物理量传感器和物理量计测方法

文档序号:5869149阅读:160来源:国知局
专利名称:物理量传感器和物理量计测方法
技术领域
本发明涉及物理量传感器和物理量计测方法,该物理量传感器根据半导体激光器放射的激光与物体的返回光的自混合效应产生的干涉的信息,计测物体的位移、速度。
背景技术
FMCff (Frequency Modulated Continuous Wave)雷达和驻波雷达、自混合型激光传感器等的采用干涉原理进行位移(速度)测定的方法中,在基于拍频和干涉条纹的频率计算测定对象的位移和速度时,一般采用FFTO^st Fourier Transform)等的信号处理或干涉条纹的计数处理。但是存在着这样的问题,为了通过FFT实现高分辨能力,需要很长的取样时间和较高的取样周期的数据,因此需要非常多的处理时间。又,在干涉条纹的计数处理中,为了测定未满半波长的位移,需要使传感器进行物理振动,或对干涉条纹的振幅进行解析,这样则存在着只能计测作为测定对象的周期运动的振动的问题以及、干涉条纹的计数处理耗费时间的问题。一方面,发明者提出了利用半导体激光的自混合效应的波长调制型的激光计测器 (参照专利文献1)。该激光计测器的结构如图20所示。图20的激光计测器具有对物体 210放射激光的半导体激光器201 ;将半导体激光器201的光输出变换为电信号的光电二极管202 ;透镜203,该透镜对来自半导体激光器201的光进行集光并将该光照射到物体210, 同时对物体210的返回光进行激光使其入射到半导体激光器201 ;使得半导体激光器201 在振荡波长连续增加的第一振动期间和振动波长连续减少的第二振荡期间交替反复的激光驱动器204 ;将光电二极管202的输出电流变换为电压并放大的电流-电压变换放大器 205 ;将电流-电压变换放大器205的输出电压二次微分的信号提取电路206 ;对信号提取电路206的输出电压中包含的MHP的个数进行计数的计数电路207 ;计算与物体210的距离和物体210的速度的计算装置208 ;显示计算装置208的计算结果的显示装置209。激光驱动器204将随着时间以与规定的变化率反复增减的三角波驱动电流作为注入电流提供给半导体激光器201。由此,对半导体激光器201进行驱动,使得振荡波长以规定的变化率连续增加的第一振动期间和振荡波长以规定的变化率连续减少的第二振动期间交替反复。图21是显示半导体激光器201的振荡波长的时间变化的示意图。图21中, Pl为第一振荡期间,P2为第二振荡期间,λ a为各期间振荡波长的最小值、λ b为各期间振荡波长的最大值、Tt为三角波的周期。从半导体激光器201出射的激光由透镜203集光,入射到物体210。由物体210反射的光通过透镜203集光入射到半导体激光器201。光电二极管202将半导体激光器201 的光输出变换为电流。电流-电压变换放大器205将光电二极管202的输出电流变换为电压并放大,信号提取电路206对电流-电压变换放大器205的输出电压进行二次微分。计数电路207针对第一振荡期间Pl和第二振荡期间P2分别对包含在信号提取电路206的输出电压中的模跳脉冲(MHP)的个数进行计数。计算装置208根据半导体激光器201的最小振荡波长λ a、最大振荡波长λ b、第一振荡期间Pl中的MHP的个数和第二振荡期间P2中的MHP的个数,计算出与物体210的距离和物体210的速度。根据这样的自混合型的激光计测器,可以进行半导体激光器201的半波长程度的分辨能力的位移计测,和与半导体激光器201的波长调制量成反比的分辨能力的距离计测。专利文献1日本特开2006-313080号公报

发明内容
发明所要解决的问题根据自结合型激光计测器,和从前的FMCW雷达和驻波雷达、自混合型激光传感器等相比,可以以高分辨能力计测测定对象的位移和速度。但是,自结合型激光计测器由于和 FFT—样其计算位移和速度需要一定程度的计测时间(在专利文献1的例子中,是指半导体激光器的振荡波长调制的载波的半周期),因此存在着在速度变化快的测定对象的计测中产生计测误差的问题。又,由于信号处理中需要对MHP的个数进行计数,因此还存在着难以实现半导体激光器的未满半波长的分辨能力的问题。本发明为了解决上述课题,旨在提供一种能够以高的分辨能力计测物体的位移和速度,并能缩短计测所需的时间的物理量传感器和物理量计测方法。解决问题的手段本发明提供一种物理量传感器,包括对测定对象发射激光的半导体激光器;振荡波长调制单元,启动所述半导体激光器动作,使振荡波长连续单调增加的第一振动期间和振动波长连续单调减少的第二振荡期间中的至少一种反复出现;检测单元,其检测包含干涉波形的电信号,所述干涉波形由从所述半导体激光器发射的激光和所述测定对象的返回光的自混合效应产生;信号提取单元,其在每次输入所述干涉波形时对包含在该检测单元的输出信号中的所述干涉波形的周期进行计测;周期修正单元,其通过将该信号提取单元的计测结果和基准周期进行比较对所述计测结果进行修正;计算单元,其基于由该周期修正单元修正后的各个周期,计算出所述测定对象的位移和速度中的至少一项。又,在本发明的物理量传感器的一构成例中,所述计算单元,根据计测所述干涉波形的周期的采样时钟的频率、所述基准周期、所述半导体激光的平均波长、由所述周期修正单元修正后的周期相对于所述基准周期的变化量,计算出所述测定对象的位移和速度中的至少一项。又,在本发明的物理量传感器的一构成例中,所述周期修正单元,在由所述信号提取单元计测到的干涉波形的周期小于所述基准周期的规定数k倍时,其中k是小于1的正值,则将该干涉波形的周期和之后所计测得到的干涉波形的周期合并后的周期作为修正后的干涉波形的周期,将组合周期得到的波形作为一个波形;在由所述信号提取单元计测到的干涉波形的周期为所述基准周期的(m-k)倍以上且小于所述基准周期的(m+k)倍时,其中m是2以上的自然数,将该干涉波形的周期m等分后得到的周期分别作为修正后的周期, 修正后的周期的波形具有m个。又,在本发明的物理量传感器的一构成例中,所述规定数k为0. 5。又,在本发明的物理量传感器的一构成例中,所述周期修正单元,将所述测定对象静止时的所述干涉波形的周期或者所述即将修正之前所计测到的规定数的干涉波形的周期的平均值作为所述基准周期。
又,在本发明的物理量传感器的一构成例中,还包括计数单元,其对包含在所述检测单元的输出信号中的所述干涉波形的个数,在所述第一振荡期间和所述第二振荡期间分别进行计数;距离计算单元,其根据由该计数单元对干涉波形的个数进行计数的期间的最小振荡波长、最大振荡波长、以及所述计数单元的计数结果来计算与所述测定对象之间的距离;周期计算单元,其根据该距离计算单元所计算得到的距离求得所述干涉波形的周期,所述周期修正单元,将所述周期计算单元求得的周期作为所述基准周期。又,在本发明的物理量传感器的一构成例中,还包括计数单元,其对包含在所述检测单元的输出信号中的所述干涉波形的个数,在所述第一振荡期间和所述第二振荡期间分别进行计数;距离比例个数计算单元,其通过计算所述干涉波形的个数的平均值,求得与所述半导体激光器和所述测定对象的平均距离成比例的干涉波形的个数即距离比例个数; 周期计算单元,其根据所述距离比例个数计算所述干涉波形的周期,所述周期修正单元将所述周期计算单元所求得的周期作为所述基准周期。本发明提供一种物理量计测方法,包括振荡步骤,启动所述半导体激光器,使振荡波长连续单调增加的第一振荡期间和振动波长连续单调减少的第二振荡期间中的至少一种反复出现;检测步骤,检测包含干涉波形的电信号,所述干涉波形由从所述半导体激光器发射的激光和测定对象的返回光的自混合效应产生;信号提取步骤,在每次输入干涉波形时对包含于在所述检测步骤得到的输出信号中的所述干涉波形的周期进行计测;周期修正步骤,通过将该信号提取步骤的计测结果和基准周期进行比较,对所述计测结果进行修正;计算步骤,基于该周期修正步骤修正后的各个周期,计算出所述测定对象的位移和速度中的至少一项。发明效果根据本发明,通过基于各干涉波形的周期进行计算,能够以比从前高的分辨能力测定对象的位移和速度。又,相比于在从前的自混合型激光计测器中,需要耗费载波的半周期的计测时间,在本发明中,由于可以根据各个干涉波形的周期求得测定对象的位移和速度,因此大幅度缩短了计测所需要的时间,并且还可以与速度变化快的测定对象相对应。进一步的,在本发明中,通过将信号提取单元的计测结果和基准周期进行比较,可以修正干涉波形的周期误差,因此可提高位移和速度的计测精度。


图1是显示本发明的第一实施方式涉及的物理量传感器的结构的框图。图2是示意性显示本发明第一实施方式涉及的电流-电压变换放大部的输出电压波形和滤波部的输出电压波形的波形图。图3是用于说明模跳脉冲的图。图4是显示半导体激光器的振荡波长和光电二极管的输出波形的关系的图。图5是显示本发明的第一实施方式的信号提取部的构成例的框图。图6是用于说明本发明第一实施方式的信号提取部的动作的图。图7是显示本发明的第一实施方式的计算部的构成例的框图。图8是用于说明本发明的第一实施方式的周期修正部的动作的图。图9是用于说明本发明的第一实施方式的信号提取部的计测结果的修正原理的
图10是显示模跳脉冲的周期的度数分布的图。图11是显示成为两倍周期的模跳脉冲周期的度数分布的图。图12是显示计数时欠缺的模跳脉冲中被两等分的模跳脉冲的周期的度数分布的图。图13是显示计数时欠缺的模跳脉冲中被两等分的模跳脉冲的周期的度数分布的图。图14是显示本发明的第二实施方式中的计算部的构成例的框图。图15是显示本发明的第三实施方式中的计算部的构成例的框图。图16是显示本发明的第三实施方式中的计数部的计数结果的时间变化的一例的图。图17是显示本发明第三实施方式中的计数部的计数结果的时间变化的其他实例的图。图18是显示本发明的第四实施方式中的半导体激光器的振荡波长的时间变化的其他实例的图。图19是显示本发明第五实施方式涉及的物理量传感器的构成的框图。图20是显示现有的激光计测器的构成的框图。图21是显示图20的激光计测器中的半导体激光器的振荡波长的时间变化的1个实例的图。
具体实施例方式第一实施方式下面参考附图对本发明的实施方式进行说明。图1是显示本发明第一实施方式涉及的物理量传感器的结构的框图。图1的物理量传感器具有对作为测定对象的物体10发射激光的半导体激光器 1 ;将半导体激光器1的光输出变换为电信号的光电二极管2 ;透镜3,该透镜3对半导体激光器1发出的光进行集光并发射,同时对物体10的返回光进行集光并使该返回光入射到半导体激光器1 ;驱动半导体激光器1的作为振荡波长调制单元的激光驱动器4 ;将光电二极管2的输出电流变换为电压并放大的电流-电压变换放大部5 ;从电流-电压变换放大部5 的输出电压中除去载波的滤波部6 ;对包含在滤波部6的输出电压中的作为自混合信号的模跳脉冲(下面称为MHP)的周期进行计测的信号提取部7 ;基于信号提取部7计测到的各周期计算物体10的位移和速度的计算部8 ;显示计算部8的计算结果的显示部9。光电二极管2和电流-电压变换放大部5构成检测单元。下面为了便于说明,假设半导体激光器1采用不具有模跳现象的类型(VCSEL型、DFB激光型)。激光驱动器4将随着时间以一定的变化率反复增减三角波驱动电流作为注入电流提供给半导体激光器1。这样,半导体激光器1被驱动为,与注入电流大小成正比地使振荡波长以一定的变化率连续增加的第一振荡期间Pl和振荡波长以一定的变化率连续减少的第二振荡期间P2交替重复。此时,半导体激光器1的振荡波长的时间变化如图21所示。 在本实施方式中,半导体激光器1的振荡波长的变化速度必须是一定的。
从半导体激光器1出射的激光通过透镜3集光并入射到物体10。由物体10反射的光通过透镜3集光,入射到半导体激光器1。但是也不是必须通过透镜3进行集光。光电二极管2设置在半导体激光器1的内部或者其附近,将半导体激光器1的光输出变换为电流。电流-电压变换放大部5将光电二极管2的输出电流变换为电压并放大。滤波部6具有从调制波中抽取重叠信号的功能。图2 (A)示意性地显示电流-电压变换放大部5的输出电压波形,图2 (B)示意性显示滤波部6的输出电压波形。这些图显示了从相当于光电二极管2的输出的图2(A)的波形(调制波)中,除去图2的半导体激光器1的振荡波形(载波)后,提取如图2(B)所示的MHP波形(干涉波形)的过程。接着,信号提取部7在每次MHP发生时计测包含在滤波部6的输出电压中的MHP的周期。这里对作为自混合信号的MHP进行说明。如图3所示,设镜面层1013到物体10的距离为L,激光的振荡波长为λ,满足下列的共振条件时,物体10的返回光和半导体激光器 1的光共振器内的激光相互增强,使得激光输出稍有增加。L = qX/2'" (1)在式子(1)中,q为整数。该现象,即使在来自物体10的散射光非常微弱时,通过半导体激光器1的共振器内体现的反射率的增加,产生放大作用,从而能充分地进行观测。图4是显示使得半导体激光器1的振荡波长以某个一定的比例变化时的振荡波长和光电二极管2的输出波形之间的关系的图。当满足式子(1)显示的L = qX/2时,返回光和光共振器内的激光的相位差为0° (同相位),返回光和光共振器内的激光为最大相互增强,当L = q λ /2+ λ /4时,相位差为180° (逆相位),返回光和光共振器内的激光为最大相互减弱。因此,如果使得半导体激光器1的振荡波长变化,激光输出交替重复出现增强和减弱的现象,通过发光二极管2检测此时的激光输出的话,如图4所示可得到一定周期的阶梯状的波形。这样的波形一般称为干涉条纹。该阶梯状的波形即各个干涉条纹的为ΜΗΡ。 如前所述,一定时间之内使得半导体激光器1的振荡波长变化时,MHP的个数与测定距离成正比地变化。图5是显示信号提取部7的构成例的框图。信号提取部7包括二值化部70和周期测定部71。图6(A) 图6(D)是用于对信号提取部7的动作进行说明的图,图6 (A)示意性显示滤波部6的输出电压的波形,即MHP的波形,图6 (B)显示对应于图6(A)的二值化部70 的输出,图6(C)是显示输入到信号提取部7的采样时钟CLK的图,图6(D)是显示对应于图 6(B)的周期测定部71的测定结果的图。首先,信号提取部7的二值化部70判定图6(A)所示的滤波部6的输出电压为高电平(H)还是低电平(L),并输出如图6(B)那样的判定结果。此时,二值化部70在滤波部 6的输出电压上升达到了阈值THl以上时判定为高电平,当滤波部6的输出电压下降达到了阈值ΤΗ2 (ΤΗ2 < THl)时判定为低电平,从而使得滤波部6的输出二值化。周期测定部71在每次上升边缘发生时测定二值化部70的输出的上升边缘的周期(即,MHP的周期)。此时,周期测定部71以图6(C)所示的采样时钟CLK的周期为一个单位测定MHP的周期。在图6(D)的示例中,周期测定部71,依次测定Τα、Τβ、Τγ作为 MHP的周期。根据图6(C)、图6(D)可知,周期Τα、Τβ、Ty的大小分别为5 [samplings]、 4[samplings] ,2[samplings]。采样时钟CLK的频率相对于MHP的能得到的最高频率为足够高。接着,计算部8基于信号提取部7的计测结果,根据各个MHP的周期的变化计算物体10的位移和速度。图7是显示计算部8的构成例的框图。计算部8包括存储部80、周期修正部81、物理量计算部82。存储部80存储信号提取部7的计测结果。周期修正部81将物体10静止时的MHP 的周期、计算得到的距离中的MHP的周期、或本次修正之前所计测到的规定数量的MHP的周期的移动平均值中的任意一个作为基准周期T0,通过比较信号提取部7本次的计测结果和基准周期T0,对信号提取部7的计测结果进行修正。图8(A) 图8(F)是用于说明周期修正部81的动作的图。当如图8 (A)所示由信号提取部7计测得到的MHP的周期T小于0. 5T0时,周期修正部81如图8 (B)所示将MHP的周期T和下次计测得到的MHP的周期Tnext合成后的周期作为修正后的MHP的周期T’。又,当如图8 (C)所示由信号提取部7计测得到的MHP的周期T在1. 5T0以上且小于2. 5T0时,周期修正部81如图8 (D)所示将MHP的周期T两等分后得到的周期分别作为修正后的周期Tl,、T2,。又,当如图8 (E)所示由信号提取部7所计测到的MHP的周期T在2. 5T0以上且小于3. 5T0的时候,周期修正部81如图8 (F)所示将MHP的周期T三等分后得到的周期分别作为修正后的周期11’、12’、13’。在3. 5T0以上的情况下也是同样的。即周期修正部81, 在由信号提取部7所计测得到的MHP的周期T在(m-0. 5)TO以上且小于(m+0. 5)T0的情况下(m为2以上的自然数),将MHP的周期T进行m等分后得到的周期分别作为修正后的周期。周期修正部81在每次信号提取部7输出计测结果时进行如上的修正处理。图9是说明信号提取部7的计测结果的修正原理的图,其示意性地显示了滤波部 6的输出电压波形,即MHP的波形。原本,MHP的周期根据与物体10之间的距离不同而不同,但是如果和物体10之间的距离不变,则MHP以同样的周期出现。然而,由于噪音的缘故,MHP的波形会产生欠缺,或产生不应当作为信号的波形,从而导致MHP的周期产生误差。如果产生信号的欠缺,则产生欠缺的地方的MHP的周期Tw是原本周期的大致两倍。即,MHP的周期为基准周期TO的大致两倍以上时,可判断为信号产生了欠缺。这样,即可通过将周期Tw两等分,来修正信号的欠缺。又,在计算了噪音的地方的MHP的周期Ts为原本周期的大致0. 5倍。S卩,MHP的周期小于基准周期TO的大致0. 5倍时,可判断为信号计数过剩。这样,通过使得周期Ts和下一次计测得到的周期Tnext相加,对错误计数了的噪声进行修正。以上,是信号提取部7的计测结果的修正原理。在本实施方式中,使得用于确定视为计算了噪音的周期Ts的阈值为基准周期TO的0. 5倍的值,使得用于确定视为产生了信号的欠缺的周期Tw的阈值不为基准周期TO的2倍的值,而是1. 5倍的值,确定1. 5倍的理由将在之后进行论述。接着,物理量计算部82根据由周期修正部81修正得到的MHP的各个周期相对于基准周期TO的变化计算物体10的位移和速度。设采样时钟的频率为fad[Hz]、基准周期为TO [samplings]、半导体激光器1的振荡平均波长为λ [m]、修正后的MHP的周期由基准周期TO延长η [samplings]时,该修正后的MHP的周期中物体10的位移D [m]如下式所示。D = ηΧ λ/(2ΧΤ0)— (2)修正后MHP的周期由基准周期TO缩短!![samplings]时,使得式子O)的周期变化量η的符号为负即可。半导体激光器1的振动波长增加的第一振荡期间Pl中,位移D为正时,物体10的移动方向是远离半导体激光器1的方向,当位移D为负时,物体10的移动方向为接近半导体激光器1的方向。另,在振荡波长减少的第二振荡期间Ρ2中,当位移D 为正,物体10的移动方向为接近半导体激光器1的方向,当位移D为负时,物体10的移动方向为远离半导体激光器1的方向。又,由于修正后MHP的周期为(TO+n) /fad,该修正后的MHP的周期中物体10的速度V[m/s]为下式所示。V = ηX λ / (2 X TO) X fad/ (TO+n) ... (3)物理量计算部82可根据式子( 计算物体10的位移D,根据式子( 计算物体10 的速度V。例如,设采样时钟的频率fad为16 [MHz]、基准周期TO为160 [samplings]、半导体激光器1的平均波长为850 [nm],若修正后的MHP的周期由基准周期TO增长1 [samplings], 则可计算得到该MHP的周期中物体10的位移D为5. 31 [nm]、速度V为1. 05 [mm/s]。物理量计算部82对修正后的MHP的各周期进行上述那样的计算处理。显示部9显示计算部8的计算结果。这里,令半导体激光器1的振荡波长调制的载波(三角波)的每一半周期的和与物体10的距离相关联的MHP的个数为Ni。在将物体10的最大速度的绝对值改为了载波每一周期的位移时则为X/2XNa,每一载波半周期的MHP的个数为m 士 Na。载波每一周期的位移以λ /2XNb的速度移动时,每一载波半周期的MHP的个数为m+Nb,这样即可观察与该个数对应的MHP的周期。为了求得物体10的位移D和速度V,可根据各个MHP的周期逆算每一载波半周期的MHP的个数,并根据该MHP的个数计算物体10的位移D和速度V。上述的式子O)、(3)是基于这样的导出原理。在专利文献1所揭示的自混合型激光计测器中,物体的位移和速度的分辨能力大致为半导体激光器的半波长λ/2。与之相对的,本发明实施方式中,由于位移D和速度V的分辨能力为λ/2Χη/Τ0,因此可实现不到波长λ/2的分辨能力,从而实现以比现有技术更高的分辨能力进行计测。如上所述,在本实施方式中,物体10的位移D和速度可以以比现有技术高的分辨能力进行计测。又,在专利文献1所揭示的自混合型激光计测器中,需要耗费载波的半周期的计测时间,而在本实施方式中,由于可根据各个MHP的周期求得物体10的位移D和速度 V,因此计测所需要的时间能够大幅度缩短,从而可以适用于速度变化快的物体10。进一步的,在本实施方式中,由于可修正MHP的周期的误差,从而能够提高位移D和速度V的计测精度。又,由于即使在物体10静止时,各个MHP的周期在正态分布上也存在偏差,因此对计算得到的位移进行移动平均等处理即可。又,在本实施方式中,对物体10的位移和速度进行计测,但是也可仅对其中一项进行计测。接着,对将用于确定视为信号产生了欠缺的周期Tw的阈值设为基准周期TO的1.5倍的理由进行说明。半导体激光器1的振荡波长的变化为线性变化时,MHP的周期以基准周期TO为中心正态分布(图10)。这里,考虑MHP的波形产生了欠缺的情况。由于原本MHP的周期以TO为中心的正态分布,所以因为MHP的强度小而在计测时产生了欠缺时的MHP的周期为平均值2T0、标准偏差2σ的正态分布(图11中的f)。当欠缺了的MHP时,在第一振荡期间Pl或第二振荡期间P2的任一个中,信号提取部7对MHP的个数进行计数,其结果,MHP的个数为N 时,由于该欠缺周期为2倍的MHP的周期的度数为_( =·Ν)。又,由于计测时的欠缺减少后的大致为TO的周期的度数为如图11所示的g,图11的h所示的度数的减少量为 2Nw( = 2j[% ])。因此,在第一振荡期间Pl和第二振荡期间P2中的任一个中,未产生MHP 欠缺时的原本的MHP的个数N’能够以以下的式子来表示。N,= N+j[% ] = N+Nw ... (4)接着,考虑用于修正MHP的周期的计测结果的阈值。此处,假设的是由于计测时的欠缺周期为2倍的MHP的周期的度数漸中p[%]由噪音一分为二的情况。欠缺了的MHP 中被一分为二的MHP的周期的度数为漸’(=·Ν)。再度一分为二的MHP的周期的度数分布如图12所示。如果将视为Nw的周期的阈值设为1.5Τ0,则周期0.5Τ0以下的MHP的周期的度数为0. 5Nw' ( = 0. 5p[% ] · Nw)、周期为0. 5T0到1. 5T0的MHP的周期的度数为Nw,( = p[%] ·_),周期为1.5T0以上的MHP的周期的度数为0.5Nw,(= 0. 5p[% ] · Nw)。因此,所有MHP的周期的度数分布如图13所示,设与上述Ts对应的周期的度数Ns 的阈值为0. 5T0,与上述Tw对应的周期的度数漸的阈值为1. 5T0时,计数结果N能够以以下式子表示。N = (N,_2Nw) +(Nw-Nw,)+2Nw,= N,-Nw+Nw'... (5)根据式子(5),修正后的结果如以下所示,计数时未产生MHP欠缺的情况下原本的 MHP的个数N’可计算得到。N-0. 5Nw,+(0. 5Nw,+(Nw-Nw'))= (N-Nw+Nw,) + (0. 5Nw,+(Nw-Nw'))= N,... (6)根据以上,如果使得计算度数漸时的周期的阈值为基准周期TO的1. 5倍,则可以修正计数结果N。如果三角波的每个半周期的采样时钟数为M,则MHP的周期T和计数结果 N之间具有T = M/N的关系,由于M为一定值,可知,用于确定视为产生信号欠缺的周期Tw 的阈值和计数结果N的情况相同,可以为基准周期TO的1.5倍。又,在本实施方式中,基准周期TO设为物体10静止状态下的MHP的周期,但是不限于此,计算部8也可将修正之前所计测得到的规定个数的MHP的周期的移动平均值作为基准周期TO。根据这种方法,即使在物体10无法静止的情况下,也可求得基准周期TO。第二实施方式接着,对本发明的第二实施方式进行说明。图14是显示第二实施方式涉及的计算部8的构成例的框图。计算部8包括存储部80、周期修正部81、物理量计算部82、计数部 83、距离计算部84、周期计算部85。物理量传感器整体构成和第一实施方式相同,但是半导体激光器1的振荡波长的变化速度为一定,且振荡波长的最大值Xb和振荡波长的最小值入a分别为一定,其差Ab-λ a也需要为一定。计数部83针对第一振荡期间Pl和第二振荡期间P2分别对包含在滤波部6的输出中的MHP的个数进行计数。计数部83可以利用由逻辑门构成的计数器,也可以利用 FFT (Fast FourierTransform)对MHP的频率(即,单位时间内MHP的个数)进行计测。接着,距离计算部84基于半导体激光器1的最小振荡波长λ a和最大振荡波长 λ b和计数部83所计数得到的MHP的个数,计算与物体10的距离。在本实施方式中,物体 10的状态可以是满足规定条件的微小位移状态,或是比微小位移状态移动大的位移状态中的任何一种。振荡期间Pl和振动期间P2的每个期间的物体10的平均位移设为V时,微小位移状态是指满足(λ b- λ a) / λ b > V/Lb的状态(但,Lb是指时刻t时的距离),位移状态是指满足(λ b- λ a) / λ b彡V/Lb的状态。首先,距离计算部84如以下式子计算现时刻t的距离的候补值La (t)、Li3 (t)和速度的候补值V a (t)、Vi3⑴。La (t) = AaX AbX (MHP(t_l)+MHP(t))/{4X (Ab-Aa)}...(7)L β (t) = λ a X λ b X ( I MHP (t-1)-MHP (t) I ) / {4 X ( λ b- λ a) } …⑶V a (t) = (MHP (t-1)-MHP (t)) X λ b/4 ... (9)V β (t) = (MHP (t-1)+MHP (t)) X λ b/4 ... (10)在式子(7) (10)中,MHP (t)是现时刻t所计算得到的MHP的个数,MHP(t_l)是指在MHP (t)的前一次所计算得到的MHP的个数。例如,如果MHP (t)为第一振荡期间Pl的计数结果的话,MHP(t-l)为第二振荡期间P2的计数结果,反之,如果MHP(t)为第二振荡期间P2的计数结果的话,则MHP (t-Ι)为第一振荡期间Pl的计数结果。候补值L α (t)、Va (t)是假设物体10为微小位移状态时所计算得到的值,候补值 L^ α)、νβ (t)是假设物体10为位移状态时所计算得到的值。距离计算部84在通过计数部83对MHP的个数进行测定的各个时刻(各振荡期间)进行式子(7) (10)的计算。接着,距离计算部84对微小位移状态和位移状态,分别通过下列式子计算现时刻 t的距离的候补值与之前时刻的距离的候补值之间的差即历史位移。又,在式子(11)、式子 (12)中,现时刻t的前一次所计算得到的距离的候补值为La (t-1), L β (t-1)。Vcal α (t) =La (t) _L a (t_l)... (11)Vcal β (t) = L^ (t)-Lβ (t-1)... (12)历史位移Vcal α (t)为假设物体10为微小位移状态时计算得到的值,历史位移 Vcal^ (t)是假设物体10为位移状态时计算得到的值。距离计算部84在由计数部83测定 MHP的个数的各个时刻进行式子(11) 式子(12)的计算。又,式子(9) 式子(12)中,将物体10靠近本实施方式的物理量传感器的方向确定为正速度,将远离的方向确定为负速度。接着,距离计算部84采用式子(7) 式子(1 的计算结果,判定物体10的状态。如专利文献1所记载的那样,在假设物体10在微小位移状态计算得到的历史位移 Vcala (t)的符号为一定,且假设物体10在微小位移状态计算得到的速度的候补值Va (t)和历史位移Vcal α (t)的绝对值的平均值相等时,距离计算部84判定为物体10以微小位移状态做等速度运动。又,如专利文献1记载的那样,在假设物体10在位移状态计算得到的历史位移 Vcal^⑴的符号为一定,且假设物体10在位移状态计算得到的速度的候补值Vβ (t)和历史位移Vcal β (t)的绝对值的平均值相等时,距离计算部84判定为物体10以位移状态做
等速度运动。又,如专利文献1记载的那样,在假设物体10在微小位移状态计算得到的历史位移Vcal α (t)的符号在测定MHP的个数的各时刻反转,且假设物体10在微小位移状态计算得到的速度的候补值Va (t)和历史位移Vcal α (t)的绝对值的平均值不一致时,距离计算部84判定为物体10以微小位移状态做等速度运动以外的运动。又,如果着眼于速度的候补值Vi3 (t),νβ (t)的绝对值为常数,该值和半导体激光器1的波长变化量(Xb-λ a)/Xb相等。此时,在假设物体10在位移状态而计算得到的速度的候补值νβ (t)的绝对值和波长变化率相等,且假设物体10在微小位移状态而计算得到的速度的候补值Va (t)和历史位移Vcal α (t)的绝对值的平均值不一致时,距离计算部84判定为物体10以微小位移状态做等速度运动以外的运动。又,如专利文献1所记载的,在假设物体10在位移状态而计算得到的历史位移 Vcal^ (t)的符号在每个测定MHP的个数的时刻反转,且假设物体10在位移状态而计算得到的速度的候补值(t)和历史位移Vcal β (t)的绝对值的平均值不一致时,距离计算部 84判定为物体10以位移状态做等速度运动以外的运动。又,如果着眼于速度的候补值V α (t), Va (t)的绝对值为常数,该值和半导体激光器1的波长变化率(λ b- λ a) / λ b相等。从而距离计算部84,在假设物体10在微小位移状态而计算得到的速度的候补值V α (t)的绝对值与波长变化率相等,且假设物体10在位移状态而计算得到的速度的候补值V β (t)和历史位移Vcal β (t)的绝对值的平均值不一致时,可判定物体10以位移状态做等速度运动以外的运动。距离计算部84根据上述判定结果确定与物体10之间的距离。即,距离计算部84 在判定为物体10以微小位移状态做等速度运动时,将距离的候补值L α (t)作为与物体10 的距离,当判定为物体以位移状态做等速度运动时,以距离的候补值Lβ (t)作为与物体10 的距离。又,距离计算部84,在判定为物体10以微小位移状态做等速度运动以外的运动时,以距离的候补值La (t)作为与物体10的距离。然而,实际的距离为距离的候补值 La (t)的平均值。又,距离计算部84,在判定为物体以位移状态做等速度运动以外的运动时,以距离的候补值Li3 (t)作为与物体10的距离。但是,实际的距离是距离的候补值 L β (t)的平均值。接着,周期计算部85根据距离计算部84所计算得到的距离求得MHP的周期。MHP 的频率和测定距离成正比,MHP的周期和测定距离成反比。这里,预先求得MHP的周期和距离的关系并存储在周期计算部85的数据库(未图示)中的话,周期计算部85可通过从数据库中取得与距离计算部84所计算得到的距离相对应的MHP的周期,来求得MHP的周期。 或者,如果预先求得并设定表示MHP的周期和距离之间关系的式子,周期计算部85可通过将距离计算部84计算得到的距离带入数式,求得MHP的周期。
周期修正部81将周期计算部85求得的周期作为基准周期T0,如第一实施方式中说明的那样对信号提取部7的计测结果进行修正即可。物理量计算部82的动作和第一实施方式的相同。在本实施方式中,即使在无法使得物体10静止的情况下,也可求得基准周期TO。第三实施方式接着,对本发明的第三实施方式进行说明。图15是本发明第三实施方式涉及的计算部8的构成例的框图。计算部8具有存储部80 ;周期修正部81 ;物理量计算部82 ;对包括在滤波部6的输出电压中的MHP的个数进行计数的计数部86 ;存储计数部86的计数结果等的存储部87 ;通过计算计数部86的计数结果的平均值,求得与半导体激光器1和物体10之间的平均距离成正比的MHP的个数(下面称为距离比例个数)NL的距离比例个数计算部88 ;符号赋予部89,其根据计数部86的前一次的计数结果与使用比该计数结果更之前的计数结果计算得到的距离比例个数NL的两倍数的大小关系,对计数部86的最新计数结果赋予正负符号;根据距离比例个数NL计算MHP的周期的周期计算部90。物理量传感器的整体结构可与第一实施方式的相同。计数部86针对第一振荡期间Pl和第二振荡期间P2分别对包含于滤波部6的输出中的MHP的个数进行计数。计数部86可采用由逻辑门构成的计数器,也可以是采用FFT 对MHP的频率(即单位时间内MHP的个数)进行计数的装置。计数部86的计数结果存储在存储部87中。距离比例个数计算部88根据计数部86的计数结果求得距离比例个数NL。图16 是对距离比例个数计算部88的动作进行说明的图,其显示了计数部86的计数结果的时间变化。在图16中,Nu为第一振荡期间Pl的计数结果,Nd是第二振荡期间P2的计数结果。 物体10的距离变化率比半导体激光器1的振荡波长变化率小,物体10做简谐振动时,计数结果Nu的时间变化和计数结果Nd的时间变化如图16所示为相互的相位差为180度的正弦波形。专利文献1中,将此时物体19的状态作为微小位移状态。由图21可知,由于第一振荡期间Pl和第二振荡期间P2交替出现,计数结果Nu和计数结果Nd也交替出现。计数结果Nu、Nd为,距离比例个数NL和与物体的位移成正比的 MHP的个数(下面称为位移比例个数)NV的和或是差。距离比例个数NL相当于图16所示的正弦波形的平均值。又,计数结果Nu或Nd与距离比例个数NL的差,相当于位移比例个数NV。距离比例个数计算部88,通过如以下式子那样对到现时刻t的前两次为止所计测到的偶数次计数结果的平均值进行计算,来计算距离比例个数NL。NL= {N(t-2)+N(t-3)}/2— (13)式子(13)中,N(t_2)表示现时刻t的前两次所计测得到的MHP的个数N,N(t_3) 表示现时刻t的前三次所计测得到的MHP的个数N。若现时刻t的计数结果N (t)为第一振动期间Pl的计数结果Nu,则前两次的计数结果N(t-2)也是第一振荡期间Pl的计数结果 Nu,前三次的计数结果N(t-3)为第二振荡期间P2的计数结果Nd。相反地,如果现时刻t的计数结果N(t)为第二振动期间P2的计数结果Nd,则前两次的计数结果N(t-2)也是第二振荡期间P2的计数结果Nd,前三次的计数结果N(t-3)为第一振荡期间Pl的计数结果Nu。式子(13)是以两次计数结果求距离比例个数NL的情形的式子,在使用aii(m为正整数)次的计数结果的情况下,距离比例个数计算部88如下式那样计算距离比例个数NL。NL = {N(t-2m-l) +N(t_2m) +—+N(t_2)}/2m…(14)但是,式子(13)、式子(14)是用于与物体10之间的距离和物体10的速度的计测开始初期所使用的式子,从中途采用使用后述的带符号的计数结果的下列式子代替式子 (13),从而进行距离比例个数NL的计算。NL = {N,(t_2)+N,(t_3)}/2 ...(15)N’ (t-2)是对前两次的计数结果N(tl)进行后述的符号赋予处理之后的带符号的计数结果,N’ (t-3)是对前三次的计数结果N(t-;3)进行后述的符号赋予处理之后的带符号的计数结果。式子(15)在现时刻t的计数结果N(t)成为从MHP的个数计测开始第七次的计数结果之后使用。又,计测开始初期采用式子(14)的情况下,中途开始不采用式子(14),而采用使用带符号的计数结果的下列式子计算距离比例个数NL。NL= {N,(t-2m-l)+N,(t_2m)+...+N,(t-2)}/2m…(16)式子(16)在现时刻t的计数结果N(t)成为从MHP的个数计测开始第(&ιΧ2+3) 次的计数结果之后使用。距离比例个数NL存储在存储部87。距离比例个数计算部88在各个由计数部86 测定MHP的个数的时刻(各振荡周期),进行如上的距离比例个数NL的计算处理。另外,用于距离比例个数NL的计算的计数结果足够多时,也可以以奇数次的计数结果来计算距离比例个数NL。接着,符号赋予部89根据现时刻t的前一次所计测得到的计数结果N(t-l)和距离比例个数NL的2倍数2NL的大小关系,对计数部86的计数结果N (t)赋予正负符号。符号赋予部89具体执行下列式子。如果N(t-l)彡 2NL 那么 N,(t) — _N(t) - (17)如果N(t-l) < 2NL 那么 N,(t) —+N(t) - (18)图17是用于说明符号赋予部9的动作,并显示计数部86的计数结果的时间变化的图。物体10的距离变化率比半导体激光器1的振荡波长变化率大时,计数结果Nu的时间变化为图17的170所示的负侧的波形折返到正侧的形状,同样计数结果Nd的时间变化为图17的171所示的负侧的波形折返到正侧的形状。专利文献1中,产生该计数结果的折返的部分的物体10的状态为位移状态。另一方面,不产生计数结果的折返的部分的物体10 的状态为所述的微小位移状态。为了求得包含位移状态的振动中物体10的物理量,判定物体10为位移状态还是微小位移状态,当物体10为位移状态时,向正侧折返的计数结果如图17的170、171所示的轨迹那样需要修正。式子(17)、式子(18)是用于判定物体10是位移状态还是微小位移状态的式子。在图17中产生计数结果折返的位移状态下,N(t-l)彡2NL成立。从而,如式子 (17)所示的,当N(t-l) ^ 2NL成立时,对计数部86的现时刻t的计数结果N(t)赋予负符号,作为带符号的计数结果N’(t)。另一方面,在图16和图17中未产生计数结果折返的微小位移状态下,N(t-l)< 2NL成立。从而,如式子(18)所示,当N(t-l) < 2NL成立时,对计数部86的现时刻t的计数结果N(t)为赋予了正符号,作为带符号的计数结果N’(t)。带符号的计数结果N’ (t)存储在存储部87。符号赋予部89在每个由计数部86 测定MHP的个数的时刻(各振荡周期),进行上述那样的符号赋予处理。又,式子(17)的成立条件可以是N(t-l) >2NL,式子(18)的成立条件可以是 N(t-l)彡 2NL。接着,周期计算部90根据距离比例个数NL如下式所示计算MHP的周期T。T = C/(2XfXNL) ...(19)此处,f为三角波的频率,C为光速。周期修正部81以周期计算部90计算得到的周期作为基准周期T0,如第一实施方式所说明的那样对信号提取部7的计测结果进行修正。物理量计算部82的动作和第一实施方式相同。在本实施方式中,即使在无法使物体10静止的情况下,也可求得基准周期TO。第四实施方式接着,对本发明的第四实施方式进行说明。第一 第三实施方式中,使半导体激光器1振荡为三角波状,但是不限于此,也可在第三实施方式中如图18所示使得半导体激光器1振荡为锯齿波状。即,在本实施方式中,只要驱动半导体激光器1使得第一振荡期间Pl 或第二振荡期间P2中的任一个反复出现即可。但是,在第二实施方式中,需要使半导体激光器1振荡为三角波状。即使在如本实施方式一样使半导体激光器1振荡为锯齿波状的情况下,半导体激光器1的振荡波长的变化速度也需要是一定的。第一振荡期间Pl或第二振动期间P2中的动作和三角波振荡的情况相同。也可如图18所示,仅第一振荡期间Pl重复出现的锯齿波状的振荡的情况下,重复进行第一振荡期间Pl的处理,当然,仅第二振荡期间P2重复出现的锯齿波状的振荡的情况下,也可重复进行第二振荡期间P2的处理。第五实施方式接着,对本发明的第五实施方式进行说明。第一 第四实施方式中,虽然采用光电二极管2和电流-电压变换放大部5作为检测包含MHP波形的电信号的检测单元,但也可不采用光电二极管提取MHP波形。图19是显示本发明的第五实施方式涉及的物理量传感器的构成的框图,和图1相同的结构标注同样的符号。本实施方式的物理量传感器,采用电压检测部12作为检测单元,来代替第一实施方式中的光电二极管2和电流-电压变换放大部5。电压检测部12对半导体激光器1的端子间电压,即阳极-阴极间电压进行检测并放大。由半导体激光器1发射出的激光和物体10的返回光产生干涉时,半导体激光器1的端子间电压出现MHP波形。从而,可从半导体激光器1的端子间电压提取MHP波形。滤波部6从电压检测部12的输出电压去除载波。物理量传感器的其他结构和第一实施方式的相同。这样,在本实施方式中,可不使用光电二极管提取MHP波形,和第一实施方式比较能够减少物理量传感器的部件数量,从而降低物理量传感器的制造成本。又,在本实施方式中,由于不采用光电二极管,从而可去除干扰光的影响。又,在第一 第五实施方式中至少信号提取部7和计算部8可以由,例如,具有CPU、存储器和接口的计算机和对这些硬件资源进行控制的程序来实现。CPU根据存储在存储器中的程序进行第一 第五实施方式中所说明的处理。
权利要求
1.一种物理量传感器,其特征在于,包括 对测定对象发射激光的半导体激光器;振荡波长调制单元,启动所述半导体激光器,使振荡波长连续单调增加的第一振动期间和振动波长连续单调减少的第二振荡期间中的至少一种反复出现;检测单元,其检测包含干涉波形的电信号,所述干涉波形由从所述半导体激光器发射的激光和所述测定对象的返回光的自混合效应产生;信号提取单元,其在每次输入所述干涉波形时对包含在该检测单元的输出信号中的所述干涉波形的周期进行计测;周期修正单元,其通过将该信号提取单元的计测结果和基准周期进行比较对所述计测结果进行修正;计算单元,其基于由该周期修正单元修正后的各个周期,计算出所述测定对象的位移和速度中的至少一项。
2.如权利要求1所述的物理量传感器,其特征在于,所述计算单元,根据计测所述干涉波形的周期的采样时钟的频率、所述基准周期、所述半导体激光的平均波长、由所述周期修正单元修正后的周期相对于所述基准周期的变化量,计算出所述测定对象的位移和速度中的至少一项。
3.如权利要求1或2所述的物理量传感器,其特征在于,所述周期修正单元,在由所述信号提取单元计测到的干涉波形的周期小于所述基准周期的规定数k倍时,其中k是小于 1的正值,则将该干涉波形的周期和之后所计测得到的干涉波形的周期合并后的周期作为修正后的干涉波形的周期,将组合周期得到的波形作为一个波形;在由所述信号提取单元计测到的干涉波形的周期为所述基准周期的(m-k)倍以上且小于所述基准周期的(m+k)倍时,其中m是2以上的自然数,将该干涉波形的周期m等分后得到的周期分别作为修正后的周期,修正后的周期的波形具有m个。
4.如权利要求3所述的物理量传感器,其特征在于,所述规定数k为0.5。
5.如权利要求1至4中任意一项所记载的物理量传感器,其特征在于,所述周期修正单元,将所述测定对象静止时的所述干涉波形的周期或者所述即将修正之前所计测到的规定数的干涉波形的周期的平均值作为所述基准周期。
6.如权利要求1至4中任意一项所述的物理量传感器,其特征在于,还包括计数单元,其对包含在所述检测单元的输出信号中的所述干涉波形的个数,在所述第一振荡期间和所述第二振荡期间分别进行计数;距离计算单元,其根据由该计数单元对干涉波形的个数进行计数的期间的最小振荡波长、最大振荡波长、以及所述计数单元的计数结果来计算与所述测定对象之间的距离; 周期计算单元,其根据该距离计算单元所计算得到的距离求得所述干涉波形的周期, 所述周期修正单元,将所述周期计算单元求得的周期作为所述基准周期。
7.如权利要求1至4中任意一项所记载的物理量传感器,其特征在于,还包括计数单元,其对包含在所述检测单元的输出信号中的所述干涉波形的个数,在所述第一振荡期间和所述第二振荡期间分别进行计数;距离比例个数计算单元,其通过计算所述干涉波形的个数的平均值,求得与所述半导体激光器和所述测定对象的平均距离成比例的干涉波形的个数即距离比例个数;周期计算单元,其根据所述距离比例个数计算所述干涉波形的周期, 所述周期修正单元将所述周期计算单元所求得的周期作为所述基准周期。
8.—种物理量计测方法,其特征在于,包括振荡步骤,启动所述半导体激光器,使振荡波长连续单调增加的第一振荡期间和振动波长连续单调减少的第二振荡期间中的至少一种反复出现;检测步骤,检测包含干涉波形的电信号,所述干涉波形由从所述半导体激光器发射的激光和测定对象的返回光的自混合效应产生;信号提取步骤,在每次输入干涉波形时对包含于在所述检测步骤得到的输出信号中的所述干涉波形的周期进行计测;周期修正步骤,通过将该信号提取步骤的计测结果和基准周期进行比较,对所述计测结果进行修正;计算步骤,基于该周期修正步骤修正后的各个周期,计算出所述测定对象的位移和速度中的至少一项。
9.如权利要求8所述的物理量计测方法,其特征在于,所述计算步骤,根据计测所述干涉波形的周期的采样时钟的频率、所述基准周期、所述半导体激光的平均波长、在所述周期修正步骤修正后的周期相对于所述基准周期的变化量,计算出所述测定对象的位移和速度中的至少一项。
10.如权利要求8或9所述的物理量计测方法,其特征在于,所述周期修正步骤,在由所述信号提取步骤计测到的干涉波形的周期小于所述基准周期的规定数k倍时,其中k是小于1的正值,则将该干涉波形的周期和之后所计测得到的干涉波形的周期合并后的周期作为修正后的干涉波形的周期,将合并周期得到的波形作为一个波形;在由所述信号提取步骤计测到的干涉波形的周期为所述基准周期的(m-k)倍以上且小于所述基准周期的(m+k) 倍时,其中m是2以上的自然数,则将该干涉波形的周期m等分后得到的周期分别作为修正后的周期,修正后的周期的波形具有m个。
11.如权利要求10所述的物理量计测方法,其特征在于,所述规定数k为0.5。
12.如权利要求8至11中任意一项所记载的物理量计测方法,其特征在于,所述周期修正步骤,将所述测定对象静止时的所述干涉波形的周期或者所述即将进行修正之前所计测到的规定数的干涉波形的周期的平均值作为所述基准周期。
13.如权利要求8至11中任意一项所述的物理量计测方法,其特征在于,还包括计数步骤,对包含于在所述检测步骤得到的输出信号中的所述干涉波形的个数,在所述第一振荡期间和所述第二振荡期间分别进行计数;距离计算步骤,根据由该计数步骤对干涉波形的个数进行计数的期间的最小振荡波长、最大振荡波长、以及所述计数步骤的计数结果来计算与所述测定对象之间的距离; 周期计算步骤,根据所述距离计算步骤所计算得到的距离求得所述干涉波形的周期, 所述周期修正步骤,将所述周期计算步骤求得的周期作为所述基准周期。
14.如权利要求8至11中任意一项所记载的物理量计测方法,其特征在于,还包括 计数步骤,对包含于在所述检测步骤得到的输出信号中的所述干涉波形的个数,在所述第一振荡期间和所述第二振荡期间分别进行计数;距离比例个数计算步骤,通过计算所述干涉波形的个数的平均值,求得与所述半导体激光器和所述测定对象的平均距离成正比的干涉波形的个数即距离比例个数; 周期计算步骤,根据所述距离比例个数计算所述干涉波形的周期, 所述周期修正步骤将所述周期计算步骤所求得的周期作为所述基准周期。
全文摘要
本发明的物理量传感器,其以高的分辨能力对物体的位移和速度进行计测,缩短计测所需时间。该物理量传感器包括对测定对象(10)发射激光的半导体激光器(1);激光驱动器(4),其使得所述半导体激光器(1)动作以使振荡波长连续单调增加的第一振动期间和振动波长连续单调减少的第二振荡期间中的至少一种反复出现;光电二极管(2)和电流-电压变换放大部(5),其检测包含干涉波形的电信号,所述干涉波形由从半导体激光器(1)发射的激光和物体(10)的返回光的自混合效应产生;信号提取部(7),其对包含在电流-电压变换放大部(5)的输出信号中的干涉波形的周期进行计测;计算部(8),通过对信号提取部(7)的计测结果和基准周期进行比较来对该计测结果进行修正,并根据修正后的各周期计算物体(10)的位移和速度中的至少一项。
文档编号G01P5/26GK102192707SQ20101013148
公开日2011年9月21日 申请日期2010年3月4日 优先权日2010年3月4日
发明者上野达也 申请人:株式会社山武
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1