基于联网的暂态电能质量扰动智能分析方法

文档序号:6081540阅读:123来源:国知局
专利名称:基于联网的暂态电能质量扰动智能分析方法
技术领域
本发明涉及电能质量监测领域,尤其是一种基于联网的暂态电能质量扰动智能分
析方法。
背景技术
随着我国电力工业的迅速发展,现代电网与负荷构成急剧变化,特别是非线性、冲
击性、不平衡负荷容量的不断增长,如各种电力整流设备、电弧炉、大容量调速电机及电气
化铁道等在电力系统中的广泛使用,对供电系统电能质量造成了严重的影响;另一方面,由
于微处理器和数字器件等精密电子设备的大量使用,对供电可靠性和供电质量的敏感程度
也越来越高。因此,合理解决电能质量问题已成为电力工作者所面临的重要任务。
目前,国家技术监督局出台了 6项电能质量国家标准,为电能质量电压、频率及谐
波等稳态指标分析提供了依据,稳态电能质量的研究已经深入,各种检测设备,监控分析系
统及工程治理方法均较成熟;然而新型微处理器设备和各种电力电子设备的大量投入,使
得电压暂降等暂态电能质量问题日益突出。对暂态电能质量扰动的充分认识是暂态电能质
量问题治理和评估的前提。当前的暂态电能质量扰动分析方法主要依据单个监测点的扰动
信息,对暂态电能质量扰动检测、识别进行研究,不能定位暂态电能质量扰动源的位置,更
无法集中同一供电系统不同地点的扰动信息对暂态电能质量扰动进行综合地分析和评估;
而现有的网络化电能质量监测系统仅能对各种稳态电能质量指标进行系统分析,受暂态信
号分析的采样率高的影响,未能对暂态电能质量扰动提供有效的分析方法。

发明内容
本发明的目的是克服现有暂态电能质量扰动分析方法的不足之处,提供基于联网 的暂态电能质量扰动智能分析方法,其分析结果精确,可靠,能为暂态电能质量扰动的评估 和治理提供全面的数据支持。 本发明的基于联网暂态电能质量扰动智能分析方法,包括以下步骤
A、采集与滤波 采集电网中多个监测点k = 1,2,…,N的暂态电能质量扰动信号,滤波后得到各 监测点暂态电能质量扰动电压信号Uk及电流信号Ik ;
B、扰动检测 对每个监测点的暂态电能质量扰动电压信号Uk采用形态非抽样小波进行2层分 解,得到第二层形态非抽样小波细节系数y2,若细节系数y2的模极大值大于阈值,则将此监 测点所在支路确定为受暂态电能质量扰动影响的支路,并将细节系数y2的模极大值点中超 过阈值且相距最远的两个时间点确定为扰动发生的起止时刻t2 ;
c、扰动识别 对B步确定的受暂态电能质量扰动影响的支路上的监测点的暂态电能质量扰动 电压信号Uk进行窗口傅立叶变换(WDFT)提取扰动信号的基频幅值特征V、波形畸变持续周期数特征H、扰动过零点次数特征0 ;对暂态电能质量扰动电压信号Uk进行S变换,提取扰 动信号的最大幅值波动特征Z和扰动信号时频偏差特征B ;其中提取波形畸变持续周期数 特征H时的波形畸变率阈值设定为0. 01 ;将这五个特征进行二进制编码后与二进制阈值矩 阵比较,识别出扰动信号的类型,同时将各监测点识别结果中出现次数最多的类型确定为 扰动类型; D、扰动源定位 若C步确定出的扰动类型为电容器投切扰动,采用基于扰动能量和功率谱的定位 方法定位扰动源;若C步确定的扰动类型为电压暂降扰动,则通过判断各个监测点电压暂 降发生时刻的实电流变化极性确定扰动源相对于监测点的位置,进而定位扰动源;若C步 确定的扰动类型为其他类型,则不进行处理。
与现有技术相比,本发明的有益效果是 (1)结合电网中多个监测点的扰动信号,对暂态电能质量扰动进行检测、识别分 析,输出扰动持续时间,扰动类型等结果,其结果准确全面;同时由于监测并分析多个监测 点的信息,能够实现扰动源的定位,便于明确事故责任方和治理暂态电能质量扰动问题;检 测和分析出的暂态电能质量信息可长期保存,便于全面收集暂态电能质量扰动的数据,方 便管理部门快捷、直观地了解所需的暂态电能质量扰动有关信息,强化电能质量监督与管 理工作,为暂态电能质量问题的治理和评估提供真实、准确的信息,为构建一个大型优质的 供电系统提供决策性数据。 (2)B步扰动检测中,采用形态非抽样小波能快速准确检测出扰动的起止时刻,并 确定出受扰动影响的支路,可縮小后续分析的范围,使本发明的分析方法更加简单、快捷、 有效。 (3)C步扰动识别中,结合窗口傅里叶变换和S变换,同时提取五个能够反映不同 暂态电能质量扰动特征的特征量,并将其进行二进制编码,得到8位二进制特征向量,通过 将此8位二进制特征向量与二进制阈值矩阵进行比较,能快速识别出扰动类型。由于结 合多个监测点的识别结果,可避免个别监测点由于强噪声等因素造成的错误识别结果的影 响,进而确保扰动类型识别的正确性,其识别准确率大于98 % 。 (4)步骤D中针对电网中90%以上的暂态电能质量扰动是电容器投切引起的暂 态振荡和短路故障引起的电压暂降,采用两种不同的方法进行定位分析1)电容器投切定 位方法以扰动能量和功率谱作为特征,结合支持向量机能准确定位电网中电容器投切的位 置,同时对多条母线上的电容器组同时投切的定位也具有很好的适应性,平均定位准确率 达98. 5%;2)电压暂降源定位方法仅需测量监测点的电压相角、电流幅值和相角,通过判断 电压暂降发生时刻实电流成分的变化极性来确定扰动源与监测点相对位置,综合电网中多 个监测点的分析结果可确定出电压暂降扰动源的位置,该方法计算简单,准确率高。
上述步骤B中对每个监测点的暂态电能质量扰动电压信号Uk采用形态非抽样小 波进行2层分解的算子为 信号分析算子<formula>formula see original document page 5</formula>细节分析算子<formula>formula see original document page 5</formula> 式中Xj,Xj+1为第j, j+l层形态非抽样小波近似系数;yj+1为第j+l层形态非抽样 小波细节系数;id为恒等算子;分解层数j = 1,2;0c与Co分别为形态开闭运算和形态闭开运算;为形态梯度算子,定义为
尸,
々=( @g+)-(x; g+)
々=(x., g-)-(x,g-),其中为膨胀运算, 为腐
:JP+ +户.

蚀运算,g为结构元素,
|g =
'gl,. 1, g.
,带下划线的元素为结构元素原点的位置。
= ^M_, 1,, ■、《"《0 J 这样,扰动检测中的形态非抽样小波的分析算子由开闭、闭开混合滤波器和可检
测突变信号上下边缘的形态梯度组成,充分结合形态小波的非线性滤波器能更好保存信号
边缘信息的特性和非抽样小波变换具有的平移不变性,能更好地检测暂态电能质量扰动信
号,对暂态电能质量单一扰动与混合扰动都有较好的检测效果,计算量小,且具有很好的抗
噪性能,在信噪比为20dB的情况下仍能实现信号突变时刻的精确定位。 上述步骤C中将暂态电能质量扰动电压信号Uk的五类特征进行二进制编码的具
体做法是 将基频幅值特征V按阈值V < 0. 1、0. 1《V《0. 9、0. 9 < V < 1. 1、 V > 1. 1分
为4类,对应编码为11, 10, 00, 01 ;将波形畸变持续周期数特征H按阈值H < 6、H > 6分为 2类,对应编码为0, 1 ;将扰动过零点次数特征0按阈值0《2、2 < 0《22、 0 > 22分为3 类,对应编码为00, 01, 10 ;将最大幅值波动特征Z按阈值Z < 0. 02、Z > 0. 02分为2类,对 应编码0, 1 ;将扰动信号时频偏差特征B按阈值B《-0. 0005、 -0. 00005 < B《0. 00005、 B > 0. 00005分为3类,对应编码为01, 00, 10 ;再将以上五个特征V、 H、 0、 Z、 B的编码值依 次排列成8位二进制特征向量; 扰动识别中将提取的五个特征按设定的阈值划分编码,其编码简单,快速。 上述步骤D的采用基于扰动能量和功率谱的定位方法定位电容器投切扰动的具
体做法是 (1)计算各个监测点的扰动功率DP(t) = iP3,(t)-iPss(t),式中ip3Jt)、ipss(t)
分别为扰动和正常状态的三相瞬时功率;由扰动功率计算扰动能量"五=_f "户(0力; (2)比较各个监测点扰动能量大小,将扰动能量最大的监测点所在支路确定为扰 动发生的区域; (3)计算第(2)步所确定的区域内监测点的模态电压u = ua+2ub-3 ; (4)对模态电压u进行功率谱估计,选择功率谱值最大及次大的2个谱峰,按前后
位置定义为峰值Vp。wl和VD。w2,并将谱峰对应的频率值定义为PD。wl和PD。w2,按式K
p,l
'pow2
powl
pow2

戶v2
P—户
"2
计算两个表征扰动特征的指标,其中,fs是采样频率; (5)将指标Rp。w, Dp。w输入支持向量机,确定出电网中发生投切的电容器。 上述步骤D中,扰动类型为电压暂降扰动,则通过判断各个监测点电压暂降发生
时刻的实电流变化极性确定扰动源相对于监测点的位置,进而定位扰动源的具体做法是 (1)读取B步确定的受暂态电能质量扰动影响的支路上的监测点扰动发生时刻^
前后两个周期的电压相角9k、电流幅值Ik和相角ak; (2)计算每个监测点的实电流IKk = Ik cos ( 9 k- a k); (3)根据^时刻实电流IKk的变化极性确定扰动源相对于每

监测点的位置,如果实电流1^变化是正极性,则暂降源位于监测点的下游,反之,则暂降源位于监测点的上游;
(4)比较各个监测点的实电流IKk的变化极性,将极性相反且相隔最近的两个监测 之间的区域确定为电压暂降发生的区域。 下面结合具体实施方式
对本发明作进一步详细说明。
具体实施方式

实施例 本发明的一种具体实施方式
是,一种基于联网的暂态电能质量扰动智能分析方
法,包括以下步骤 A、采集与滤波 采集电网中多个监测点k = 1,2,…,N的暂态电能质量扰动信号,滤波后得到各 监测点暂态电能质量扰动电压信号Uk及电流信号Ik ; 电网中监测点的个数N与暂态电能质量扰动监测系统的规模有关,监测装置一般 装设在各个变电站、重要支路及关键用户接入处;信号的滤波处理,降低信号所含的噪声的 影响,为后续的暂态电能质量扰动的扰动检测、识别,扰动源定位分析做铺垫。
B、扰动检测 对每个监测点的暂态电能质量扰动电压信号Uk采用形态非抽样小波进行2层分 解,得到第二层形态非抽样小波细节系数y2,若细节系数y2的模极大值大于阈值,则将此监 测点所在支路确定为受暂态电能质量扰动影响的支路,并将细节系数y2的模极大值点中超 过阈值且相距最远的两个时间点确定为扰动发生的起止时刻t1512。 其中,对暂态电能质量扰动电压信号Uk采用形态非抽样小波进行2层分解的算子 为

信号分析算子、+1 =^(x》=(Oc+C0)PMC+(、)/2 细节分析算子A+1 = w)(、.) =- (Oc + C0)/^_+ / 2](x》
式中Xj,xj+1为第j, j+l层形态非抽样小波近似系数;yj+1为第j+l层形态非抽样 小波细节系数;id为恒等算子;分解层数j = 1,2;0c与Co分别为形态开闭运算和形态闭
々=(~ g+) )
P =(^0g-)-( g-),其中为膨胀运算, 为腐 C、扰动识别 对B步确定的受暂态电能质量扰动影响的支路上的监测点的暂态电能质量扰动 电压信号Uk进行窗口傅立叶变换(WDFT)提取扰动信号的基频幅值特征V、波形畸变持续周 期数特征H、扰动过零点次数特征0 ;对暂态电能质量扰动电压信号Uk进行S变换,提取扰 动信号的最大幅值波动特征Z和扰动信号时频偏差特征B ;其中提取波形畸变持续周期数 特征H时的波形畸变率阈值设定为0. 01 ;将这五个特征进行二进制编码后与二进制阈值矩 阵比较,识别出扰动信号的类型,同时将各监测点识别结果中出现次数最多的类型确定为
7扰动类型。 其中,将暂态电能质量扰动电压信号Uk的五个特征进行二进制编码的具体做法 是 将基频幅值特征V按阈值V < 0. 1、0. 1《V《0. 9、0. 9 < V < 1. 1、 V > 1. 1分
为4类,对应编码为11, 10, 00, 01 ;将波形畸变持续周期数特征H按阈值H < 6、H > 6分为 2类,对应编码为0, 1 ;将扰动过零点次数特征0按阈值0《2、2 < 0《22、 0 > 22分为3 类,对应编码为00, 01, 10 ;将最大幅值波动特征Z按阈值Z < 0. 02、Z > 0. 02分为2类,对 应编码0, 1 ;将扰动信号时频偏差特征B按阈值B《-0. 0005、 -0. 00005 < B《0. 00005、 B > 0. 00005分为3类,对应编码为01, 00, 10 ;再将以上五个特征V、 H、 0、 Z、B的编码值依 次排列成8位二进制特征向量。
D、扰动源定位 若C步确定出的扰动类型为电容器投切扰动,采用基于扰动能量和功率谱的定位 方法定位扰动源;若C步确定的扰动类型为电压暂降扰动,则通过判断各个监测点电压暂 降发生时刻的实电流变化极性确定扰动源相对于监测点的位置,进而定位扰动源;若C步
确定的扰动类型为其他类型,则不进行处理。
其中 —、若C步确定的扰动类型为电容器投切扰动,则采用基于扰动能量和功率谱的 定位方法定位电容器投切扰动的具体做法是 (1)计算B步确定的受暂态电能质量扰动影响的支路上的监测点的扰动功率 DP(t) = ip^(t)-ip^(t),式中ip (t)、 ipss(t)分别为扰动和正常状态的三相瞬时功率;
由扰动功率计算扰动能量加=f ; (2)比较各个监测点扰动能量大小,将扰动能量最大的监测点所在支路确定为扰 动发生的区域; (3)计算第(2)步所确定的区域内监测点的模态电压u = ua+2ub-3 ; (4)对模态电压u进行功率谱估计,选择功率谱值最大及次大的2个谱峰,按前后
位置定义为峰值Vp。wl和Vp。w2,并将谱峰对应的频率值定义为Pp。wl和Pp。w2,按式w, = ^和
^ / , 2
",=^;;^'"1计算两个表征扰动特征的指标,其中,fs是采样频率; (5)将指标R,,D,输入支持向量机,确定出电网中发生投切的电容器。 二、若C步确定的扰动类型为电压暂降扰动,则通过判断各个监测点电压暂降发
生时刻的实电流变化极性确定扰动源相对于监测点的位置,进而定位扰动源的具体做法
是 (1)读取B步确定的受暂态电能质量扰动影响的支路上的监测点扰动发生时刻^
前后两个周期的电压相角9k、电流幅值Ik和相角ak; (2)计算各个监测点的实电流IKk = Ik cos ( 9 k- a k); (3)根据^时刻实电流IKk的变化极性确定扰动源相对于每个监测点的位置,如果 实电流1^变化是正极性,则暂降源位于监测点的下游,反之,则暂降源位于监测点的上游;
(4)比较各个监测点的实电流IKk的变化极性,将极性相反且相隔最近的两个监测之间的区域确定为电压暂降发生的区域。 以上即为基于联网的暂态电能质量扰动智能分析方法的实施过程。
权利要求
一种基于联网的暂态电能质量扰动智能分析方法,其步骤如下A、采集与滤波采集电网中多个监测点k=1,2,…,N的暂态电能质量扰动信号,滤波后得到各监测点的暂态电能质量扰动电压信号Uk及电流信号Ik;B、扰动检测对每个监测点的暂态电能质量扰动电压信号Uk采用形态非抽样小波进行2层分解,得到第二层形态非抽样小波细节系数y2,若细节系数y2的模极大值大于阈值,则将此监测点所在支路确定为受暂态电能质量扰动影响的支路,并将细节系数y2的模极大值点中超过阈值且相距最远的两个时间点确定为扰动发生的起止时刻t1,t2;C、扰动识别对B步确定的受暂态电能质量扰动影响的支路上的监测点k的暂态电能质量扰动电压信号Uk进行窗口傅立叶变换(WDFT)提取扰动信号的基频幅值特征V、波形畸变持续周期数特征H、扰动过零点次数特征O;对暂态电能质量扰动电压信号Uk进行S变换,提取扰动信号的最大幅值波动特征Z和扰动信号时频偏差特征B;其中,提取波形畸变持续周期数特征H时的波形畸变率阈值设定为0.01;将这五个特征进行二进制编码后与二进制阈值矩阵比较,识别出扰动信号的类型,同时将各监测点识别结果中出现次数最多的类型确定为扰动类型;D、扰动源定位若C步确定的扰动类型为电容器投切扰动,采用基于扰动能量和功率谱的定位方法定位扰动源;若C步确定的扰动类型为电压暂降扰动,则通过判断各个监测点电压暂降发生时刻的实电流变化极性确定扰动源相对于监测点的位置,进而定位扰动源;若C步确定的扰动类型为其他类型,则不进行处理。
2. 根据权利要求1所述的基于联网的暂态电能质量扰动智能分析方法,其特征在于, 所述的步骤B中对每个监测点的暂态电能质量扰动电压信号Uk采用形态非抽样小波进行2 层分解的算子为信号分析算子<formula>formula see original document page 2</formula>细节分析算子<formula>formula see original document page 2</formula>式中Xj,xj+1为第j, j+l层形态非抽样小波近似系数;yj+1为第j+1层形态非抽样小波 细节系数;id为恒等算子;分解层数j = 1,2 ;0c与Co分别为形态开闭运算和形态闭开运<formula>formula see original document page 2</formula>々=(x,g-)-),其中为膨胀运算, 为腐蚀运算;为形态梯度算子,定义为<formula>formula see original document page 2</formula>算,g为结构元素,lg、"'g"" ,带下划线的元素为结构元素原点的位置。
3.根据权利要求1所述的基于联网的暂态电能质量扰动智能分析方法,其特征在于, 所述的步骤C中将暂态电能质量扰动电压信号Uk的五个特征进行二进制编码的具体做法是将基频幅值特征V按阈值V〈0. 1、0. 1《V《0. 9、0. 9 <V< 1. 1、V> 1. l分为4类,对应编码为11, 10, 00, 01 ;将波形畸变持续周期数特征H按阈值H < 6、H > 6分为2类,对 应编码为0, 1 ;将扰动过零点次数特征0按阈值0《2、2 < 0《22、0 > 22分为3类,对应 编码为00, 01, 10 ;将最大幅值波动特征Z按阈值Z < 0. 02、Z > 0. 02分为2类,对应编码0, 1 ;将扰动信号时频偏差特征B按阈值B《-0. 0005、-0. 00005 < B《0. 00005、B > 0. 00005 分为3类,对应编码为01, 00, 10 ;再将以上五个特征V、H、0、Z、B的编码值依次排列成8位 二进制特征向量;
4. 根据权利要求1所述的基于联网的暂态电能质量扰动智能分析方法,其特征在于, 所述的步骤D的采用基于扰动能量和功率谱的定位方法定位电容器投切扰动的具体做法 是(1) 计算B步确定的受暂态电能质量扰动影响的支路上的监测点的扰动功率DP(t)= ip (t)-ipss(t),式中ip (t) 、 ipss(t)分别为扰动和正常状态的三相瞬时功率;由扰动功率计算扰动能量Di = f;(2) 比较各个监测点扰动能量大小,将扰动能量最大的监测点所在支路确定为扰动发 生的区域;(3) 计算第(2)步所确定的区域内监测点的模态电压u = ua+2ub-3u。;(4) 对模态电压u进行功率谱估计,选择功率谱值最大及次大的2个谱峰,按前后位置定义为峰值Vp。wl和Vp。w2,并将谱峰对应的频率值定义为Pp。wl和Pp。w2,按式^, ^^和",=^,1计算两个表征扰动特征的指标,其中,fs是采样频率;(5) 将指标R,,D,输入支持向量机,确定出电网中发生投切的电容器。
5. 根据权利要求1所述的基于联网的暂态电能质量扰动智能分析方法,其特征在于, 所述的步骤D中对确定的扰动类型为电压暂降扰动,则通过判断各个监测点电压暂降发生 时刻的实电流变化极性确定扰动源相对于监测点的位置,进而定位扰动源的具体做法是(1) 读取B步确定的受暂态电能质量扰动影响的支路上的监测点扰动发生时刻^前后 两个周期的电压相角9k、电流幅值Ik和相角ak;(2) 计算各个监测点的实电流IKk = Ikc0S( 9 fa k);(3) 根据^时刻实电流IKk的变化极性确定扰动源相对于每个监测点的位置,如果实电 流1^变化是正极性,则暂降源位于监测点的下游,反之,则暂降源位于监测点的上游;(4) 比较各个监测点的实电流IKk的变化极性,将极性相反且相隔最近的两个监测之间 的区域确定为电压暂降发生的区域。
全文摘要
一种基于联网的暂态电能质量扰动智能分析方法,结合电网中多个监测点的扰动信号,扰动检测利用形态非抽样小波分析确定暂态电能质量扰动的起止时刻;扰动识别结合窗口傅里叶变换和S变换对电能质量扰动信号进行特征提取并编码,与二进制阈值矩阵比较识别扰动类型;扰动定位时,对电容器投切扰动以扰动信号的扰动能量和功率谱为特征,结合支持向量机确定电容器投切的位置,对电压暂降扰动则通过判断电压暂降发生时刻实电流成分的变化极性来定位扰动源的相对位置,进而定位扰动源。该方法利用电网中多个监测点的暂态信号,给出了暂态电能质量扰动的综合智能分析结果,能为暂态电能质量扰动问题的评估和治理提供全面、准确的数据支持。
文档编号G01R23/16GK101738551SQ200910216798
公开日2010年6月16日 申请日期2009年12月15日 优先权日2009年12月15日
发明者何正友, 戴铭, 林圣 , 王丽霞, 贾勇, 赵静 申请人:西南交通大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1