专利名称:化学分析装置的制作方法
技术领域:
本发明涉及化学分析装置,尤其适于具有搅拌由供给到反应容器内的试样及试剂构成的微量被测定液的搅拌器的化学分析装置。
背景技术:
作为现有的自动分析装置的搅拌装置,有日本特开平10-62430号公报(专利文献1)上公开的内容。该专利文献1的搅拌装置具备使搅拌棒旋转运动的旋转运动单元和使安装该旋转运动单元的支撑托架向前后方向往复运动的往复运动单元,通过在反应容器内使搅拌棒同时进行前后方向的往复运动和旋转运动,搅拌反应容器内的试样和试剂。
另外,作为现有的自动分析装置的搅拌装置,有日本特开平11-64189号公报(专利文献2)上公开的内容。该专利文献2的搅拌装置具备受到施加的电压而振动的振动产生部、保持该振动产生部的基板部、搅拌液体的搅拌棒、配置于上述基板部和上述搅拌棒之间的衬垫以及对上述振动发生部施加电压的电源部。
然而,在上述专利文献1的搅拌装置中,由于由供给到反应容器内的试样及试剂构成的被测定液的搅拌是通过旋转和前后移动实现的,因而被测定液中的相同高度的液体之间的搅拌成为了主流,存在沿上下方向分布的试样和试剂不能有效地搅拌的问题。尤其是,在如试样点状附着在反应容器的底部的被测定液的场合,试样和试剂的搅拌较为困难。
另外,在上述专利文献2的搅拌装置中,由于由供给到反应容器内的试样及试剂构成的被测定液的搅拌是由叶片的前后移动引起的振动实现的,因而与专利文献1的搅拌装置同样地、被测定液的相同高度的液体之间的搅拌成为主流,存在沿上下方向分布的试样和试剂不能有效地搅拌的问题。尤其是,在如试样点状附着在反应容器的底部的被测定液的场合,试样和试剂的搅拌较为困难。
发明内容
本发明的目的在于提供通过上下移动由供给到反应容器内的试样及试剂构成的被测定液可得到高的搅拌效率的化学分析装置。
为了达到上述目的,本发明的化学分析装置具备将试样供给具有开口部的反应容器内的试样供给单元;将试剂供给上述反应容器内的试剂供给单元;具有搅拌由供给到上述反应容器内的上述试样及上述试剂构成的被测定液的搅拌器的搅拌单元;计测上述反应容器内的被测定液的物性的计测单元;以及控制上述搅拌单元的驱动的控制装置;其特征在于,上述搅拌单元具备上下驱动上述搅拌器的上下驱动机构,上述控制装置控制上述上下驱动机构,使其在上述反应容器内的被测定液中上下驱动上述搅拌器以使该搅拌器的底面下方的被测定液上下流动。
相关本发明的优选的具体结构例子如下(1)上述搅拌器具有上述反应容器内的平面区域的50%~90%的平面区域并浸渍在上述反应容器内的上述被测定液中。
(2)上述搅拌器具有间隙或通孔或筛网结构并浸渍在上述被测定液中。
(3)上述控制装置控制上述上下驱动机构,使其在将上述搅拌器浸渍在上述被测定液中的状态下,以不同的频率或不同的振幅上下驱动上述搅拌器。
(4)上述控制装置控制上述上下驱动机构,使其在以上述被测定液的底面附近为中心按照高频、小振幅进行上述搅拌器的上下驱动后,以上述被测定液的中央高度附近为中心按照低频、大振幅进行上述搅拌器的上下驱动。
(5)上述控制装置控制上述上下驱动机构,使其在结束利用上述搅拌器对上述被测定液的搅拌并从该被测定液向上方拉起时,以高频使上述搅拌器微小振动。
(6)上述搅拌器具有中央部分高并向周边部倾斜的上表面。
(7)上述控制装置控制上述上下驱动机构,使上述搅拌器的向下的运动比向上的运动更快地进行。
(8)上述控制装置控制上述上下驱动机构,使得上述搅拌器的上表面露出在上述被测定液的液面的上方,且该搅拌器的底面浸渍在该被测定液中的状态下,上下驱动上述搅拌器。
(9)上述搅拌器的结构为,其底面在反应容器深度方向上为非对称。
(10)上述控制装置控制上述试样供给单元,使其将上述试样供给到与上述搅拌器的底面的较深部分相对应的上述反应容器内的部位。
根据本发明,可以通过上下移动由供给到反应容器内的试样及试剂构成的被测定液而能提供得到高的搅拌效率的化学分析装置。
图1是本发明的第一实施方式的化学分析装置的结构图。
图2是图1的化学分析装置中的搅拌机构附近的纵向剖视图。
图3是图2的搅拌机构附近的横向剖视图。
图4是表示图2的搅拌机构的搅拌顺序的流程图。
图5是本发明的第二实施方式的化学分析装置的搅拌机构附近的纵向剖视图。
图6是本发明的第三实施方式的化学分析装置的搅拌机构附近的纵向剖视图。
图中101-反应盘、102-反应容器、103-试样盘、104-试样容器、105-试剂盘、106-试剂容器、107-试样分注机构(试样供给单元)、108-试剂分注机构(试剂供给单元)、109-搅拌机构(搅拌单元)、110-检测机构(测定单元)、111、119-清洗机构、112-控制器、113-控制台、114-恒温槽、114a-水槽部、120-控制装置、213-被测定液、214-恒温水、250-转动马达、260-上下移动马达、270-曲柄、275-支撑台、276-支撑棒、280-滑轨、281-定位突起、282-切口、290-搅拌器、291-搅拌器棒、292-搅拌器臂、293-弹簧、294-驱动机构(上下驱动机构)、300-搅拌器板、305-流动、310-间隙宽度、320-液面、330-清洗槽、340-清洗水排出口、501-上下移动马达、502-曲柄、503-搅拌器导向装置、510-间隙、511-流动、520-风管、521-气流、522-阀门、523-空压机、601-丝杠式马达、602-丝杠、620-光学检测区域、630-试样点状附着位置具体实施方式
下面,根据
本发明的多个实施方式。各个实施方式中的同一符号表示同一物或等同物。此外,本发明不限定于本说明书中所公开的内容,而且不阻止根据现在及今后的公知事项的变更。
第一实施方式下面,结合图1~图4说明本发明第一实施方式的化学分析装置1。
首先,参照图1就本发明第一实施方式的化学分析装置1的整体进行说明。图1是本发明的第一实施方式的化学分析装置1的结构图。该化学分析装置1是用来分析生物体中所含微量物质等的由试样和试剂构成的微量被测定液的装置。
化学分析装置1由反应盘101、恒温槽114、试样盘103、试剂盘105、试样分注机构107、试剂分注机构108、清洗机构111、搅拌机构109、检测机构110、清洗机构119及控制装置120等构成。
这些各个构成要素构成为,根据开始分析之前预先由控制装置12的控制台113设定的信息(分析项目和分析的液体量等),按照由控制装置12的控制器112制作的程序并以给定的定时顺序自动地动作。
反应盘101由可转动地设置的圆盘构成。在反应盘101上形成有反应容器存放部。该反应容器存放部以等间隔沿反应盘101的外周边形成有多个。反应容器102由上面具有开口部的大致矩形的极小的容器构成,分别设置于反应盘101的各个反应容器存放部上并供给微量的被测定液213(参见图2)。为了能在外径较小的反应盘101上设置多个,各个反应容器102由在反应盘101的径向较长而在周向较短的形状的容器构成。
恒温槽114做成具有比反应盘101的外径稍微大一些的外径的圆形,设置于反应盘101的下方。在恒温槽114的外周部上形成有盛满了恒温水204的圆环状的水槽部114a。恒温槽114使反应容器102处于浸泡在恒温水214中的状态,起着保持该反应容器102及被测定液213的恒温状态的作用。
试样盘103由可转动地设置的圆盘构成,并列配置在反应盘101的径向外边。在试样盘103上形成有试样容器存放部。该试样容器存放部以等间隔沿试样盘103的外周边形成有多个。试样容器104分别设置于试样盘103的各个试样容器存放部内而容纳试样。
试剂盘105由可转动地设置的圆筒构成,并列配置在反应盘101的径向外边。在试剂盘105上形成有试剂容器存放部。该试剂容器存放部以等间隔沿试剂盘105的外周边形成有多个。试剂容器106分别设置于试剂盘105的各个试剂容器存放部内而容纳试剂。
试样分注机构107用来将试样容器104内的试样分注到反应容器102内,构成试样供给单元。试剂分注机构108用来将试剂容器106内的试剂分注到反应容器102内,构成试剂供给单元。
搅拌机构109用来在反应容器102内搅拌分注到反应容器102内的由试样和试剂构成的被测定液213,构成搅拌单元。关于搅拌机构109将在后面详述。
检测机构110用来检测反应容器102的试样和试剂的混合体即被测定液213的反应过程及反应后的吸光度或发出荧光等的光强度、电化学性能等,构成测定单元。该检测机构110与恒温槽114的外周面侧面相对地设置,而且与反应容器102的外周侧面(换句话说,是被测定液213)相对应地设置。
两个清洗机构111分别用来清洗试样分注机构107和试剂分注机构108,构成清洗单元。清洗机构119用来在检测(测光)结束后清洗反应容器102,构成清洗单元。
下面,参照图2~图4详细说明搅拌机构109。图2是图1的化学分析装置1的搅拌机构附近的纵向剖视图,图3是图2的搅拌机构附近的横向剖视图,图4是表示图2的搅拌机构109的搅拌顺序的流程图。
如上所述,搅拌机构109是混合、搅拌反应容器102内的由试样和试剂构成的被测定液213的要素。存放在反应盘101上的反应容器102按编制的程序如下运转伴随反应盘101的转动及停止动作,一边浸泡在恒温水204中一边自动地重复转动及停止动作,并在具备了搅拌机构109的位置停止时搅拌被测定液213。
搅拌机构109的结构具备由作为搅拌器的一例的搅拌器板300和搅拌器棒291构成的搅拌器290;搅拌器臂292;以及使搅拌器290及搅拌器臂292转动、上下移动的驱动机构294。驱动机构294由控制装置120控制。控制装置120控制驱动机构294,使其驱动拌器板300在反应容器102内的被测定液213中上下移动,并使该搅拌器板300的底面下方的被测定液213上下流动。由此,能够得到较高的搅拌效率。
此外,驱动机构294的旋转动作通过转动马达250进行,驱动机构294的上下动作通过上下移动马达260和曲柄270和滑轨280进行。
如图2及图3所示,搅拌器板300具有占反应容器102内的平面区域的较宽面积的平面区域并浸渍在反应容器102内的被测定液213中。具体来讲,搅拌器板300具有反应容器102内平面区域的50%~90%的平面区域并浸渍在反应容器102内的被测定液213中。由此,可以将搅拌器板300的上下移动的力直接作用在位于被测定液213的下部的试样630上,可实现高效搅拌。另外,如图3所示,即使在反应容器102内的平面区域为宽度极窄的矩形的场合,也可以通过将搅拌器板300的平面区域做成与其匹配的形状而使搅拌器板300上下移动,可实现高效搅拌。
搅拌器板300具有中央部分较高而周边部分倾斜的锥面的上表面和平坦面的底面并浸渍在被测定液213中。由此,在使搅拌器板300向下移动时,可以用其底面使其下方的被测定液213可靠地上下流动,并且,在使搅拌器板300向上移动时,能够使其上表面上方的被测定液213沿锥面顺利地引导到搅拌器板300的底面一侧。
搅拌机构109由如图4所示的顺序搅拌被测定液213。
首先,转动反应盘101以使注入了被测定液213的反应容器102移动(步骤S11)。这里,在反应盘101的外周面上分别形成有与各个反应容器102相对应的切口282,在水槽部114a的规定位置(搅拌反应容器102内的被测定液213的位置)上设有弹簧式的定位突起281。
如图3所示,若反应盘101转动使得注入了被测定液213的反应容器102移动到规定位置,则弹簧式的定位突起281嵌入到反应盘101的切口282内,进行反应容器102和搅拌器板300的定位(步骤S12)。由于反应容器102小且宽度窄,而且使搅拌器板300的平面区域的面积近似于反应容器102内的平面区域的面积,因此,通过设置这样的定位机构可实现高效率搅拌。此外,将反应容器102、搅拌器板300、切口282及定位突起281的中心线295设计成一致。
接着,使搅拌器板300下降并浸渍到被测定液213中(步骤S13)。搅拌器板300和反应容器102的侧壁之间的间隙宽度310,最好是搅拌器板300的1/20左右。将搅拌器板300下降到反应容器102的底面附近,最好下降到搅拌器板300厚度的三倍左右的位置。
在该状态下,以被测定液213的底面附近为中心,以高频、小振幅(短的行程长度)使搅拌器板300上下移动(步骤S14)。此时的搅拌器板300的上下移动的速度最好是将搅拌器板300浸渍在液体中时的速度的两倍以上,而且搅拌器板300的振幅最好是被测定液213的液面高度的20%左右。由于搅拌器板300和反应容器102的侧壁之间的间隙宽度310较小,因此,上下移动搅拌器板300时的流动阻力较大,在反应容器102的底面部产生被搅拌器板300的底面推拉的局部性流动305。由此,能够重点使包含附着、沉淀在反应容器102的底面上的试样630的被测定液213流动。此时的流动限定于底面部,传播至液面320的流动能量被中途的液体消散,因此,能够避免液面320的短周期的大幅度晃荡。由此,不会发生污染或影响分析精度的搅拌不充分的液体的飞散或给检测带来影响的空气卷入等情况。该动作时间,虽然也由液体量等决定,但最好是搅拌时间总量的一半到五分之一左右。
接着,以被测定液213的中央高度附近为中心,以低频、大振幅进行搅拌器板300的上下驱动(步骤S15)。此时的搅拌器板300的上下移动的速度最好是将搅拌器板300浸渍在液体中时的速度的二分之一至两倍左右,而且搅拌器板300的振幅最好是被测定液213的液面高度的80%左右。借助于该搅拌器板300的上下驱动,由于通过了搅拌器板300和反应容器102的侧壁之间的间隙宽度310的被测定液213环绕搅拌器板300的上表面和下面流动,因此,使整个反应容器102内的被测定液213产生流动306。此时,虽然搅拌器板300的振幅较大,但由于搅拌器板300以低频上下移动,因此,不会发生液面320的大幅晃动的情况。通过该动作,可以将先前被搅拌了的反应容器102的底面附近的被测定液213均匀地搅拌到整个反应容器102中。
如上所述,在将搅拌器板300浸渍在被测定液213中的状态下,通过利用不同频率或不同振幅上下驱动搅拌器板300,能够实现高效搅拌。此外,根据被测定液的种类的不同,也有不使搅拌器板300上下移动多次而将搅拌器板300浸渍在被测定液213中,并仅仅通过在这种状态下从被测定液中拉起而产生较大的上下流动,实现充分的搅拌的情况。
接着,将搅拌器板300从被测定液213拉起(步骤S16)。在搅拌器板300稍微露出液面的位置,使搅拌器板300以高频微小的振动进行上下移动(步骤S17),以去除附着在搅拌器上的液体。使搅拌器板300振动的位置最好是,其上下移动的最低点在距液面320为搅拌器板300的板厚程度以上。此时,最好进行非对称的上下动作(上升慢、下降快的动作)。由此,容易使附着在搅拌器板300上的液体产生返回被测定液213的液体中的惯性。由于搅拌器板300的上表面呈锥形,因此,液体容易流掉。
另外,最好用氟类树脂等预先对搅拌器290实施憎水涂敷。此时,在将搅拌器板300从被测定液213中拉起时,被测定液213不仅难以附着,而且可以减少搅拌器板300在被测定液213中时的流体阻力,从而能够降低搅拌器动作所需的动力,这对提高搅拌效率非常有利。进而,即使因液面320变形而卷入空气形成了气泡,由于湿润差的面容易卷入空气,因而气泡容易附着,因此,也能去除被卷入的气泡,这有利于提高检测精度。
接着,如图2的点划线所示,使搅拌器板300完全上升、转动(步骤S18),并将搅拌器板300移动到清洗槽330(步骤S19),而后从清洗水排出口340喷出清洗水(步骤S20)。在喷洒清洗水期间,上下移动搅拌器板300,促进清洗流动,提高清洗效果。喷洒完清洗水并结束清洗后,在清洗槽330内或在其正上方以高频、微小振动进行上下移动(步骤S21),以振掉附着在搅拌器板300上的清洗水。这种动作通过与先前在液面附近所进行的动作相同地、以上升较慢而下降较快的方式进行,就能够将所附着的清洗液挤出到清洗槽330内。
通过上述的结构及动作,能够提供搅拌效率高,抗污染性较强,具备了简单结构的搅拌要素的化学分析装置。
第二实施方式下面结合图5就本发明第二实施方式的化学分析装置1进行说明。图5是本发明的第二实施方式的化学分析装置1的搅拌机构附近的纵向剖视图。该第二实施方式在下述各点上与第一实施方式不同,由于在其它点方面与第一实施方式基本相同,因此,省略其重复说明。
在该第二实施方式中,搅拌器臂292支撑于从分析装置上的支撑台275延伸的支撑棒276上。另外,搅拌器290的驱动机构294的结构具备上下移动马达501和曲柄502,只具有使搅拌器290上下移动的功能。搅拌器棒291沿搅拌器导向装置503动作。
在搅拌器板300上设有多个间隙510,通过搅拌器的上下移动,产生流过间隙的流动511。此时,由在间隙510上的较强的剪力,实现有效的搅拌。间隙510也可以通过在搅拌器板300上设置通孔或将搅拌器板300做成筛网结构得到。再有,如图5所示,通过将扭曲了的板作为搅拌器叶片512以狭窄的间隙并列多个而构成搅拌器板300,也产生扭曲的涡流,可提高搅拌效率。
完成搅拌后,在将搅拌器板300从液面320稍微拉起的位置,从安装在搅拌器臂292上的风管520喷出气流521。在化学分析装置上设有用来清洗分注机构107等的压力输送清洗水用的空压机523。通过借助于阀门522将风管520连接在空压机523上,从而在拉起搅拌器板300的时刻喷出气流521。此时,进入到间隙510中的液体被吹回到被测定液213中,而不会发生对外部的污染或带出等。
第三实施方式下面结合图6就本发明第三实施方式的化学分析装置1进行说明。图6是本发明的第三实施方式的化学分析装置1的搅拌机构附近的纵向剖视图。该第三实施方式在下述各点上与第一实施方式不同,而在其它方面与第一实施方式基本相同,因此,省略其重复说明。
搅拌机构109是混合、搅拌反应容器102内的由试样和试剂构成的被测定液213的装置,其结构具备搅拌器290;使将搅拌器290上下移动的驱动机构294;以及支撑于从分析装置上的支撑台275延伸的支撑棒276上的搅拌器臂292。上下驱动机构294由安装于搅拌器臂292上的丝杠式马达601和弹簧293构成。搅拌器棒291仅仅与丝杠602连接触,可独立动作。搅拌器棒291通过利用丝杠602推下、利用弹簧293抬起而上下移动。
搅拌器板300通过其侧面一侧与反应容器102的侧壁610接触而定位,沿容器侧壁610上下移动并搅拌被测定液213。搅拌器板300的底面在反应容器深度方向上的结构为非对称。在图示的例子中,相对于反应容器102在左右位置上为非对称的形状,左侧向下方突出,右侧凹入。利用这种形状,被测定液213容易流入凹入的空间内,能够加大流动。另外,通过在被测定液213中产生不均匀的紊流场,从而与简单的规则的振动流相比可实现更有效的搅拌。此时,试样点状附着位置630最好不要在容器中央部而要在侧壁附近。此时,容易受非对称的流动的影响,可实现有效的搅拌。
搅拌器动作行程的范围为不进入设定于容器的底面附近的检测光所照射的区域即光学检测区域620的区域,对检测精度没有影响。理想的是,若搅拌器板300只在液面附近上下移动,由于只有搅拌器板300的一部分接触液体,因此,能够减小对液体被带走或污染的影响。此时,由非对称形状所引起的流动的影响不会加大液面320晃动到必要以上。
权利要求
1.一种化学分析装置,具备将试样供给具有开口部的反应容器内的试样供给单元;将试剂供给上述反应容器内的试剂供给单元;具有搅拌由供给到上述反应容器内的上述试样及上述试剂构成的被测定液的搅拌器的搅拌单元;计测上述反应容器内的被测定液的物性的计测单元;以及控制上述搅拌单元的驱动的控制装置;其特征在于,上述搅拌单元具备上下驱动上述搅拌器的上下驱动机构,上述控制装置控制上述上下驱动机构,使其在上述反应容器内的被测定液中上下驱动上述搅拌器以使该搅拌器的底面下方的被测定液上下流动。
2.根据权利要求1所述的化学分析装置,其特征在于,上述搅拌器具有上述反应容器内的平面区域的50%~90%的平面区域并浸渍在上述反应容器内的上述被测定液中。
3.根据权利要求1所述的化学分析装置,其特征在于,上述搅拌器具有间隙或通孔或筛网结构并浸渍在上述被测定液中。
4.根据权利要求1所述的化学分析装置,其特征在于,上述控制装置控制上述上下驱动机构,使其在将上述搅拌器浸渍在上述被测定液中的状态下,以不同的频率或不同的振幅上下驱动上述搅拌器。
5.根据权利要求4所述的化学分析装置,其特征在于,上述控制装置控制上述上下驱动机构,使其在以上述被测定液的底面附近为中心按照高频、小振幅进行上述搅拌器的上下驱动后,以上述被测定液的中央高度附近为中心按照低频、大振幅进行上述搅拌器的上下驱动。
6.根据权利要求1所述的化学分析装置,其特征在于,上述控制装置控制上述上下驱动机构,使其在结束利用上述搅拌器对上述被测定液的搅拌并从该被测定液向上方拉起时,以高频使上述搅拌器微小振动。
7.根据权利要求6所述的化学分析装置,其特征在于,上述搅拌器具有中央部分高并向周边部倾斜的上表面。
8.根据权利要求6所述的化学分析装置,其特征在于,上述控制装置控制上述上下驱动机构,使上述搅拌器的向下的运动比向上的运动更快地进行。
9.根据权利要求1所述的化学分析装置,其特征在于,上述控制装置控制上述上下驱动机构,使得上述搅拌器的上表面露出在上述被测定液的液面的上方,且该搅拌器的底面浸渍在该被测定液中的状态下,上下驱动上述搅拌器。
10.根据权利要求1所述的化学分析装置,其特征在于,上述搅拌器的结构为,其底面在反应容器深度方向上为非对称。
11.根据权利要求10所述的化学分析装置,其特征在于,上述控制装置控制上述试样供给单元,使其将上述试样供给到与上述搅拌器的底面的较深部分相对应的上述反应容器内的部位。
全文摘要
本发明提供通过上下移动由供给到反应容器内的试样及试剂构成的被测定液而可得到高搅拌效率的化学分析装置。化学分析装置(1)具备将试样供给具有开口部的反应容器(102)内的试样供给单元;将试剂供给上述反应容器(102)内的试剂供给单元;具有搅拌由供给到上述反应容器内的上述试样及上述试剂构成的被测定液(213)的搅拌器(300)的搅拌单元;计测上述反应容器内的被测定液的物性的计测单元;及控制搅拌单元(109)的驱动的控制装置。搅拌单元(109)具备上下驱动搅拌器的上下驱动机构(294)。控制装置控制上下驱动机构,使其在反应容器内的被测定液中上下驱动搅拌器以使该搅拌器的底面下方的被测定液上下流动。
文档编号G01N35/02GK101071138SQ20071010779
公开日2007年11月14日 申请日期2007年4月30日 优先权日2006年5月10日
发明者山川宽展, 榎英雄, 山崎功夫, 塚田修大 申请人:株式会社日立高新技术