该相关,例如使用设置在所述反射段前方或附着于所述反射段的滤光器,但同样可以通过使所述反射段自身由过滤材料制成或者使所述传感器配备有滤光器而实现该相关。优选的滤光器是光谱滤光器或偏振光滤器,例如可使用干涉滤光器和/或吸收滤光器。此外,所述反射段优选制成不同尺寸,从而不同的反射段可更容易在所述图像传感器中产生的图像中区别开来。通常测量距其距离的所述后向反射器制成为比其它反射器大。由于具有这种可与它们的相对位置无关地进行区别的反射段,所以所述方位指示器将更加特别适于头顶测量。
所述反射段可具有不同的形状和布局。在使用呈诸如球形4π反射器的全向反射器形状的反射段时,获得特别大的测地范围。柱形或球形360°反射器也可以代表所述反射段。另一种可能性是呈棱镜形状,特别是三棱镜形状的反射段。也可以采用抛光钢元件、玻璃镜元件、包覆有反射器箔的元件、或者由反射材料制成的特别是球的元件。反射器箔是容易得到的反射材料,但利用由三棱镜或微透镜制成的反射器(例如所谓的猫眼石(cat′s eye)反射器)可确保更加精确的测量。
通常,所述反射段通过诸如支柱的连接单元连系在一起。可以采用任意结构,例如星形或三角形结构,只要所述反射段可在该结构的与测量相关的任何位置被所述图像传感器分别察觉即可。可能连系在一起的所述反射段通常固定在具有可检测的几何形状的附加元件(下文称为反射器支撑件)处。这可以例如是放置在用于勘测的目标点处的反射器杆。它可以以这样的方式紧固,使得所述结构的重心与所述反射器支撑件的重心重合,这在实际使用中通常是有利的,但是紧固方法可以根据应用而变化。对于为了测量距离和/或位置而定位在目标点处的所述反射器支撑件,可以通过在所述反射器支撑件处确定距反射段的距离并且通过在所述反射器支撑件处确定位置或朝向该反射段和至少两个其它反射段的空间方向,也可以通过所述反射段中的已知几何关系以及所述反射器支撑件与所述反射段之间的已知几何关系来高精度地确定所述反射器支撑件的方位并通过该方位确定所述目标点的距离或位置。不再需要对所述反射器支撑件进行水准测量,这通常易于出错并需要大量操作。使用该方法,人们还可以例如通过将所述反射器支撑件定位在不能从所述测量器具直接看到的目标点(即所谓的隐藏点,例如下水管道(sewer shaft)中的点)处或者通过用例如附着有方位指示器的测距仪测量管道来确定距该目标点的距离或该目标点的位置。
一般通过激光测距来测量距离,同时一般通过图像捕获来确定方位。通过所述反射段产生的所述目标照明器的虚像例如在图像传感器中成像,并且通过这些图像的位置确定朝向所述反射段的空间方向。所述图像传感器例如可以是CCD图像区传感器或照相机。
根据本发明的用于方位确定的方法或者方位指示器的另一可能应用见于自动机器控制。所述方位指示器例如附着于一台建筑机械,并且可以例如通过在各方面及时确定所述方位指示器所处的方位来监控道路的斜度并且对所述一台机械的驱动路径进行自动控制,从而确定所述一台机械自身的方位。
下面借助附图中示意性表示的具体实施例,仅通过示例更加详细地描述根据本发明的方法和方位指示器,以及根据本发明的方法和方位指示器的用途,同时详述本发明的其它优点。图中具体示出图1示出用于根据本发明的方法的可行的测量结构;图2示出用于实现根据本发明的方法的可行的测量器具;图3在四个图部分3A、3B、3C、3D中示出根据本发明的方位指示器的可行实施例;图4在两个图部分4A、4B中示出与反射器支撑件相关的反射段的两个实施例以及它们的图像;图5在四个图部分5A、5B、5C、5D中示出根据本发明的方位指示器的四个可行实施例;图6示出了用于说明测地学的相关测量精度的图;图7示出了根据本发明的方位指示器的用于监控一台建筑机械的用途;图8示出了说明测量误差的图。
具体实施例方式
图1表示用于实现根据本发明的用于确定方位指示器的方位和/或位置的方法的可行结构,该结构包括测量器具1和方位指示器。示出的测量器具1可以是具有经纬仪的视距仪和与视距仪的光轴同轴的EDM,它也可以是具有集成的测距仪12和集成的照相机的望远镜,或者用于测量距离并获取图像或确定方向的另一光学器具。方位指示器制成有三个利用支柱连系在一起并紧固至反射器支撑件(即视距尺)5的反射段,例如三个后向反射器4’、4”、4。在中央的后向反射器4可与其它两个反射器4’、4”光谱区分。应理解,不定向反射的段和定向反射的段的组合可用作反射段。
反射段不需要通过支柱连系在一起,它们也可以直接紧固至反射器支撑件5,例如紧固至固定于反射器支撑件5处的支撑板。在图1中,反射段示出为三棱镜。反射段当然可以具有适于具体应用的任何形状,例如球、全向反射器或柱形反射器。图1中的实线表示用于测量距离的准直光束2、2’,而虚线表示用于图像捕获的光束3、3’。优选的是,利用具有第一波长的激光束测量距离。该激光束精确指向为测量距离而可区别地制成的个体反射段4,并且以已知的方式确定距该段的距离。这里在测量距离时,在人们想要防止距离测量传感器接收来自多于一个的反射段的辐射,并且防止由于重叠反射和/或散射来自于不同反射段的光束而使测量失真时,使用准直光束2是有利的。这是由于同一个原因,即,优选的是,为了捕获图像,使用与用于测量距离不同的第二波长辐射。用于捕获图像的光束3优选具有与图像捕获的视野对应的发散,即,应该通过图像传感器尽可能捕获最大数量的被照射的反射段。
图2示出了用于实现根据本发明的方法的测量器具1的可行设计。在该示例中,测量器具制成为具有集成的测距传感器12和集成的图像获取传感器13的望远镜的形式。从辐射源19定向发出辐射。辐射源19优选为激光器。发出的辐射通过这里示出为具有反射层的镜子的第一反射元件11导向方位指示器。通过方位指示器的反射段朝向透镜10反射和/或散射的光束通过透镜10导至具有层14、15的分束管17,层14、15中的一个具有二色性,一个可部分透过光束。当然,分束管可由另一具有类似光学特性的光学元件替代。更具体的说,可使用第二二色性层代替可部分透过的层。具有第一波长的光束在分束管17的二色性层14处反射和/或散射,并导向第二反射元件18(这里为具有反射层的镜),第二反射元件18将光束与测量器具的光轴分离并将它们导至测距传感器12。具有第二波长的光束穿过二色性层14并被分离且在可部分透过光束的第二层15处导向图像传感器13。为了观察,或者结合用于指示的视觉标记,光束可导向目镜16。
由于该设计,电子测距仪的光轴和图像传感器的光轴以良好的近似度与测量器具的光轴重合。由于该同轴设计,用于电子测距仪的发射器的虚像和用于图像传感器的发射器的虚像在从器具外观察时也位于该轴线上。
在图3中,示出了根据本发明的方位指示器的四个实施例。方位指示器均具有三个反射段,为了测量距离,中央段总是具有可与其它段区分开来的形状。通过使段具有不同的尺寸可实现可区别性。
图3A表示具有反射段(这里呈三棱镜8、8a的形状)的方位指示器,反射段通过连接元件(这里示出为支柱)连系在一起。图3B表示具有附着于支柱的呈球状的反射段6、6a的方位指示器。图3A和3B的反射段例如可由反射材料(例如镜玻璃或抛光钢)制成,而且也可以包覆有反射箔或另一反射材料。在图3C中,示出了具有作为反射段的球形全向反射器6’、6a’的方位指示器。球形全向反射器6’、6a’紧固至连接单元,并由猫眼石类型的材料(即,合成三棱镜或微透镜)制成。图3D表示由微透镜或基于三棱镜的材料构成、具有柱形截面并制成为360°反射器的反射段的结构。柱形360°反射器7以这样的方式连系在一起,使得当例如用视距仪进行测量时,它们在视距仪光学器件与反射段之间的目标线上不会前后设置,并且不是所有的反射段都具有相同的距视距仪的距离。
图4表示根据本发明的方位指示器的具有尺寸不同的反射段6”、6、6””的两个实施例,以及这些段在图像传感器13中的图像。在图4A和4B的上部中,均示出了根据本发明的具有尺寸不同的反射段6”、6、6””的方位指示器,反射段连系在一起并安装在反射器支撑件5上。在具有尺寸不同的反射段6”、6、6””时,优选测量距最大反射段的距离。这里,反射段示出为球形,但它们当然同样可以是圆形、三角形、四边形、或者棱镜、立方体、柱形或者任何其它具有可检测几何形状的元件。所有的反射段不必具有相同的几何形状。在某些情况下,将形状和/或尺寸不同的反射段进行组合甚至是有利的。具有以不同尺寸制造的反射段可以明确地识别反射段。因此可以基本在对方位指示器所处方位的范围没有限制的情况下加以区别,这与根据反射段相对位置(例如左侧段/右侧段)来区别反射段相反,后者对方位指示器的方位的容许范围存在很大的限制。方位的范围是方位指示器相对于测量器具的容许方位的范围,在测量器具内的这些方位允许进行明确的测量。已经利用可以与其相对位置无关地进行区别的段来使得方位范围变大意味着可以在较大的测角范围上进行测量,例如包括头顶测量,见图4B。该头顶测量例如可以是朝向室内天花板的测量。在只能通过其相对位置区别反射段时,在从图4A和4B的方位指示器的两个方位的至少一个中会错误地识别段。
图4A和4B下部中的图表示在图像传感器13中产生的、对应于上部图中的尺寸不同的反射段6”、6、6””的图像。可以清楚看到,图像传感器13中的图像可以立刻与尺寸不同的反射段6”、6、6””明确地关联。
图5表示根据本发明的方位指示器的四个可行实施例,它们具有滤光器20a、20b,例如光谱滤光器、偏振光滤器、干涉滤光器或吸收滤光器。这里在所有情况下滤光器20a对于用于确定空间方向的辐射以及用于电子测距的辐射而言都是透明的。而且,使用不同类型的两个滤光器20b,它们吸收和/或散射电子测距辐射,但是对图像捕获传感器的光谱范围而言是透明的。在图5A和5B中,滤光器20a、20b设置在反射段的前方,而在图5C和5D中,滤光器20a、20b直接安装在反射段上。还可以用过滤材料制造反射段。使用滤光器20a、20b或过滤材料对于长距离测量是特别有利的。事实上,在长距离测量中,存在这样的风险,即,多于一个的反射段碰巧进入测距传感器12的视野,从而以这种方式使测距失真。为此,在不会测量距其的距离的反射段的前方优选放置以使得用于测距的光束不被反射的方式选择的优选滤光器20b。当然,在外来光的干涉不是太大时,人们可以在没有对两个波长都透明的滤光器20a的情况下作业。
图6是定位在目标点ZP上方的方位指示器。通过反射器,该方位指示器设计成更加特别地用于测地应用。第一、第二和第三反射器21、22、23附着于反射器杆RS,而反射器杆RS本身定位在目标点ZP处。为了确定目标点ZP的位置,确定距第三反射器23的距离以及朝向第一、第二和第三反射器21、22、23的空间方向。根据有关第三反射器23的距离和方向的数据,可以导出第三反射器23的基准点的位置。根据基准点位置以及第一和第二反射器21、22的空间方向数据,可以导出反射器杆RS的方位,并且通过反射器杆的已知长度导出目标点ZP的位置。以下将通过数值示例说明为了实现一般测量精度所必须满足的条件。假设可以以±2mm的精度确定目标点ZP的位置。使用具有长度L为1.5m(实际上成比例)的反射器杆以及延伸超过200mm的长度的反射器结构(A)的方位指示器,只能利用基本上具有同轴目标照明器和接收器(用于测距和捕获图像)的测量器具获得所要求的测量精度,该方位指示器对于最小距离低至2m的测量是有用的。通过设计成目标照明器和接收器不同轴(例如在目标照明器的光轴与接收器的光轴之间存在3mm的偏移)的测量器具,可以不再以所要求的±2mm的精度确定目标点的位置。
图7表示在自动机器控制中的方位指示器的使用或者用于确定方位指示器的位置和方位的方法。方位指示器例如连系至一台建筑设备。使用测量器具1(例如视距仪),人们可确定方位指示器的位置和方位,从而确定附着有方位指示器的机器的位置和方位。以这种方式可以对机器进行监测并基于此进行自动控制。从现有技术已知为了进行自动机器控制而确定几个反射器、GPS接收器、或激光接收器的位置。在根据本发明的方法中,对于机器的自动控制而言,有一个不需要机器上的电力的方位指示器,并且只测量一次(同时测量一个距离和三个空间方向)就足够了。
图8概略地表示一光学结构,用于通过示例说明目标照明器和接收器的非同轴布局的测量误差。这里,该光学结构包括发射光束的目标照明器24、反射光束的后向反射器27、以及接收器25,接收器25用于接收反射的光束,以通过接收的光束确定朝向后向反射器27的基准点28的方向。目标照明器24设置在距接收器25的光轴的距离D处,并且发射光束,该光束从后向反射器27(设置在接收器25的视野内)反射回来并(部分)照在接收器25上。照在接收器25上的光束看上去是从目标照明器24的虚像29发出的。由于目标照明器24和接收器25的偏移设置,通过接收器25确定的目标照明器24的虚像29的方向不与后向反射器27的方向或后向反射器27的基准点28重合。即使在基准点28的距离从同轴测距中已知时,也会记录错误的基准点30而不是基准点28。这样由于非同轴的目标照明而在确定基准点28的位置时产生了系统测量误差(这里大小为D/2)。
权利要求
1.用于确定一方位指示器的方位的方法,该方法利用□测量器具(1),更具体的是视距仪,该测量器具具有测距传感器(12)和图像获取传感器(13)以及□方位指示器,该方位指示器可以间接或直接定位在目标点处并具有至少三个反射段(4’,4”,4,6,6’,6”,6,6””,7,8),所述反射段的形状和结构使得它们-具有可检测的相互几何关系,-可以被图像获取传感器(13)同时分辩,所述方法的特征在于,□从所述测量器具(1)朝向所述方位指示器,同时具有-借助于所述测距传感器(12)的用于测量的准直光束(2)的定向辐射,以及-借助于所述图像获取传感器(13)的用于获取的发散光束(3)的定向辐射,同时两个光束(2,3)的波长和/或偏振不同,并且□被所述反射段反射和/或散射的所述准直光束(2’)以及被所述反射段反射和/或散射的所述发散光束(3’)被同时捕获,同时通过所述测距传感器(12)确定从所述测量器具(1)到至少一个反射段(4’,4”,4,6,6’,6”,6,6””,7,8)的距离,同时通过所述图像获取传感器(13)确定所述至少三个反射段(4’,4”,4,6,6’,6”,6,6””,7,8)的空间位置,并以这种方式建立所述方位指示器的方位。
2.根据权利要求1所述的方法,其特征在于,所述发散光束(3)展示出与所述图像获取传感器(13)的视野相等并且比所述测距传感器(12)的视野宽的发散度。
3.根据权利要求1或2所述的方法,其特征在于,所述发射的光束(2,3)、所述测距传感器(12)和所述图像获取传感器(13)是同轴的。
4.根据前述权利要求中任一项所述的方法,其特征在于,所述方位指示器定位在目标点处,通过所述方位指示器的方位及其相对于所述目标点的几何关系来确定距所述目标点的距离。
5.根据权利要求1、2或3所述的方法,其特征在于,同时确定距至少一个反射段(4’,4”,4,6,6’,6”,6,6””,7,8)的距离,以及朝向所述至少三个反射段(4’,4”,4,6,6’,6”,6,””,7,8)的空间方向,从而建立所述方位指示器的方位和位置。
6.根据权利要求5所述的方法,其特征在于,所述方位指示器定位在目标点处,通过所述方位指示器的方位和位置及其相对于所述目标点的几何关系确定所述目标点的位置。
7.根据前述权利要求中任一项所述的方法,其特征在于,滤光器与所述反射段(4’,4”,4,6,6’,6”,6,6””,7,8)相关并且/或者与所述传感器相关。
8.根据权利要求7所述的方法,其特征在于,通过所述测距传感器(12)的测量在至少一个反射段的方向上受阻。
9.一种方位指示器,该方位指示器可以间接或直接定位在目标点处,该方位指示器具有□至少三个反射段(4’,4”,4,6,6’,6”,6,6””,7,8),所述反射段的形状和结构使得它们-具有可检测的相互几何关系,-可以通过图像获取传感器(13)同时分辩,并且-可通过测距传感器(12)测量距一个反射段(4’,4”,4,6,6’,6”,6,6””,7,8)的距离,所述方位指示器的特征在于,□所述反射段具有这样的布局,使得用于测量距离的所述段可以与其它反射段区别开来,而与所述反射段的相对位置无关。
10.根据权利要求9所述的方位指示器,其特征在于,至少一个反射段(4’,4”,4,6,6’,6”,6,6””,7,8)的尺寸与其它反射段(4’,4”,4,6,6’,6”,6,6””,7,8)的尺寸不同。
11.根据权利要求9所述的方位指示器,其特征在于,所有反射段(4’,4”,4,6,6’,6”,6,6””,7,8)的尺寸均彼此不同。
12.根据权利要求9至11中任一项所述的方位指示器,其特征在于,滤光器(20a,20b)与至少一个反射段(4’,4”,4,6,6’,6”,6,6””,7,8)相关,更具体地设置在所述反射段的前方。
13.根据权利要求9至12中任一项所述的方位指示器,其特征在于,至少一个反射段(4’,4”,4,6,6’,6”,6,6””,7,8)形成为以下可选物之一-360°反射器;-球形全向反射器(6,6’,6”,6,6””);-柱形360°反射器(7);-三棱镜(8)。
14.根据权利要求9至13中任一项所述的方位指示器,其特征在于,至少一个反射段(4’,4”,4,6,6’,6”,6,6””,7,8)展示出以下可选物的至少一种-反射器箔;-三棱镜;-微透镜。
15.根据权利要求9至14中任一项所述的方位指示器,其特征在于,所述反射段(4’,4”,4,6,6’,6”,6,6””,7,8)通过连接单元、更具体地通过支柱连系在一起,并且例如产生星形结构。
16.根据权利要求9至15中任一项所述的方位指示器,其特征在于,所述方位指示器与反射器支撑件(5)、更具体地与视距杆相关。
17.根据权利要求1至10所述的方法的用途,该方法用于确定不直接可见的目标点的距离和/或位置。
18.根据权利要求9至16所述的方位指示器的用途,该方位指示器用于确定不直接可见的目标点的距离和/或位置。
19.根据权利要求1至8所述的方法的用途,该方法用于自动机器控制。
20.根据权利要求9至16所述的方位指示器的用途,该方位指示器用于自动机器控制。
全文摘要
本发明提供了一种用于确定方位指示器的方位的方法。根据本发明,为了确定方位指示器的方位,通过测量装置(1)中的分离的测量传感器和图像传感器记录距方位指示器上的至少三个反射区域中的至少一个的距离以及所述至少三个反射区域的图像。通过具有不同波长和/或偏振的准直第一光束(2)和发散第二光束(3)沿方位指示器的方向的定向发射,以及对反射和/或散射的第一和第二光束(2’,3’)的同时记录来实现测距和图像记录。方位指示器上的反射区域实施并设置成定位在目标点处,具有相对彼此可检测的几何关系,并且通过图像记录器同时分辨。通过其中的方位确定,可精确地确定距目标点的距离,即使目标点不直接可见。
文档编号G01S17/42GK101061393SQ200580039650
公开日2007年10月24日 申请日期2005年11月4日 优先权日2004年11月19日
发明者奥尔赫·基施纳 申请人:莱卡地球系统公开股份有限公司