专利名称:基于卡尔曼滤波器的信号实时时频谱仪的制作方法
技术领域:
本发明涉及一种智能动态测控系统,尤其涉及一种基于卡尔曼滤波器的信号实时 时频谱生成系统。
背景技术:
时频分析是通过设计时间和频率的联合函数来描述信号在不同时间和频率的能 量密度或强度。时间和频率的这种联合函数简称为时频分布。利用时频分布来分析信号, 能给出各个时刻的瞬时频率及其幅值,并且能够进行时频滤波和时变信号研究。对于时频 分析作为分析时变非平稳信号的有力工具,成为现代信号处理研究的一个热点,时频分析 作为一种新兴的信号处理方法,近年来受到越来越多的重视。在现代通讯、航空航天、装备 制造、医学等领域有广阔的应用前景。信号时频处理方法主要有短时傅里叶变换、Wigner-Ville分布、小波尺度分析等。 其中,短时傅里叶变换实质是分段FFT,其前提是信号在每个分段内平稳或基本平稳。为了 得到较高的频率分辨率,需要选择较大的窗长度,但是这却会影响到时域的分辨率,因此, 短时傅里叶变换不能同时满足时域和频域分辨率。Wigner-Ville分布在当信号只包含单一 的时频成分时,在时域和频域都能得到很高的分辨率,但在分析多频率成分信号时,由于该 信号为二次型变换,不可避免地会出现交叉项干扰。小波尺度分析虽然能够在一定程度上 改善上述干扰情况,但是小波尺度分析方法的时频分辨率会受到不确定性原理的限制,因 此利用小波尺度分析方法无法同时在时域和频域都得到很好的分辨率。因此,如何能够将含有多成分的信号明显的区分出来,并且在时域和频域都能得 到较高的分辨率是目前时频分析领域中急需攻破的技术难题,解决该技术难题可以对后续 的信号处理带来了很大的便利,具有重大的实用价值和指导意义。
发明内容
针对上述现有技术,本发明运用卡尔曼滤波原理,提供一种基于卡尔曼滤波器的 信号实时时频谱仪,利用本发明频谱仪可以得到具有高分辨率且又无交叉项干扰的时频 谱,从而为后续的信号处理带来极大的便利。为了解决上述技术问题,本发明基于卡尔曼滤波器的信号实时时频谱仪予以实现 的技术方案是该时频谱仪包括传感器、A/D数据转换卡、处理器、控制面板、存储器和显示 器。所述处理器包括依次连接的预处理模块、预测模块、修正模块和平滑模块。通过控制 面板输入指令,将所述传感器获取的非平稳时变信号经过A/D数据转换卡进行采样和转换 后,依次经过预处理模块、预测模块、修正模块和平滑模块对信号采样点处的参数进行预 测、修正、平滑处理,通过运算后即可得到高分辨率的时频谱,最终在显示器上显示该时频 谱图。本发明基于卡尔曼滤波器的信号实时时频谱仪,其中,所述预处理模块、预测模 块、修正模块和平滑模块分别是由运算放大器构成的模拟电路,所述运算放大器包括加法器、减法器、乘法器、矩阵转置单元和矩阵求逆单元。其中,所述预处理模块运用最大似然法 对信号的白噪声方差ο 2和参数的高斯随机噪声方差Qr进行估计,并根据具体信号来确定 最佳阶数,在保证运算速度的前提下使拟合残差最小;所述预测模块用于根据上一采样点 处得到的参数来预测下一个采样点处的参数;所述修正模块用于根据卡尔曼增益对上一环 节得到的预测参数进行修正以提高参数的准确度;所述平滑模块用于对参数进行固定区间 平滑。与现有技术相比,本发明的有益效果是由于本发明是基于卡尔曼滤波技术获得时频谱,非常适合非平稳时变信号的处理,得到的时频谱分辨率高,并且没有交叉项干扰,能够将信号中不同成分清晰分辨出来。 另外,由于卡尔曼滤波中方差的不断更新,因此所需要的存储空间更小,处理速度也大为提 高,可以实现时频谱的实时生成。因而,本发明基于卡尔曼滤波器的信号实时时频谱仪能够 对信号进行实时、动态、连续的处理。
图1是本发明基于卡尔曼滤波器的信号实时时频谱仪的构成框图;图2是传感器采集到的原始信号图;图3是图2所示信号经本发明时频谱仪处理后得到的时频谱图;图4是利用本发明时频谱仪生成高分辨率时频谱图的流程图;图5为图1中所示修正模块模拟电路的逻辑原理图。说明书附图中附图标记说明如下1.传感器,2. A/D数据转换卡,3.预处理模块,4.预测模块,5.修正模块,6.存储 器,7.平滑模块,8.显示器。
具体实施例方式下面结合附图和具体实施方式
对本发明作进一步详细地描述。如图1所示,本发明基于卡尔曼滤波器的信号实时时频谱仪的构成是,包括传感 器1、A/D数据转换卡2、处理器、控制面板、存储器6和显示器8。所述处理器包括依次连接 的预处理模块3、预测模块4、修正模块5和平滑模块7 ;所述控制面板的主要功能是通过控 制面板输入指令,并设定系统正常运行所必需的一些参数,即通过控制面板输入指令,对 系统进行初始化后,将所述传感器1获取的非平稳时变信号经过A/D数据转换卡2进行采 样和转换,依次经过预处理模块3、预测模块4、修正模块5和平滑模块7对信号采样点处的 参数进行预测、修正和平滑处理,将处理后的参数带入到时频谱函数,通过运算后便可得到 高分辨率的时频谱,最终在显示器8上显示该时频谱。所述A/D数据转换卡2集成有A/D数据采样、转换以及计数功能。所述预处理模块3的作用包括(1)运用最大似然法对信号的白噪声方差ο 2和参 数的高斯随机噪声方差Qr进行估计;(2)根据具体信号来确定最佳阶数,在保证运算速度 的前提下又要使拟合残差最小。所述预处理模块3、预测模块4、修正模块5、平滑模块7分别是由运算放大器组成 的模拟电路,所述运算放大器包括加法器、减法器、乘法器、矩阵转置单元和矩阵求逆单元。其中,预测模块4的功能是根据上一采样点处得到的参数来预测下一个采样点处的参数; 修正模块5的功能是根据卡尔曼增益对上一环节得到的预测参数进行修正,从而提高参数 的准确度。由于卡尔曼滤波中方差不断更新,可能会造成时变参数运算的中断,从而影响到 时频谱的精度和分辨率,因此有必要对参数进行固定区间平滑。因此当经由预测模块4、修 正模块5得到所有对应N个采样点的参数后,还需要经过平滑模块7进行进一步的平滑处 理。本发明中所述修正模块5的模拟电路逻辑原理图如图5所示,本发明中预处理模 块3、预测模块4、平滑模块7的模拟电路逻辑原理图与图5类似。
所述存储器6用来存储运算中的中间数据。下面用一具体实施例来描述利用本发明基于卡尔曼滤波器的信号实时时频谱仪 获得高分频率时频谱的过程,如图4所示。步骤一、初始化参数,包括在传感器进行信号采集前,为了使基于卡尔曼滤波器的信号实时时频谱仪开始正 常工作,要通过控制面板事先设定好参数。需要设定的参数有(1)初始时刻的时变参数θ ^与其对应的方差Ctl;因为,随着卡尔曼滤波器的工作, 参数θ会逐渐收敛,因此,上述两个参数Qtl和Ctl可任取;本实施例中,设Qtl包含η个元 素,全部设为0 包含η个元素,全部设为1。(2)设置信号的白噪声方差σ 2和参数的高斯随机噪声方差Qr的初值,σ 2设为 0. 5,Qr含η个元素,全部设为0. 1。(3)设置A/D转换卡采样频率,采样频率一般为信号最高频率的3-4倍,本例中最 高频率为350Hz,设定采样频率为1024Hz。(4)设置采样点N 采样时间设置为1秒,采样频率1024Hz,故N = 1024。当参数设置完毕后,系统即可开始工作。在本例中,传感器1采集到的原始信号图如图2所示,信号源产生的信号记为 x(t),X (t)由三个非平稳信号 X1 (t),X2 (t),X3 (t)叠加组成,即 <formula>formula see original document page 5</formula>其中 <formula>formula see original document page 5</formula><formula>formula see original document page 5</formula>
步骤二、采集数据,并A/D转换传感器1在t时刻采集到的信号记为xt,Xt可以有时变参数表示为<formula>formula see original document page 5</formula>
其中,θρ(]· = 1,2,…η)是时变参数,et为白噪声序列,其平均值为0,方差为
O20引入矩阵Ht和θ t,模型可以写成以下矩阵的形式xt = Ht θ t+et其中<formula>formula see original document page 5</formula>
ω t为高斯随机噪声,其方差记为Qr。
将传感器1采集到的信号传递给A/D数据转换卡2,A/D数据转换卡2开始对信号 进行采样和转换。步骤三、利用处理器对信号进行分析处理,包括 (1)预处理当采集的样本数量达到N时,系统将长度为N的时间序列Xl,x2,…, xN依次输入到预处理模块3,预处理模块3对信号进行分析,自动确定阶数m ;同时根据信号 的白噪声方差ο 2和参数的高斯随机噪声方差Qr的初值对ο 2和仏进行最大似然估计。(2)得到参数θ 和CtlH 预测模块4将会根据XH对应的参数θ t l来预测Xt 的参数得到θ…+同时其对应的方差Ctlw也同步更新。具体的运算步骤如下Ot^=Ot-X(3)将上述的θ t|t_i和Ctlw参数传递到修正模块5中,修正模块5根据卡尔曼增 益Kt和预测误差^对θ t|t_i作进一步的修正,使之更准确;同时,方差Ct更新。具体的运算步骤如下
ΛA<formula>formula see original document page 6</formula>
C其中,Kt为卡尔曼增益:Kt =+ HWε t 为预测误差 % =Xt-Ht本技术领域内技术人员可以根据上述步骤三(3)中所提及到的公式设计该修正 模块的模拟电路逻辑原理图,如图5所示,其中,、,—,、Ηρα" xt、σ ‘为从输入端输入的数 据,以上各数据按照图5中所示的各基本运算单元进行加法、减法、乘法以及矩阵的转置、 求逆等运算后,从输出端输出^, Qt本发明中预处理模块3、预测模块4和平滑模块7的
、ο
模拟电路逻辑原理图均与图5类似,在此不再赘述。(4)存储数据Ct和修正后得到的参数θ t将会被存放在存储器6中。(5)当t<N时,则返回上述步骤三中(2),继续对参数进行预测和修正,直至完成 对N个采样点所对应的N个参数的预测修正处理。步骤四、数据的平滑处理参数θ t经由平滑模块7进行固定区间平滑,平滑处理时,θ t按照t = N-I到t =1的顺序进行处理,θ t|N的值将在θ t+1|N的基础上得到。具体的运算步骤如下
ΛΛθ Ν ^0t+m+QrLt=C +4 [C -C. ]4
θι\ΝθιΘι+\\Ν 6t+\\t6V和是Θ t和S,的平滑估计值。Lt和At分别表示为
<formula>formula see original document page 7</formula>Lt的初始值设为0。上述过程从t = N-I 一直到t = 1使得每一时刻经过平滑的 θ t都可以得到。步骤五、频谱的显示输出当参数θ t|N全部处理完毕后,将参数θ t|N代入到信号功率谱密度函数中,得到非 平稳时变信号的高分辨率时频谱,通过显示器8显示上述时频谱图,如图3所示。信号功率谱密度函数为<formula>formula see original document page 7</formula>由图3可以看出,经过基于卡尔曼滤波器的信号实时时频谱仪处理后得到的时频 域图的时间和频率分辨率都较高,不存在交叉项干扰,信号中的不同成分可以清晰的分辨 出来。当处理完序列长度为N的信号后,本发明时频谱仪会继续对后面的信号进行采样、处 理。即信号以N个采样点为一组经由系统进行实时、动态、连续的处理,从而能够获得实时 的时频谱图。本发明的优点是可快速获得高分辨率的非平稳信号时频谱,对于后续的信号分析 与处理提供了必要的技术保障。而且卡尔曼滤波的方差由于不断的更新,因此占用储存空 间更小,处理速度更快,可以实现时频谱的实时生成。尽管上面结合图对本发明进行了描述,但是本发明并不局限于上述的具体实施方 式,上述的具体实施方式
仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发 明的启示下,在不脱离本发明宗旨的情况下,还可以作出很多变形,这些均属于本发明的保 护之内。
权利要求
一种基于卡尔曼滤波器的信号实时时频谱仪,包括传感器(1)、A/D数据转换卡(2)、处理器、控制面板、存储器(6)和显示器(8);其特征在于所述处理器包括依次连接的预处理模块(3)、预测模块(4)、修正模块(5)和平滑模块(7);通过控制面板输入指令,将所述传感器(1)获取的非平稳时变信号经过A/D数据转换卡(2)进行采样和转换后,依次经过预处理模块(3)、预测模块(4)、修正模块(5)和平滑模块(7)对信号采样点处的参数进行预测、修正、平滑处理,通过运算后即可得到高分辨率的时频谱,最终在显示器(8)上显示该时频谱图。
2.根据权利要求1所述基于卡尔曼滤波器的信号实时时频谱仪,其特征在于所述预 处理模块(3)、预测模块(4)、修正模块(5)和平滑模块(7)分别是由运算放大器构成的模 拟电路,所述运算放大器包括加法器、减法器、乘法器、矩阵转置单元和矩阵求逆单元。
3.根据权利要求1所述基于卡尔曼滤波器的信号实时时频谱仪,其特征在于所述预 处理模块(3)运用最大似然法对信号的白噪声方差ο2和参数的高斯随机噪声方差&进行 估计,并根据具体信号来确定最佳阶数,在保证运算速度的前提下使拟合残差最小;所述预 测模块(4)用于根据上一采样点处得到的参数来预测下一个采样点处的参数;所述修正模 块(5)用于根据卡尔曼增益对上一环节得到的预测参数进行修正以提高参数的准确度;所 述平滑模块(7)用于对参数进行固定区间平滑。
全文摘要
本发明公开了一种基于卡尔曼滤波器的信号实时时频谱仪,包括传感器、A/D数据转换卡、处理器、控制面板、存储器和显示器。所述处理器包括依次连接的预处理模块、预测模块、修正模块和平滑模块。通过控制面板输入指令,将所述传感器获取的非平稳时变信号经过A/D数据转换卡进行采样和转换后,依次经过预处理模块、预测模块、修正模块和平滑模块对信号采样点处的参数进行预测、修正和平滑处理,将处理后的参数带入到时频谱函数后便可得到高分辨率的时频谱,最终在显示器上显示该时频谱。利用本发明频谱仪能够对信号进行实时、动态、连续的处理,可以得到具有高分辨率且又无交叉项干扰的时频谱,从而为后续的信号处理带来极大的便利。
文档编号G01R23/16GK101806834SQ201010135438
公开日2010年8月18日 申请日期2010年3月30日 优先权日2010年3月30日
发明者崔银虎, 彭东彪, 王国锋 申请人:天津大学