通过纳米晶体的可变换发射进行检测的制作方法

文档序号:6123816阅读:533来源:国知局
专利名称:通过纳米晶体的可变换发射进行检测的制作方法
技术领域
本发明涉及利用发光物品测定分析物的方法。
背景技术
本发明涉及发射电磁辐射(比如可见光)的物品。 一类该物品是半 导体纳米晶体或量子点(可具体用于多种应用的高度发射性物质)。例 如,半导体纳米晶体可具有窄的并且高度对称的发射谱,使得它们具有 用作诊断工具的吸引力,比如用作生物标记和诊断中的荧光探针。在一
些情形中,半导体纳米晶体已经用于荧光共振能量转移和荧光淬灭分 析。半导体纳米晶体还可表现出长时间的高发射稳定性,优于常规生物 探针染料。
由于量子限域效应,许多半导体纳米晶体可表现出尺寸依赖性的光 学性能。换言之,'所述半导体纳米晶体所发射光时的波长可取决于纳米 晶体的尺寸,并且可通过控制粒子直径来控制发射波长。例如, 一个激 发波长可用于激发一组具有不同尺寸的半导体纳米晶体,导致由于激发 波长而发射许多不同波长的光。这使得半导体纳米晶体在许多装置中相 当有用。

发明内容
本发明提供通过分析物与发光物品的相互作用测定所述分析物的 方法,在某些实施方案中,所述方法包括提供怀疑含有分析物的样品、 使所述样品暴露于含有外层的发光物品以及(如果存在所述分析物的
品固定,其中通过所述相互作用改变所述外层;测定发光物品的第一发 射;在足以引起所述发光物品的发光特性改变的条件下使所述发光物品 暴露于电磁辐射一段时间;测定发光物品的第二发射;以及测定指示存 在分析物的第一次发射和第二发射之间的差异,其中对所述外层的改变 提高所述物品在所述条件下在电磁辐射中暴露所述时间段时对发光特
性变化的敏感性,使得在不存在分析物的情况下使所述物品在所述条件 下在电磁辐射中暴露所述时间段不产生所述第一发射和第二发射之间 的所述差异。
本发明还提供用于测定分析物的方法,某些实施方案的方法包括在 怀疑含有分析物的样品存在下使发光物品暴露于电磁辐射,其中所述分
析物影响物品的发光特性响应于电磁辐射的变化;并且,如果存在分析 物的话,通过测定由于在电磁辐射中的所述暴露所引起的物品发光特性 的变化来测定分析物。


图l示出根据本发明一个实施方案的包含外层和核的纳米粒子。
图2显示根据本发明一个实施方案的胺官能化ZnO纳米晶体与醛 之间的可逆反应。
图3显示根据本发明一个实施方案的胺官能化ZnO纳米晶体的(a) 吸收镨和(b )发射谱。
图4显示胺官能化ZnO纳米晶体的图示实施方案在不存在和存在 醛时在(a)水或(b) 5mM硼酸盐緩冲液中的动态测量。
图5显示根据本发明一个实施方案的胺官能化ZnO纳米晶体在(a) 0.05 mM、 ( b ) 0.125 mM和(c) 0.25 mM的邻苯二醛存在下的发射谱。
图6显示(a)用0.05 mM邻苯二醛处理之前和(b )用0.05mM邻 苯二醛处理之后在UV下照射10分钟的胺官能化ZnO纳米晶体的TEM 图。
图7显示胺官能化ZnO纳米晶体在各种醛存在时在UV下照射2 分钟后的发光强度。
图8显示胺官能化ZnO纳米晶体在各种有机分析物存在时在UV下 照射2分钟后的发光强度。
具体实施例方式
本发明涉及用于测定分析物的方法。本发明提供各种方法,所述方 法包括将发射性材料如发光材料暴露于分析物,其中当与所述分析物相 互作用时,可以观察到作为暴露于电磁辐射的持续时间的函数的发光变 化,由此可测定分析物的存在和/或量。本发明的一些优点包括利用高 发射性物品以及简化方法直接测定生物分子,仅涉及两种组分。
在一方面,本发明涉及对物质可以与物品结合并由此改变所述物品 对电磁辐射的敏感性的认识。也就是说,可使物质与物品结合,因此, 所述物品在电磁辐射中的暴露改变所述物品的发射性能(在发射性能不 改变或至少没有同等程度地改变的情况下,所述物质不存在)。这使得 可利用该现象来检测作为分析物的物质。在一些实施方案中,所述方法 可包括在怀疑含有分析物的样品存在下将发光物品(例如纳米粒子)暴 露于电磁辐射,其中如果存在分析物,则所述分析物影响物品的发光特 性响应于电磁辐射的变化。例如,所述发光特性可以是强度、波长或荧 光发射的出现。可通过测定电磁辐射时所述物品的发光特性的变化来测 定分析物。在一些情形中,在不存在分析物的情况下进行电磁辐射时发 光特性的变化可能不同于(例如幅度小于)存在分析物的情况下进行电 磁辐射时发光特性的变化。
本文所用的术语"测定"一般指分析物质或信号(例如定量或定性地 分析)和/或检测存在或不存在物质或信号。"测定"还可指分析两种或 多种物质或信号之间的相互作用(例如定量或定性地分析)和/或检测 存在或不存在相互作用。术语"纳米粒子"一般指最大横截面尺寸不大于
1 |Lim的粒子。纳米粒子可由例如无机或有机材料、聚合物材料、陶资 材料、半导体材料、金属材料、非金属材料、结晶材料(例如"纳米晶 体")、无定形材料或其组合制成。典型地,纳米粒子的任意截面尺寸小 于250 nm,更典型的是任意截面尺寸小于100 nm,并且优选任意截面 尺寸小于50nm。在一些实施方案中,所述纳米粒子的直径可以是约2 nm至约50 nm。在一些实施方案中,所述纳米粒子的直径可以是约2 nm 至约20nm。在另一些实施方案中,所述纳米粒子的直径可以是约2nm 至约3 nm。
在一些实施方案中,本发明提供通过分析物与发光物品的相互作用
来测定分析物的方法。本发明所用的发光物品可以具有至少部分被外层 所覆盖的发光核(例如所述物品可以是至少部分被外层包封的粒子),
其中分析物暴露于所述外层。如图1所示的实施例,发光物品10包括 发光核20和包围发光核20的外层30。与所述物品相关的各种发光特性 (例如发射强度、发射波长等)可取决于包围所述物品的保护性外层。
原性质)、无光学干扰的材料、化学稳定的材料或与下方材料晶格匹配 (例如用于外延生长、使缺陷最小化)的材料组成。所述外层可包含无 机材料、有机材料或其组合,如下文更为全面论述的。在一些实施方案 中,外层的存在可在例如暴露于电磁辐射(例如UV线)时为发光核提 供化学稳定性和光化学稳定性。在一些实施方案中,外层与分析物的相 互作用可导致外层结构破坏,包括例如晶格畸变、晶体溶解或其它变形。
本文所述的方法可包括使怀疑含有分析物的样品暴露于含有至少 部分被外层包封的发光核的发光物品。如果存在分析物,则可利用所述 分析物与所述外层的相互作用使分析物相对于所述物品固定。在一些情 形中,所述相互作用可包括对外层进行改变,使得可以在所述物品暴露 于电磁辐射时增加发光物品对于发光特性变化的敏感性。在所述分析物 与所述外层的相互作用时,可以将发光物品暴露于电磁辐射中并且可测 定第一发射。随后,当纳米粒子在足以引起所述纳米粒子发光特性变化 的条件下暴露于电磁辐射一段时间后,可测定发光物品的第二发射。第 一发射和第二发射之间的变化可指示分析物的存在。
在一些情形中,在不存在分析物的情况下,发光物品暴露于电磁辐 射可引起所述物品发射的轻微变化。发光特性的改变可归因于例如发射 核与外层之间的界面缺陷、增强非辐射去活化路径(或效率低的辐射路 径)的表面疯点或"陷坑"、粒子的总体形态、存在杂质等。然而,在不 存在分析物的情况下观察到的任何发射变化或差异可以不同于分析物 存在下可能发生的发射变化。在一些实施方案中,在分析物存在下发生 的第一和第二发射之间的差异可显著大于不存在分析物的情况下发生 的第一和第二发射之间的差异。
在一些实施方案中,所述外层可与分析物相互作用形成与分析物的 键,比如共价键(例如碳-碳、碳-氧、氧-硅、硫-硫、磷-氮、碳-氮、金
属-氧或其它共价键)、离子键、氢键(例如羟基、胺、羧基、硫醇和/ 或类似的官能团之间)、配价键(例如金属离子与单齿配体或多齿配体 之间的络合或螯合)等。所述相互作用还可包括范德华相互作用。在一 个实施方案中,所述相互作用包括与分析物形成共价键。所述外层还可 通过生物分子对之间的结合作用而与分析物相互作用。例如,所述外层 可包含实体,例如与靶分析物上的互补实体如抗生物素蛋白或抗生物素 蛋白链菌素特异性结合的生物素。
在一些情形中,所述外层可以是自组装的致密堆积(tightly-packed ) 结构,并且在分析物存在下,所述外层可与分析物相互作用(例如与分 析物成键)以破坏所述自组装的致密堆积结构,从而在所述物品暴露于 电磁辐射时提高所述物品对发光特性变化的敏感性。在一些情形中,在 没有足够的(例如致密堆积的)保护外层的情况下,所述发光物品的发 光强度可能在暴露于电磁辐射时降低并可能发生光漂白。术语"光漂白" 是本领域公知的,是指在暴露于电磁辐射时的发光强度降低,其中降低
的程度可以是暴露于电磁辐射的持续时间的函数。光漂白可导致物质在 暴露于电磁辐射时基本上失去其发光能力。在一些实施方案中,这样的 光漂白可归因于发光物品的晶格畸变或晶体溶解。
在一些实施方案中,所述发光物品的外层可包含多个对物品表面具 有亲合力的官能团。然而,在分析物存在下,所述分析物可以相对于物 品固定,使官能团与物品表面的分离增加,从而在所述物品暴露于电磁 辐射(即预定的时间段)时提高物品对发光特性变化的敏感性。例如当 与分析物例如蛋白质相互作用时,所述官能团可转化成立体大基团。所 述立体大基团可防止形成致密堆积的外层。在一些实施方案中,当与分 析物相互作用时,所述官能团对物品表面的亲合力可以改变(例如降 低)。当与分析物相互作用时,所述官能团还可转化成不同的官能团。 在一个实施方案中,所述物品含有胺基,其中当与含有醛基的分析物相 互作用时,所述胺转化成亚胺,相对于胺而言,所述亚胺对物品表面的 亲合力可能降低。
在如图2所示的示例性实施方案中,发光物品10包含发光核20和 外层30,所述外层30是纳米粒子表面处的致密堆积结构。发光核20 可包含例如半导体纳米晶体或荧光染料。在一个实施方案中,发光核20
包含ZnO。所述外层30包含具有末端胺基的杂烷基链,所述末端胺基 可与醛可逆性地反应形成亚胺。发光物品10暴露于醛取代的分析物40 中可导致在发光物品10与醛取代的分析物40之间通过形成亚胺而形成 共价键,使得外层30从纳米粒子表面被分散。换句话说,所述杂烷基 链伸长使亚胺部分与表面的分离增加。在一些情形中,这可能归因于外 层对纳米粒子表面的亲合力的变化。例如,在示例性实施方案中,所述
胺官能团可能对纳米粒子表面具有亲合力,但是在与分析物反应形成亚 胺后对纳米粒子表面的亲合力降低。在一些情形中,所述外层可能变得 分散,例如由于结合到外层分析物的尺寸引起烷基或杂烷基链的伸长而 分散。例如,所述分析物可以是立体的大体积分析物,比如蛋白质或其 它生物分析物,其可防止形成致密堆积外层。所述外层致密堆积结构的 分解可导致失去光稳定性和在暴露于电磁辐射(例如UV、可见光、IR 等)时发生光漂白,从而指示分析物的存在或分析物的量。
在一些实施方案中,保护性外层的变化还可引起发光物品对发光核 的溶解更敏感。发光物品可具有一定的直径(例如粒度),该直径可在 分析物存在下暴露于电磁辐射时减小,这是由于外层与分析物相互作用 时发光物品的光溶解性增加所致。例如,在一个实施方案中,发光物品 可包含具有第一直径的半导体纳米晶体,当保护性外层被分析物破坏 时,所述第一直径的半导体纳米晶体可在暴露于电磁辐射时分解成具有 更小的第二直径的半导体纳米晶体。
本发明的方法可区别于由于发光淬灭而可以观察到发光减少的其 它方法。在这些情形中,当处于激发态的发色团暴露于可从所述激发态 发色团吸收能量的"受体"物质时发生"淬灭",然后所述激发态发色团由 于无辐射过程(即不发射辐射)返回到基态,导致量子产率(例如发射 的光子数/被吸收的光子)降低。相反地,本发明的实施方案可包括改 变发射材料的发光衰减(例如光漂白)来测定分析物。发光衰减的程度 可基于暴露于电磁辐射的持续时间。
本发明方法的优点包括利用发光的纳米粒子用于信号转导的简单 的两组分法。与涉及多组分的更复杂的分析不同,本发明包括直接将发 光纳米粒子结合到分析物上用于测定所述分析物。本发明的方法可广泛 地适用于生物和化学传感器以及分析。例如,所述纳米粒子可容易地用
大量生物或化学部分官能化以适于具体应用。本发明的方法对分析物还
可以具有高灵敏度(例如用于小于<1 mM的分析物)和选择性,如下 述实施例中所更为全面地论述的。
在一些实施方案中,所述分析物可以是化学分析物或生物分析物。 术语"分析物,,可以指待分析的任何化学实体、生物化学实体或生物实体 (例如分子)。在一些情形中,本发明的发光物品可对分析物具有高特 异性,并且可以是例如化学传感器、生物传感器或爆炸物传感器。在一 些实施方案中,所述分析物包含能与发光物品的至少一部分相互作用的 官能团。例如,所述官能团可通过形成键(比如共价键)与所述物品的 外层相互作用。 一些实施方案涉及含有醛的分析物。在一组实施方案中, 所述分析物可与外层内的官能团相互作用,使得分析物将所述官能团推 离发光物品表面。
如本文所述,发光物品包含包封或部分包封发光核的外层或外壳。 在一些实施方案中,所述外层优选包封发射核的大部分表面区域。例如, 所述外层可包封至少75%的核表面区域。在一些情形中,所述外层可完 全包封发射核。在一些实施方案中,所述外层并非化学键合到发射核(例 如量子点、荧光染料、其它荧光物质),而是也可以通过包封来包含发 光物品。因此,所述外层和发射核之间可不含有离子键和/或共价键和/ 或配价键。在一些情形中,所述外层可包含有机材料(例如基于碳和/ 或碳聚合物)。在一些情形中,所述外层可包含非有机材料(例如不基 于碳和/或碳聚合物,但是可包含碳原子)。所述外层可优选是非有机物, 并且可由例如二氧化硅的硅聚合物形成。在某些实施方案中,所述外层 可以是多孔的。例如,所述外层可具有中等尺度大小的孔。在某些实施 方案中,所述外层可以是无孔的。
在一些实施方案中,所述外层可适当地官能化以赋予发光物品所希 望的特性(例如表面特性)。例如,所述外层可以官能化或被衍生成包 括可改变或改善发光物品性能的化合物、官能团、原子或材料。在一些 实施方案中,所述外层可包含可与分析物特异性地相互作用形成共价键 的官能团。在一些实施方案中,所述外层可包含可改变或改善诸如与悬 液介质的相容性(例如水溶性、水稳定性)、光稳定性、以及生物相容 性的性能的化合物、原子或材料。在一些情形中,所述外层可包含选择
为对表面具有亲合力的官能团。在一些情形中,所述外层可包含对表面 具有亲合力的官能团,其中可以改变(例如化学上改变)所述官能团, 从而改变其对表面的亲合力(例如降低)。
在一些实施方案中,所述外层包含改善发光物品的发光(例如荧光) 性能的材料。例如,所述外层可包含可消除晶体表面能级的材料(例如 钝化材料),所述能级可充当降低量子点发光性能的电子和空穴的陷阱。 换句话说,所述外层可包含防止发射核光漂白的材料。在一些实施方案 中,所述钝化材料可以是非导电的和/或非半导体的。例如,所述钝化 材料可以不表现出比其包围的纳米晶体更高的带隙。在具体的实施方案 中,所述钝化材料可以是非离子的和非金属的。非导电的材料是在跨材 料施加电势时不传递电子的材料。所述钝化材料可包含或可基本由表现 出含氮官能团例如胺的化合物组成。所述胺可以直接或间接键合至一个 或更多硅原子,例如硅烷或其它硅聚合物中存在的那些。所述硅烷可包 括任意其它的官能团,例如烷基、羟基、含硫基团、或含氮基团。钝化 材料的实例包括氨基硅烷,例如可使用氨基丙基三曱氧基甲硅烷
(APS)。已经证实,在量子点中使用APS提供钝化作用,并且使量子 产率提高到可与利用更高带隙的钝化层(例如由疏化锌(ZnS)制备的 那些)所得到的改进相当的水平。
所述外层还可包含能结合分析物(例如通过成键、通过生物分子对 之间的相互作用等)的官能团。在一个实施方案中,所述官能团可位于 在物理上足够接近发光核的位置,或在发光核的足够的电子传递、感应 传递或立体传递范围内,使得分析物与官能团之间的相互作用引起可检 测的发光物品发光特性的变化。在一些情形中,所述官能团可与分析物 形成键。所述官能团可包含"亲电子的"原子,所述"亲电子的"原子指可 被亲核试剂攻击并与亲核试剂形成新键的原子。在一些情形中,所述亲 电子的原子可包含适当的离去基团。所述官能团还可以是"亲核的"并且 可具有活性电子对。例如,所述外层可包含羰基如醛、酯、羧酸、酮、 酰胺、酐或跣氯、硫醇、羟基、胺、氰基、带电部分等。在一些实施方 案中,所述外层包含胺、硫醇、羧酸、酐或醇。在一些实施方案中,所 述外层包含胺。在一些情形中,所述官能团(例如胺)可通过烷基链或 杂烷基链与所述外层表面结合。
所述外层还可包含用作分析物结合位点的官能团。所述结合位点可 包括能结合介质(例如溶液)中的另一生物分子或化学分子的生物分子 或化学分子。例如,所述结合位点可以能够通过生物分子对(包括蛋白 质、核酸、糖蛋白、碳水化合物、激素等)之间发生的相互作用在生物 学上结合分析物。具体实例包括抗体/肽对、抗体/抗原对、抗体片段/抗 原对、抗体/抗原片段对、抗体片段/抗原片段对、抗体/半抗原对、酶/ 底物对、酶/抑制剂对、酶/辅因子对、蛋白质/底物对、核酸/核酸对、蛋 白质/核酸对、肽/肽对、蛋白质/蛋白质对、小分子/蛋白质对、谷胱甘肽
/GST对、抗-GFP/GFP融合蛋白对、Myc/Max对、麦芽糖/麦芽糖结合 蛋白对、碳水化合物/蛋白质对、碳水化合物衍生物/蛋白质对、金属结 合标签/金属/螯合剂、肽标签/金属离子-金属螯合剂对、肽/NTA对、凝 集素/碳水化合物对、受体/激素对、受体/效应物对、互补核酸/核酸对、 配体/细胞表面受体对、病毒/配体对、蛋白质A/抗体对、蛋白质G/抗体 对、蛋白质L/抗体对、Fc受体/抗体对、生物素/抗生物素蛋白对、生物 素/抗生物素蛋白链菌素对、药物/靶对、锌指/核酸对、小分子/肽对、小 分子/蛋白质对、小分子/靶对、碳水化合物/蛋白质对如麦芽糖/MBP(麦 芽糖结合蛋白)、小分子/靶对或金属离子/螯合剂对。在一些情形中,所 述发光物品可用于例如药物开发、特定化合物的分离或纯化或高通量筛 选技术的应用中。
可选择适用于特殊应用的官能团。在一些情形中,可基于官能团对 发光物品表面(例如所述外层)的亲合力来选择官能团。例如,可针对 官能团对所述外层的亲合力以及官能团在物品表面密集并形成致密结 构的能力来选择烷基链或杂烷基链末端处的官能团。在一些情形中,可 基于官能团与具体分析物进行相互作用的能力来选择官能团。 一种用于 选择合适官能团的筛选试验可包括将官能化的物品置于含有分析物的
对之间的相互作用)的能力。此外,可评价分析物使官能团从物品表面 脱离以实现足够的物品发光特性变化的能力(例如通过监测物品发光在 分析物存在下随暴露于电磁辐射而降低的程度来评价)。
在一些实施方案中,亲水物质可与外层(例如二氧化硅外层)相结 合以提供对复合物更强的亲水性。所述亲水物质可以是例如胺、疏醇、 醇、羧酸和羧酸盐、硫酸盐、磷酸盐、聚乙二醇(PEG)或聚乙二醇衍
生物。衍生物包括但不限于官能化的PEG,比如胺、硫醇以及羧基官 能化的PEG。所述亲水物质可化学结合所述外层或可例如被所述外层 材料物理捕获。优选地,所述亲水物质包括可化学结合所述外层的部分 和提供亲水性并可从所述外层表面向外延伸的第二部分。
这种二元醇的存在可赋予复合物优异的水溶性,同时是生物相容的 和无毒的,并且可在一些情形中使发光物品更好地分散在溶液中。例如, 通过使PEG与所述外层(可以是二氧化硅)成为一体,可使复合物在 pH小于8.0或小于或等于7.0下是水溶的。因此,这些复合物可在中性 或低于中性的pH下是水溶的,由此可以是生物相容性的并适用于例如 血液的生物流体中和活体内。在一些实施方案中,将PEG加入到二氧 化硅外层中可使得复合物在溶液中保留更长时间(例如大于6小时)。 如同本领域所常用的一样,本文所用的术语"水溶的"指发光物品分散在 水环境中。"水溶的,,不是指例如每种材料以分子水平分散。发光物品可 以由几种不同的材料组成并且作为整个粒子仍然是"水溶的"。此外,所 述二氧化硅外层中PEG或相关化合物的存在可提供表现出吸附蛋白 质、细胞和其它生物材料的倾向降低的材料。这意味着,例如,当在体 内使用时,所述复合物与类似复合物相比可在溶液中保留更长时间,由 此使得增加向指定靶的循环并提高向指定靶的递送能力。
所述外层的厚度可大到足以以所希望的程度包封核。在一些实施方 案中,所述外层的平均厚度可小于50纳米;并且,在一些实施方案中, 所述外层的平均厚度可小于25纳米(例如在5纳米和20纳米之间)。 可利用标准技术通过显微镜技术(例如TEM)测量代表性数量的位置 处的厚度来测定平均外层厚度。适当的外层材料的实例包括但不限于聚 苯乙烯、聚丙烯酸酯、或其它聚合物如聚酰亚胺、聚丙烯酰胺、聚乙烯、 聚乙烯基、聚-二乙炔、聚对苯撑乙烯(polyphenylene-vinylene)、多肽、 多糖、聚砜、聚吡咯、聚咪唑、聚噻吩和聚醚;环氧树脂;石英玻璃; 硅胶;二氧化钛;硅氧烷;多磷酸盐;水凝胶;琼脂糖;纤维素等。
在一些实施方案中,所述外层包含至少一类硅烷。可利用可在碱性 介质中水解以在纳米粒子周围形成二氧化硅壳的多种类型的硅烷进行 硅烷缀合,所述硅烷包括在一端具有三甲氧甲硅烷基、甲氧甲硅烷基或 硅烷醇基的那些硅烷。所述硅烷还可包含有机官能团,其实例包括磷酸
酯和膦酸酯基团、胺基、硫醇基、羰基(例如羧酸等)、d-C2。烷基、
CrC2。烯、d-C2o炔、叠氮基、环氧基或本文所述的其它官能团。利用 本领域公知的方法,可在硅烷缀合纳米粒子之前或之后将这些官能团键 合到官能化的硅烷。
还可利用本领域公知的方法来合成发光物品的外层。例如,可在可 控量的碱存在下使发光物品首先与官能化硅烷反应,使得官能化硅烷基 本上仅仅进行与发光物品形成共价键的单次水解反应。硅烷缀合程度和 速度可通过改变反应体系中温度和碱量进行控制。在使用氢氧化物碱的 一些实施方案中,官能化硅烷与碱的比例是约1:1。在使用非氢氧化物 碱的其它实施方案中,官能化硅烷与碱的比例可小于1。在一些实施方 案中,可使用干燥的无水有机溶剂和可溶于所述有机溶剂的碱。然后可 将从第一步骤中分离出来的中间体悬浮在溶剂中,其中所述中间体在所 述溶剂中与过量碱反应以完成官能化珪烷部分的粒内硅烷化。适当的碱 实例包括氢氧化物碱如氢氧化四曱基铵、氢氧化四丁基铵或氢氧化钠, 以及非氢氧化物碱如烷基胺。适当的有机溶剂实例包括有机醇、烃及苯 的衍生物。合适的有机溶剂的具体实例包括曱苯、环己烷、曱醇、乙醇、 乙醇和甲苯的混合物、DMSO、 DMF和液氨。在一些情形中,所述硅 烷化发光物品可在有机溶剂中沉淀,使得可除去未反应的硅烷分子。在 一些情形中,曱苯是优选的溶剂。
在一些实施方案中,反相微乳液法可用于形成所述外层。"反相乳 液"或"非水包水型乳液"是水溶剂(水相)的离散区域在非水溶剂内的 分散体。可利用多种非极性溶剂制备反相微乳液。在一些情形中,所述 非极性溶剂是烃并且可以是脂肪族烃,并且在一些情形中是非芳香族环 状烃,例如环戊烷、环己烷或环庚烷。在一些实施方案中,可以将表面 活性剂(例如离子型或非离子型)添加到反相微乳液中。"表面活性剂,,
如用于将疏水物质引入亲水性环境中。适用于本发明的表面活性剂实例 包括例如聚苯醚如IGEPALCO-520、 二辛基磺基琥珀酸钠(AOT )、三 辛基氧化膦(TOPO)等。
在一些实施方案中,发光物品包含发光核。术语"发光"是本领域公 知的,指发射电磁辐射(例如光)的能力。当体系从激发态跃迁至低能
态并伴随相应的光子形式的能量释放时可产生发光。这些能量态可以是 电子能态、振动能态、转动能态或其任意组合。可通过化学、动能或从 外部源加入的方式使储存在系统中的能量释放来激发产生发光的跃迁。 外部能源可以是各种类型的能源,包括化学能源、热能源、电能源、磁 能源、电磁能源或物理能源或能将体系激发到高于基态状态的任意其它 类型的能源。例如,可通过吸收光子、通过置于电场中或通过化学的氧 化还原反应来激发体系。发光期间发射的光子能可在低能微波辐射至高
能X射线辐射的范围内。通常地,发光是指UV至IR辐射范围内的电 磁辐射,并且可通常指可见的电磁辐射(即光)。
发光核可包含能发光的任意物质,例如半导体纳米晶体、有机染料、 聚合物、其它有机或无机发光物品等。在一些实施方案中,所述发光核 可包含有机分子,例如荧光染料。利用本领域中公知的方法,所述荧光 染料可以共价键合例如二氧化硅前体并且缩合以形成发光核。然后可形 成保护性外层以包封所述发光核。在一个实施方案中,可用硅溶胶-凝 胶单体处理所述发光核以形成外层。荧光染料的实例包括但不限于荧光 素、香豆素、若丹明、吖啶、花青、芳基部分(例如芘、蒽和萘)或杂 芳基部分或其取代衍生物。合适的荧光染料的具体实例包括Texas Red、 Rhodamine Red、 Oregon Green 514、基于荧光素的染料以及在通过引 用整体并入本文的Molecular Probes Catalog (第六版,Richard Haugland, Ed.)中找到的其它荧光染料。如本文所述,保护性外层可至 少部分包封所述荧光染料。所述保护性外层可包含无机或有机物质,并 且可调整为适合具体的应用。
在一个实施方案中,所述发光核包含半导体纳米晶体。所述半导体纳 米晶体或量子点(例如在发光核中)可具有任意适合的半导体材料组成。 例如,半导体纳米晶体可由第II-VI族化合物如半导体形成。所述半导体 材料可以是例如第II-VI族化合物、第III-V族化合物或第IV族元素。合 适的元素周期表第II族元素可包括锌、镉或汞。合适的第III族元素可包 括例如镓或铟。可用于半导体材料中的第IV族元素可包括例如硅、锗或 铅。可用于半导体材料中的合适的第V族元素可包括例如氮、磷、砷或锑。 合适的笫VI族元素可包括例如硫、硒或碲。在其它实施方案中,量子点 可包含(a)选自元素周期表中第2、 12、 13或14族的第一元素和选自元 素周期表中第16族的第二元素,(b)选自元素周期表中第13族的第一元 素和选自元素周期表中第15族的第二元素,或(c)第14族元素。适用于 半导体核的材料实例包括但不限于MgO、 MgS、 MgSe、 MgTe、 CaS、 CaSe、 CaTe、 SrS、 SrSe、 SrTe、 BaS、 BaSe、 BaTe、 ZnO、 ZnS、 ZnSe、 ZnTe、 CdO、 CdS、 CdSe、 CdTe、 HgO、 HgS、 HgSe、 HgTe、 A1N、 A1P、 AlAs、 AlSb、 A12S3、 Al2Se3、 Al2Te3、 Ga2S3、 Ga2Se3、 GaTe、 In2S3、 In2Se3、 InTe、 SnS、 SnSe、 SnTe、 PbS、 PbSe、 PbTe、 A1P、 AlAs、 AlSb、 GaN、 GaP、 GaAs、 GaSb、 InN、 InP、 InAs、 InSb、 TiN、 TiP、 TiAs、 TiSb、 BP、 Si和Ge以及其三元和四元混合物、化合物、合金、混合物和固溶体。所 述半导体材料可包括这些物质的M或混合物,或者可以将不同的族组合 在一起,例如AlGaAs、 InGaAs、 InGaP、 AlGaAs、 AlGaAsP、 InGaAlP 或InGaAsP。在一些实施方案中,所述半导体材料是CdSe、 CdTe、 ZnSe 或ZnO。在一些实施方案中,所述半导体材料是ZnO。可部分地选择特 定组分以提供所期望的光学性质。
所述半导体纳米晶体的粒径可小于100纳米。在一些情形中,所述 半导体纳米晶体的平均粒径小于20纳米;在其它情形中,所述半导体 纳米晶体的平均粒径小于5纳米(例如约3.5纳米)。在一些实施方案中, 量子点的平均粒径大于0.5纳米。可利用标准技术来测定平均粒径,例 如,通过利用显微镜技术(例如TEM)来测量代表性数量的粒子的尺 寸来测定。应当理解所述复合物可包括具有不同光发射性能的不同粒径 的半导体纳米晶体。
在一些实施方案中,所述发光物品可包含由具有第二晶格结构的第 二材料(例如外层)所包围的具有第一晶格结构的第一材料(例如发光 核),以在所述第一材料与所述第二材料接触处形成界面区。所述发光 物品还可包含添加剂,所述添加剂可单独存在于界面区中或可同时存在 于界面区和外层中或可存在于发光核、界面区和外层中。作为替代方案, 可以完全不将所述添加剂加入发光物品中,而是仅仅促进高品质的厚外 层在半导体核上过度生长。当存在于所述外层中时,添加剂可均匀地分 布在整个外层中或可以作为梯度分布,即作为在从半导体核向外的方向 上表现出降低浓度的梯度进行分布。所述界面区可以是不连续的,含有 单层或含有多个单层,并且所述区可引入几种元素组合,包括不是核或 壳结构中固有的元素。例如,可以在合成过程中将氧原子引入界面区中。 其它可用作添加剂的元素包括但不限于第2、 12、 13、 14、 15和16族
元素,比如Fe、 Nb、 Cr、 Mn、 Co、 Cu和Ni。
半导体纳米晶体的发射波长可通过纳米晶体的尺寸来控制。可通过改 变粒径或粒子的组成来控制这些发射。半导体纳米晶体发射的光可以具有 非常窄的波长,例如聘v变小于约100nm,优选小于约80nm,更优选小于 约60 nm,更优选小于约40 nm,并且更优选小于约20 nm。所述半导体 纳米晶体可发射特征发射谱,所述特征发射镨可以在例如光谱学上进行观
察和测量。因此,在某些情形中,在发射信号没有显著重叠的情况下,可 同时使用多种不同的半导体纳米晶体。所述半导体纳米晶体的发射镨可以 是对称的或接近对称的。与一些荧光分子不同,所述半导体纳米晶体的激 发波长可具有宽广的频率范围。因此,单个激发波长(例如对应于可见光 镨的"蓝"区或"紫"区的波长)可用于同时激发一组各自可具有不同发射波 长的纳米晶体。例如,在利用频率为450纳米的光(相当于"蓝"光)^JL 时,3纳米的硒化镉晶体可产生520纳米发射,而直径5.5纳米的硒化镉晶 体可产生630纳米发射。因此,可同时检测和记录对应于例如多个化学分 析或生物分析的多个信号。
可通过本领域中7>知的方法如非溶剂(例如甲醇)絮凝来合成量子点 或半导体纳米晶体。任选地,可在形成外层之前对由此制备并分离的半导 体纳米晶体进行胺处理的步骤。在一个实施方案中,通过将第一前体和第 二前体注射到温度保持在足以使离散半导体纳米晶体均匀成核的反应溶 液中来制备所述半导体纳米晶体。 一旦形成含有单独的半导体核的单^L 粒子群,则可以将所述半导体核从第一溶剂中分离出来,然后置于第二溶 剂中形成核溶液。作为替代方案,所述核溶液可仅仅含有在其中形成单分 散核群的原始溶液组成。利用该方法,可在"一锅"合成(例如在单个M 容器中)中形成发光的发光物品。在"一银,法中,可以将源自半导体核合 成的任意未反应的前体用作形成外层期间的添加剂材料。
在半导体核上形成外层时的温度与所得纳米粒子的品质相关。在相对 高的温度下形成外层可能导致单个核开始通过奥氏熟化(Ostwald ripening)生长,从而导致粒子的尺寸分布劣化和较宽的谱线宽度。在相 对低的温度下形成外层可导致前体分解不完全或导致外层晶格结构的完 整性降《氐。用于形成外层的典型温度范围是约100。C至约300t:。实际的温 度范围可根据前体和半导体核的相对稳定性进行变化。晶核形成之后,可使纳米晶体生长至达到所期望的尺寸,然后通过 降低反应温度来结束。可以通过监测样品的吸收峰或发射峰位置和线宽 来估计核反应生长阶段期间的粒径和粒径分布。可以响应于光镨变化动 态改变诸如温度和单体浓度的反应参数来调整这些特性。可通过本领域 技术人员熟知的方法如非溶剂(例如甲醇)絮凝来分离由此制备的核。 任选地,可在外层形成之前对由此制备并分离的核进行胺处理的步骤。
这种胺处理在Talapin等人的iVfl朋Z^股ra 2001, 1, 207 (通过参考并入本 文)中公开,并且是本领域技术人员熟知的。添加剂前体和所述核与外层 前体的浓度以及向核溶液中添加这些前体的速度选择为促进外层在半导 体核上非均匀生长而不是均匀成核,从而产生含有第一和第二外层前体的 元素的半导体核。有助于非均匀生长的条件包括向核溶液中逐滴加入(例 如1~2滴/秒)含有第一和第二外层前体的溶液,以及将所述前体维持在 低浓度。低浓度范围典型地为0.0005至0.5M。以该方式,可在半导g 上形成外层并且在所述半导体核与外层之间形成界面区。
合适的溶剂可选自酸(尤其是脂肪酸)、胺、膦、氧化膦、膦酸(以 及磷酰胺、磷酸盐、磷酸酯等)以及其混合物。包括烷烃、烯烃、卣代-烷烃、醚、醇、酮、酯等的其它溶剂也用于此方面,尤其在存在所添加的 发光物品配体的情况下。应当理解,所述第一溶剂和第二溶剂可以相同, 并且在"一锅"型合成中可包含相同溶液。
虽然本文描述并举例说明了本发明的几个实施方案,但是本领域的 普通技术人员将容易地预想到用于实施本文所述功能和/或得到本文所 述的结果和/或本文所述一个或多个益处的各种其它方法和/或结构,并 且每个这样的变化和/或修改方案都被视为落入本发明的范围内。更一 般而言,本领域技术人员将容易理解,本文所述的所有参数、尺寸、材 料和构造是示例性的,实际的参数、尺寸、材料和构造将取决于使用本 发明教导的一种或更多种具体应用。本领域技术人员将会认识到或只利 用常规实验就能够确认本文所述的本发明具体实施方案的许多等同方 案。因此,应当理解前述实施方案仅仅是以举例的方式给出的,并且在 所附权利要求及其等同方案的范围内,可以以除了具体描述和要求之外 的其它方式来实施本发明。本发明涉及本文所述的每个单独的特征、体系、 物品、材料、工具和/或方法。此外,如果这样的特征、体系、物品、材料、 工具和/或方法不是相互矛盾,则两种或多种这样的特征、体系、物品、材
料、工具和/或方法的组合也包括在本发明范围内。
本文所限定和^^用的全部定义应当理解为凌驾于字典的定义、通过引 用并入并入的文献中的定义和/或指定术语的一般意义。
除非另有清楚的说明,本文说明书和权利要求书中所用的单数应当 理解为指"至少一个"。
本文的说明书和权利要求中使用的术语"和/或"应该理解为指以此 联合的要素,即在一些情况下联合存在而其它情况下分开存在的要素的 "两者之一或两者"。除了 "和/或"术语特别指出的要素之外的其它要 素可以任选存在,而无论与特别指出的那些要素相关或不相关。因此,
作为非限制实例,"A和/或B"可以在一个实施方案中指仅有A (任选 包括除B之外的要素);在另一实施方案中指仅有B (任选包括除A之 外的要素);在又一实施方案中指A和B (任选包括其它要素);等等。
除非另有明确的相反说明,在说明书和权利要求中使用的"或"应 该理解为具有与上述定义的"和/或"相同的意思。例如,在分开列表 中的项目时,"或"和"和/或"都应该解释为包括的,即包括许多要素 或要素列表中的至少一个,但是也包括多于一个,并且任选地包括其它 未列出的项目。 一般地,当前面有排它术语如"仅有其一"或"恰好其 一"时,本文使用的术语"或"应该理解为表示排它的供选方案(即"一 个或另一,但非两者")。
除非另有说明,在说明书和权利要求书中在涉及一个或更多要素的 列表时使用的术语"至少一个"应该理解为指选自要素列表中任意一个 或更多个要素的至少一个要素,但是不一定包括要素列表内具体列出的 各个和每个要素中的至少一个,并且不排除要素列表中的要素的任意组 合。该定义也允许除术语"至少一个"所指要素列表中具体指出的要素 之外的要素任选存在,不论与具体指出的这些要素相关或不相关。因此, 作为非限制实例,"A和B中的至少一个"(或等同的"A或B中的至少 一个",或等同的"A和/或B中的至少一个,,)可以在一个实施方案中 指至少一个,任选包括多于一个,A,而不存在B (和任选包括除B之 外的要素);在另一个实施方案中指至少一个,任选包括多于一个,B, 不存在A (和任选包括除A之外的要素);在又一实施方案中指至少一
个,任选包括多于一个,A,和至少一个,任选包括多于一个,B(和
任选包括其它要素);等等。
还应该理解,除非另有相反的明确指示,在本文所要求的包括多于 一个步骤或动作的任意方法中,该方法的步骤或动作的顺序不一定限于 所列举的方法的步骤或动作中的顺序。
在权利要求以及上述说明书中,全部过渡短语如"包括"、"包含"、"带 有"、"具有"、"含有"、"涉及"、"容纳"等应理解为开放式的,即意思是 包括但不限于。只有过渡短语"由…组成"和"M由…组成"才分别为
封闭或半封闭式过渡短语,如美国专利局审查指南2111.03部分所指出的 那样。
实施例
一疾才法.如果没有说明的话,则所有化学品均购自商业来源 (Sigma國Aldrich, Lancaster, Alfa Aesar and Gelest),并且在没有进一步 纯化的情况下使用。利用本领域>^知的方法(例如Meulenkamp, E. A.,丄 C7^附.fi "9《,5566,通过参考并入本文)合成ZnO纳米晶体。 通过Peng等人的/.爿附.C7^附2001,123, 183中所述的技术来制备 CdSe量子点。室温下在Agilent 8453 UV-可见分光光度计上测量样品的 吸收镨。室温下在Jobin Yvon Horiba Fluorolog发光分光光度计上测量 发光镨。
实施例1
NH2-ZnO纳米晶体的合成
将约30 mg NH2-ZnO纳米晶体溶解在10 mL去离子水中。然后在 使用前立即用0.2 pm膜注射器式过滤器过滤原液。利用UV-可见分光 光度计在330 nm处定量NH2-ZnO纳米晶体溶液的浓度。
实验之前可立即将NH2-ZnO纳米晶体溶液稀释至所期望的浓度。 在一些情形中,NH2-ZnO纳米晶体溶液可以在~ 3mg/mL时最稳定。
实施例2
醛的高通量筛选
将多种醛样品分别溶解在二甲基亚砜(DMSO)中。将每个醛的样 品溶液(75 jiL )与NH2-ZnO纳米晶体水溶液(5 ng/mL, 75 jiL )合并 加入96孔板的各个孔中。然后将所述板在平板紫外透射仪(Wealtec) 的UV辐射(U大=365 nm, 50W )下暴露2分钟。用微孔板读数器(Tecan ) 记录545 nm (在345 nm处激发)处的发光强度。
实施例3
NH2-ZnO纳米晶体的光稳定性
在暴露于UV辐射时,NH2-ZnO纳米晶体表现出宽广的吸收(在 350 nm以上急剧下降)并且发射峰在545 nm (图3 )处。ZnO纳米晶 体的发光归因于"表面陷阱效应",得到相对宽广的发射峰(带宽120 nm)。通过荧光胺滴定估算NH2-ZnO纳米晶体原液(3 mg/mL)的胺 浓度为2.2 mM。
利用动态发光来测量NH2-ZnO纳米晶体的光稳定性。图4显示不 存在和存在0.5 mM邻苯二甲醛时0.03 mg/mL NH2-ZnO纳米晶体溶液 的动态发光。利用345 nm的激发波长和545 nm的发射波长测量在拟图 4A)和5 mM硼酸盐緩冲液(pH=8.9 )(图4B )中的发光。在345 nm 波长处连续激发稀释的NH2-ZnO纳米晶体溶液(0.03 mg/mL ),并且每 隔5秒记录545 nm处的发射强度。
图4A显示水中不存在(I)和存在(II) 0.5 mM邻苯二甲醛时的发 光强度。不存在醛时,在暴露于UV辐射10分钟后观察到发光强度降 低29%。延长暴露时发光强度进一步降低。图4B显示不存在(III)和 存在(IV) 0.5mM邻苯二曱醛时在5mM硼酸盐緩冲液(pH=8.9 )的 存在下暴露于UV辐射后的发光强度。緩冲液的存在使NH2-ZnO纳米 晶体稳定,并且暴露于UV辐射10分钟后观察到发光强度的降低小于 8%。与水溶液中的NHrZnO纳米晶体进行比较,观察到硼酸盐緩冲液 中NH2-ZnO纳米晶体的发光强度增加60%。
实施例4
存在邻苯二曱醛时NH2-ZnO纳米晶体的光稳定性
在0.5 mM邻苯二甲搭存在下,NH2-ZnO纳米晶体的表面胺基可与 邻苯二甲醛可逆地反应生成亚胺。在暴露于UV辐射时,10分钟的UV 暴露之后可观察到发光强度降低更多(水溶液和硼酸盐緩冲液中分别降 低71%和30%)。在不暴露于UV的情况下,正常日光下l天后纳米晶 体水溶液的发光完全淬灭,表明亚胺官能化ZnO纳米晶体可能对光漂 白更敏感。利用不同浓度的邻苯二曱醛进行类似的实验。图5显示在图 4中动态发光实验之后NH2-ZnO纳米晶体溶液(0.03 mg/mL )在(a) 0.05 mM、 (b) 0.125 mM和(c) 0.25 mM邻苯二甲醛存在下的发射镨。 所述发射镨表明545 nm处的峰强度降低与浓度正相关.
苯亚胺发光体在419 nm处产生新的发射峰。该峰强度与邻苯二曱 醛浓度正相关。然而,当邻苯二甲醛浓度大大超过相应的氨基浓度时, 该发射出现蓝移。这可能归因于亚胺基的氧化或形成聚集物。
实施例5
NH2-ZnO纳米晶体的尺寸
图6显示利用0.5mM邻苯二甲醛处理(a)之前和(b)之后在UV 线下暴露10分钟时NH2-ZnO纳米晶体的TEM照片。基于透射电子显 微镜(TEM),纳米晶体的原始尺寸为 4至5nm (图6A)。清楚地观 察到ZnO的结晶度.然而,通过TEM不能分辩薄的硅烷涂层。用邻苯 二甲醛处理NH2-ZnO纳米晶体时,纳米晶体的粒径在UV下暴露10分 钟后降低至2至3 nm (图6B),表明纳米晶体的光漂白可能起源于因 表面胺基与邻苯二甲酪反应ZnO纳米晶体的光溶解增加。光溶解增加 可表明与胺基和纳米晶体之间的亲合力相比较,亚胺基和纳米晶体之 间的亲合力较低,导致更多的多孔壳并由此使核纳米晶体对光溶解更敏 感。
实施例6 搭的检测
为了建立响应于醛检测的"断开"(turn-off)光漂白,使用了类似
于之前实施例2中所述的方案。将醛和对照化合物(9 mM)溶解在 DMSO中(由于它们在水中的溶解度有限),并且将样品分别置于多孔 微孔板的单个孔中。在将每个醛样品与等体积的NH2-ZnO纳米晶体水 溶液(5吗/mL)混合后,将所述微孔板暴露于平板紫外透射仪(U大 =365 nm)的UV辐射下。UV下暴露2分钟后记录545 nm处的发光 强度(在345 nm处激发)。该方案使我们能直接监测所提出的检测方法 与高通量筛选技术的相容性。
图7显示在不同醛(0.9 mM)存在下暴露于UV辐射2分钟后 NHrZnO纳米晶体(5吗/mL )的发光强度百分率。如图7所示,各种 醛的存在通常使NH2-ZnO纳米晶体的发光淬灭20%至70%,而在暴露 于UV辐射2分钟后在对照中观察到仅淬灭10%。值得注意的是,根据 设计的方案,甚至脂肪族醛也以类似于芳香族醛的方式响应。在对硝基 苯曱醛存在下,发光强度降低66。/。。与较早的动态实验进行比较,发光 的淬灭降低。这部分地归因于NH2-ZnO纳米晶体在365 nm波长处的吸 收系数大大降低,并且部分地归因于UV暴露时间减少。利用含有不同 官能团的有机化合物的光稳定性实验全部表明发光强度仅仅稍微降低 (见图8 ),与对照实验一样。图8显示暴露于UV辐射2分钟后NH2-ZnO 纳米晶体(5 jig/mL)响应于各种对照有机化合物(0.9mM)的发光。 仅仅2-胺基-乙胺基乙醇使强度比对照试验降低~ 10%。
虽然本文描述并举例说明了本发明的几'个实施方案,但是本领,的
述的结果和/或一个或多个益处的各种其它方法和/或结构,并且每个这 样的变化和/或修改和改进方案都被视为落入本发明的范围内。更一般 而言,本领域技术人员将容易理解,本文所述的所有参数、材料、反应 条件和构造是示例性的,实际的参数、材料、反应条件和构造将取决于 使用本发明教导的一种或更多种具体应用。本领域技术人员将会认识到 或只利用常规实验就能够确认本文所述的本发明具体实施方案的许多 等同方案。因此,应当理解前述实施方案仅仅是以举例的方式给出的, 并且在所附权利要求及其等同方案的范围内,可以以除了具体描述之外 的其它方式来实施本发明。本发明涉及本文所述的每个单独的特征、体 系、材料和/或方法。此外,如果这样的特征、体系、材料和/或方法不 是相互矛盾,则两种或多种这样的特征、体系、材料和/或方法的组合
也包括在本发明范围内。
在权利要求中以及上述说明书中,所有过渡短语或包含短语例如 "包括"、"包含"、"带有"、"具有"、"含有"、"包含"、"由…制成"、"由… 形成"、"涉及,,等应当理解为是开放式的,即意指包括但不限于,因此 包含随后列举的项和其等同物以及其它的项。只有过渡短语"由...组成" 和"基本上由…组成"应当分别是闭式或半闭式过渡短语。除非另有明确 的相反说明,本文说明书和权利要求书中所用的单数应当理解为意指 "至少一个"。
本文的说明书和权利要求中使用的术语"和/或"应该理解为指以此 联合的要素,即在一些情况下联合存在而其它情况下分开存在的要素的 "两者之一或两者"。除了 "和/或"术语特别指出的要素之外的其它要 素可以任选存在,不论与特别指出的那些要素相关或不相关。因此,作
为非限制实例,"A和/或B"可以在一个实施方案中指仅有A (任选包 括除B之外的要素);在另一实施方案中指仅有B (任选包括除A之外 的要素);在又一实施方案中指A和B(任选包括其它要素);等等。在 说明书和权利要求中使用的"或"应该理解为具有与上述定义的"和/ 或"相同的意思。例如,在分开列表中的项时,"或"和"和/或"都应 该解释为包括,即包括许多要素或要素列表中的至少一个,但是也包括
多于一个,并且任选地包括其它未列出的项目。其它清楚指出与此相反 的术语如"仅有其一"或"恰好其一"指包括许多要素或要素列表中的 恰好一个要素。 一般地,当前面有排它术语如"两者之一"、"其一"、"仅 有其一"或"恰好其一"时,本文使用的术语"或"应该理解为表示排 它的供选方案(即"一个或另一,但非两者")。
除非另有说明在说明书和权利要求书中在涉及一个或更多要素的 列表时使用的术语"至少一个"应该理解为指选自要素列表中任意一个 或更多个要素的至少一个要素,但是不一定包括要素列表内具体列出的 各个和每个要素中的至少一个,并且不排除要素列表中的要素的任意组 合。该定义也允许除术语"至少一个"所指要素列表中具体指出的要素 之外的要素任选存在,不论与具体指出的这些要素相关或不相关。因此, 作为非限制实例,"A和B中的至少一个"(或等同的"A或B中的至少 一个",或等同的"A和/或B中的至少一个")可以在一个实施方案中
指至少一个,任选包括多于一个,A,不存在B (和任选包括除B之外 的要素);在另一个实施方案中指至少一个,任选包括多于一个,B,不 存在A (和任选包括除A之外的要素);在又一实施方案中指至少一个, 任选包括多于一个,A,和至少一个,任选包括多于一个,B(和任选 包括其它要素);等等。
本文所引用的所有参考文献(包括专利和公开的申请)通过引入并 入本文。在本说明书和通过引用并入本文的文献和/或本文所指的文献 中包含矛盾的公开内容、和/或术语使用不一致、和/或所并入的/参考的 文献使用或定义不同于本说明书所使用或定义的术语时,以本说明书为 准。
权利要求
1.一种通过分析物与发光物品的相互作用来测定所述分析物的方法,所述方法包括 提供怀疑含有分析物的样品; 将所述样品暴露于包含外层的发光物品,并且如果存在所述分析物的话,通过所述分析物与所述外层的相互作用使所述分析物相对于所述物品固定,其中通过所述相互作用来改变所述外层;测定所述发光物品的第一发射;在足以引起所述发光物品的发光特性改变的条件下将所述发光物品暴露于电磁辐射一段时间;测定所述发光物品的第二发射;以及测定指示存在所述分析物的所述第一发射和所述第二发射之间的差异,其中对所述外层的改变提高所述物品在所述条件下在电磁辐射中暴露所述时间段时对发光特性变化的敏感性,使得在不存在分析物的情况下,所述物品在所述条件下在所述电磁辐射中暴露所述时间段不产生所述第一和第二发射之间的所述差异。
2. 根据权利要求l的方法,其中在不存在所述分析物的情况下,所述 发光物品在所述条件下在所述电磁辐射中暴露所述时间段产生所述第 一和第二发射之间的不同差异。
3. 根据权利要求l的方法,其中不存在所述分析物时的所述差异小于 存在所述分析物时的所述差异。
4. 根据权利要求l的方法,其中所述发光物品的外层包含多个对所述 物品的表面具有亲合力的官能团,并且所述分析物相对于所述物品固定 使得所述官能团与所述物品表面的分离增加,从而增加所述物品在所述 条件下在所述电磁辐射中暴露所述时间段时对发光特性变化的敏感性。
5. 根据权利要求l的方法,其中所述外层是自组装的致密堆积结构, 并且在所述分析物存在下,所述外层与所述分析物进行相互作用以破坏 所述自组装的致密堆积结构,从而增加所述物品在所述条件下在所述电 磁辐射中暴露所述时间段时对发光特性变化的敏感性。
6. 根据权利要求l的方法,其中所述外层包含至少一种类型的硅烷。
7. 根据权利要求l的方法,其中所述发光物品包含半导体纳米晶体。
8. 根据权利要求7的方法,其中所述半导体纳米晶体是MgO、 MgS、 MgSe、 MgTe、 CaS、 CaSe、 CaTe、 SrS、 SrSe、 SrTe、 BaS、 BaSe、 BaTe、ZnO、 ZnS、 ZnSe、 ZnTe、 CdO、 CdS、 CdSe、 CdTe、 HgO、 HgS、 HgSe、 HgTe、 A1N、 A1P、 AlAs、 AlSb、 A12S3、 Al2Se3、 Al2Te3、 Ga2S3、 Ga2Se3、 GaTe、 In2S3、 In2Se3、 InTe、 SnS、 SnSe、 SnTe、 PbS、 PbSe、 PbTe、 AIP、 AlAs、 AlSb、 GaN、 GaP、 GaAs、 GaSb、 InN、 InP、 InAs、 InSb、 TiN、 TiP、 TiAs、 TiSb、 BP、 Si和Ge,其^T如AlGaAs、 InGaAs、 InGaP、 AlGaAs、 AlGaAsP、 InGaAIP或InGaAsP,其三元和四元混合物,其 化合物或其固溶体。
9. 根据权利要求7的方法,其中所述半导体纳米晶体是CdSe、 CdTe、 ZnSe和/或ZnO。
10. 根据权利要求7的方法,其中所述发光物品包含ZnO。
11. 根据权利要求l的方法,其中所述外层包含胺、硫醇、羧酸、酐和/ 或醇。
12. 根据权利要求11的方法,其中所述外层包含胺。
13. 根据权利要求l的方法,其中所述相互作用包括与所述分析物形成 共价键、离子键、氢键和/或范德华相互作用。
14. 根据权利要求l的方法,其中所述相互作用包括与所述分析物形成 共价键。
15. 根据权利要求l的方法,其中所述分析物包含醛。
16. 根据权利要求l的方法,其中所述分析物是生物分子。
17. 根据权利要求l的方法,其中所述发光物品包含荧光染料。
18. —种用于测定分析物的方法,其包括 在怀疑含有分析物的样品存在下将发光物品暴露于电磁辐射,其中所述分析物影响所述物品的发光特性响应于电磁辐射的变化;以及如果存在所述分析物,则通过测定由于所述暴露于电磁辐射所引起 的所述物品发光特性的变化来测定所述分析物。
19. 根据权利要求18的方法,其中所述暴露包括在足以引起所述发光物 品的发光特性改变的条件下将所述发光物品暴露于电磁辐射一段时间。
20. 根据权利要求19的方法,其中在不存在所述分析物的情况下所述发 光特性的变化不同于所述分析物存在下发光特性的变化。
21. 根据权利要求19的方法,其中在不存在所述分析物的情况下所述发 光特性变化的幅度小于所述分析物存在下所述发光特性变化的幅度。
22. 根据权利要求18的方法,其中所述发光物品包括外层,所述外层包 含多个对所述物品表面具有亲合力的官能团,并且所述分析物相对于所 述物品的固定使得所述官能团与所述物品表面的分离增加,从而增加所 述物品在所述条件下在所述电磁辐射中暴露所述时间段时对发光特性 变化的敏感性。
23. 根据权利要求22的方法,其中所述外层包含至少一种类型的硅烷。
24. 根据权利要求18的方法,其中所述外层是自组装的致密堆积结构, 并且在所述分析物存在下,所述外层与所述分析物进行相互作用以破坏 所述自组装的致密堆积结构,从而增加所述物品在所述条件下在所述电 磁辐射中暴露所述时间段对发光特性变化的敏感性。
25. 根据权利要求24的方法,其中所述外层包含至少一种类型的硅烷。
26. 根据权利要求B的方法,其中所述发光物品包含半导体纳米晶体。
27. 根据权利要求26的方法,其中所述半导体纳米晶体是MgO、 MgS、 MgSe、 MgTe、 CaS、 CaSe、 CaTe、 SrS、 SrSe、 SrTe、 BaS、 BaSe、 BaTe、 ZnO、 ZnS、 ZnSe、 ZnTe、 CdO、 CdS、 CdSe、 CdTe、 HgO、 HgS、 HgSe、 HgTe、 B1N、 B1P、 BlBs、 BlSb、 B12S3、 Bl2Se3、 Bl2Te3、 Ga2S3、 Ga2Se3、 GaTe、 In2S3、 In2Se3、 InTe、 SnS、 SnSe、 SnTe、 PbS、 PbSe、 PbTe、 B1P、 BlBs、 BlSb、 GaN、 GaP、 GaBs、 GaSb、 InN、 InP、 InBs、 InSb、 TiN、 TiP、 TiBs、 TiSb、 BP、 Si和Ge,其^t"如BlGaBs、 InGaBs、 InGaP、 BlGaBs、 BlGaBsP、 InGaBlP或InGaBsP,其三元和四元混合物,其化 合物或其固溶体。
28. 根据权利要求26的方法,其中所述半导体纳米晶体是CdSe、 CdTe、 ZnSe和/或ZnO。
29. 根据权利要求26的方法,其中所述发光物品包含ZnO。
30. 根据权利要求B的方法,其中所述外层包含胺、硫醇、羧酸、酐和 /或醇。
31. 根据权利要求30的方法,其中所述外层包含胺。
32. 根据权利要求18的方法,其中所述相互作用包括与所述分析物形成 共价键。
33. 根据权利要求18的方法,其中所述物品与所述分析物具有相互作 用,所述相互作用包括与所述分析物形成共价键、离子键、氢键、和/ 或范德华相互作用。
34. 根据权利要求33的方法,其中所述相互作用包括与所述分析物形成 共价键。
35. 根据权利要求18的方法,其中所述分析物包含醛。
36. 根据权利要求18的方法,其中所述分析物是生物分子。
37. 根据权利要求18的方法,其中所述发光物品包含荧光染料。
全文摘要
本发明涉及用于测定分析物的方法。本发明提供包括将发光物品(10)暴露于分析物的多种方法,其中当与所述分析物相互作用时,可观察到发光随暴露于电磁辐射的持续时间的变化,由此测定分析物。本发明的一些实施方案包括利用高发射性的半导体纳米晶体。在本发明的一个实例中,半导体ZnO纳米晶体(20)形成包封在胺壳(30)中的核。在一些情形中,纳米粒子与样品中存在的醛之间的相互作用可影响由此形成的纳米粒子的光稳定性。在一些实施方案中,可在纳米粒子光漂白时测定样品中醛的存在。
文档编号G01N21/64GK101365938SQ200680051500
公开日2009年2月11日 申请日期2006年12月15日 优先权日2005年12月19日
发明者于晓华, 埃姆里尔·穆罕默德·阿利, 尼基尔·R·贾纳, 应仪如 申请人:新加坡科技研究局
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1