一种无依托状态下加速度计的标定方法

文档序号:5873435阅读:228来源:国知局

专利名称::一种无依托状态下加速度计的标定方法
技术领域
:本发明属于惯性导航
技术领域
,具体涉及一种无依托状态下加速度计的标定方法。
背景技术
:对加速度计进行有效的标定可解决其性能参数时变性的问题,对提高测量精度非常必要。传统的标定方法需要借助转台、离心机等标定设备,对未知参数进行完整的系统级标定,标定精度高,但操作复杂,标定周期长,实时性较差;所以针对上述问题提出了无依托状态下加速度计标定的概念,即要求脱离实验室条件,只借助惯性器件自身,在使用现场即可实现标定,由于现场标定条件上的限制,通常只针对加速度计性能影响最严重的参数进行辨识,目前公开发表的加速度计无依托现场标定文献还比较少。清华大学精密仪器与机械学院的尚捷、顾启泰提出基于虚拟噪声的现场最优标定方法,即两步估计法,该方法同多位置方法比较,具有结构简单、省时、易于实现的优点,但不能标定出安装误差和刻度因数误差,并且只适用于短时间、低中精度导航系统。北京航空航天大学的刘百奇、房建成针对光纤陀螺IMU提出六位置旋转现场标定方法,借助水平面在六个位置上进行十二次旋转,建立42个非线性输入输出方程,通过旋转积分和对称位置误差相消,进行惯性器件参数标定,该方法操作较复杂,且对旋转平面是否水平具有较高要求,并且不能辨识出加速度计的安装误差和刻度因数误差。新加坡国立大学的WTFong,SKOng禾口AYCNee提出一种基于downhillsimple最优化的辨识方案,操作简单,且可以辨识出完整的误差参数,该文献主要针对微机械IMU设计,受器件测量精度的限制,误差模型简化严重,辨识结果精度较低。
发明内容为了解决上述不能标出或者识别加速度计的安装误差和刻度因数误差,辨识结果精度低的问题,本发明提出一种无依托状态下加速度计的标定方法,在进行标定过程前首先需要考虑对加速度计性能影响最严重的误差参数,简化三轴加速度计的误差模型为式中,kx、ky、kz为加速度计x、y、z轴刻度因数;K11,K12,K13,K21,K22,K23,K31,K32,K33为安装误差矩阵元素;gx0、gyO、SzO为力口速度计x、y、z轴零位偏差;gxm、gym、gzm为力口速度计x、y、ζ轴测量值;gxa、gya、gza为重力加速度g在载体坐标系下投影分量;为安装误差和刻度因数的耦合矩阵。进而通过5个步骤来完成标定步骤1静基座粗对准,得到载体横滚角Y、俯仰角θ;步骤2:利用Kalman滤波进行静基座精对准,提高横滚角Y、俯仰角θ的对准精度,并进一步得到重力加速度g在载体坐标系下的投影的三轴分量的计算值(gxa,gya,gj;步骤3将载体在10个不同的位置上进行步骤1、步骤2获得10组加速度计x、y、ζ轴测量值(gxm,gym,gj以及10组重力加速度g在载体坐标系下的投影的三轴分量的计算值(gxa,gya,gza)。本步骤中根据载体是否在10个位置上放置完成来判断进行,若没有放置完成,则转步骤ι进行,若已经完成,则得到所需数据,继续步骤4。步骤4通过非线性最小二乘法得到加速度计的零位偏差gx(1,gy0,gz0;步骤5通过线性最小二乘法得到耦合矩阵;将步骤4得到零位偏差gx(l,gy0,gz0以及步骤5中耦合矩阵的值代入式⑴中,构建式(1)误差模型。从而可对加速度计的测量值gxm,gym,gzm,进行有效的修正,得到修正后的重力加速度g在载体坐标系下投影分量gxa,gya,gza,从而提高了测量的精度。本发明的优点在于(1)可实现外场条件下加速度计的无依托标定,脱离实验室条件,不借助于传统的标定设备;(2)标定过程简单,标定速度快,可实现加速度计每次使用前均进行标定,有效的解决了性能参数时变性的问题。(3)非线性最小二乘方法的应用可以解决误差模型非线性的问题,避免了传统标定对转台等标定设备的依赖,实现了加速度计无依托状态下的标定。图1为本发明的标定方法的步骤流程图。具体实施例方式下面结合附图对本发明进行进一步的详细说明。本发明进行标定前需要首先简化三轴加速度计的误差模型在现场标定的前提下,只考虑对加速度计性能影响最严重的误差参数,可将三轴加速度计的误差模型简化为式中,K11K22K23为安装误差矩阵,!^^…!^^^!^^^&^!^及!^为、尺31尺32尺33>安装误差矩阵元素;kx、ky、kz为加速度计χ、y、ζ轴刻度因数;gx(1、gy0,gz0为加速度计χ、y、ζ轴零位偏差;gxm、gym、gzm为加速度计χ、y、ζ轴测量值;gxa、gya、gza为重力加速度g在载体坐标系下投影分量的计算值。将式(1)进一步化简合并可得其中,为安装误差和刻度因数的耦合矩阵StKuKKukyK13kzK22JcyK23kzΛΑK32kyK^kzj将安装误差和刻度因数的耦合矩阵S表示为如下的简化方式其中,式(3)所示矩阵中元素与式(2)中安装误差和刻度因数的耦合矩阵中元素--对应;本发明一种无依托状态下加速度计的标定方法,通过以下5步来对加速度计进行标定,具体步骤如下步骤1静基座粗对准,得到载体横滚角Y、俯仰角θ。本发明实施例中将载体横滚角Y、俯仰角θ的对准误差控制在1°以内,具体得到载体横滚角Y、俯仰角θ通过下述过程来实现。得到载体的载体坐标系和地理坐标系之间的方向余弦矩阵其中,g〗、g;、g为重力加速度g在载体坐标系下投影的三轴分量测量值;g"x、<、<为重力加速度g在地理坐标系下投影的三轴分量;ω为地球自转角速度,为一常量,数值为7.292115147e-5弧度每秒;<、<、为地球自转角速度在载体坐标系投影的三轴分量;《L、<y、为地球自转角速度在地理系下投影的三轴分量;L为当地地理纬度;g为当地重力加速度。将式(6)中方向余弦矩阵表示为如下的简化方式其中,式(7)所示矩阵中元素与式(6)矩阵中元素一一对应;由此,根据式(7)可得到载体误差在1°以内的俯仰角θ、横滚角γθ=SirT1T23(8)Y=tg-1(-T13/T33)(9)步骤2:利用Kalman滤波进行静基座精对准,提高横滚角Y、俯仰角θ的对准精度,得到俯仰角θ‘、横滚角Y‘。本发明实施例中将载体对准误差在50角秒以内,具体得到俯仰角Θ'、横滚角Y‘的过程如下。将Kalman滤波运用到静基座精对准中,Kalman滤波状态方程为Kalman滤波测量方程为其中,φχ、φ^别为载体俯仰误差角、横滚误差角、航向误差角;ε分别为载体安装坐标系X、1、Z轴向陀螺误差;1^、Vy*别为载体安装坐标系x、y轴向加速度计误差;SVx、δVy分别为载体安装坐标系x、y轴向载体速度误差;R为地球半径;ηχ、ny分别为载体安装坐标系χ、y轴速度噪声;L为当地地理纬度。通过式(10)、式(11)可得到φχ、φ”φζ、由Φχ、Φ,、Φ2组成误差矩阵,令其为C,表示如下则可得精对准后的方向余弦矩阵(13)将精对准后的方向余弦矩阵C=表示为如下的简化方式(14)其中,式(14)所示矩阵中元素与式(13)精对准后的方向余弦矩阵C=中元素-对应。通过式(14)可得θ‘=Sirf1T'23(15)(16)从而获得载体对准误差在50角秒以内的俯仰角Θ'、横滚角Y丨。将重力加速度g投影到载体坐标系下,可得到重力加速度g在载体坐标系下的投影的三轴分量的计算值gxa=-sin(γ‘)·cos(θ‘).g(17)gya=sin(θ')·g(18)gza=cos(Y')·cos(θ')·g(19)步骤3将载体在10个不同的位置放置,在每个位置上都需要进行步骤1和步骤2中的静基座粗对准和静基座精对准,判断10个位置是否放置完成,若没有完成则转步骤1进行,若完成,则获得10组加速度计x、y、z轴测量值(gxm,gym,gj以及10组重力加速度g在载体坐标系下的投影的三轴分量的计算值(gxa,gya,gj。步骤4通过非线性最小二乘法得到加速度计的零位偏差gx(l,gy0,gz0。a、构建目标函数;根据式⑶可将式⑵变形,令目标函数f(p)=[S11(gxm"gx0)+S12(gym"gy0)+S13(gzm"gz0)12+[S21(gxm"gx0)+S22(gym"gy0)+S23(gzm"gj]2(20)+[S31(gxm-gx0)+S32(gym-gyo)+S33(gZm"gZo)](sJ+gYp2+gJ)其中,P—[gxo'SyO'SzO'S11jS12JS13,S21jS22JS23JS31,S32JS33];b、求目标函数f(P)的雅可比矩阵;目标函数f(P)的雅可比矩阵J为式中,f^.f^为第1到第10位置下的目标函数f(ρ);Pl.第12个元素。c、迭代逼近未知向量ρ;解方程(21)P12为向量P的第1至IJ得到向量ρ第k步修正量δ(k)。其中,Jk为雅可比矩阵J第k步更新值八=1,2’…;乃为Jk的转置;Vk为可调迭代步长;I为12阶单位阵,d⑷为目标函数f(P)在第1到第10位置时第k步的更新结果;通过p(k+1)=p(k)+δ(k)(23)式中,p(k+1)为ρ向量第k+1步更新值;p(k)为ρ向量第k步更新值;对式(20),(21),(22),(23)反复求解迭代,直到向量ρ收敛到稳定值。向量ρ的前三个元素gx(1,gy0,gz(l即为加速度计的零位偏差。步骤5通过线性最小二乘法得到耦合矩阵S;将步骤4中获得的零位偏差gx0,gy0,gz0带入式(2),可将式(2)误差模型蜕化为线性,利用线性最小二乘法可求得耦合矩阵S为S=(R*(GT*(G*Gt)“1))其中(25)式中,Sxal.·^xalO'Syal··gyalO'gzal"··^zalO为重力加速度g在第1到第10个位置下在载体坐标系下的投影;gxml..·gx_,gyml-··gy_,gzml.··gzml0为加速度计在第1到第10个位置下x、y、z轴测量值。将步骤4得到零位偏差gx0,gy0,gz0以及步骤5中安装误差和刻度因数的耦合矩阵S的值代入式(2)中,便可构建式(2)误差模型,从而可对加速度计的测量值gxm,gym,gzm,进行有效的修正,得到修正后的重力加速度g在载体坐标系下投影分量gxa,gya,gza,从而提高了测量的精度。上述步骤4与步骤5中进行的非线性最小二乘和线性最小二乘均需要步骤1、步骤2中载体所在的10个位置间的相关性要小,即10组(gxa,gya,gj之间、10组(gxm,gym,gj之间相关性要小。本发明采用如下位置选取方法(以俯仰角、横滚角的不同代表不同的位置),如表1所示。表110位置选择方案一上述方案满足相关性要求,且在这种选取方法下标定精度高。对该位置方案的仿真验证如下经过数学软件MATLAB编程验证,根据位置方案进行标定实验,如果可以精确的辨识出零位偏差等参数,则说明10个标定位置不相关,否则反之。验证过程中共进行3000次实验,记录其中可以准确辨识出待求参数的实验次数作为方案的评价指标,并选取不同的10位置方案进行对比,结果如表5。10位置选择如表2的方案二如下表210位置选取方案二10位置选择如表3的方案三如下表310位置选取方案三10位置选择在四种方案下,各进行3000次实验,各方案下可以准确辨识出待求参数的实验次数的统计结果如表5所示表5对比结果从表5中可以看出,10位置选择在方案一的情况下,准确辨识出待求参数的实验次数最高,因此选择方案一为优选方案。权利要求一种无依托状态下加速度计的标定方法,其特征在于在进行标定过程前首先需要考虑对加速度计性能影响最严重的误差参数,简化三轴加速度计的误差模型为<mrow><mfencedopen='('close=')'><mtable><mtr><mtd><msub><mi>g</mi><mi>xa</mi></msub></mtd></mtr><mtr><mtd><msub><mi>g</mi><mi>ya</mi></msub></mtd></mtr><mtr><mtd><msub><mi>g</mi><mi>za</mi></msub></mtd></mtr></mtable></mfenced><mo>=</mo><mfencedopen='('close=')'><mtable><mtr><mtd><msub><mi>K</mi><mn>11</mn></msub><msub><mi>k</mi><mi>x</mi></msub></mtd><mtd><msub><mi>K</mi><mn>12</mn></msub><msub><mi>k</mi><mi>y</mi></msub></mtd><mtd><msub><mi>K</mi><mn>13</mn></msub><msub><mi>k</mi><mi>z</mi></msub></mtd></mtr><mtr><mtd><msub><mi>K</mi><mn>21</mn></msub><msub><mi>k</mi><mi>x</mi></msub></mtd><mtd><msub><mi>K</mi><mn>22</mn></msub><msub><mi>k</mi><mi>y</mi></msub></mtd><mtd><msub><mi>K</mi><mn>23</mn></msub><msub><mi>k</mi><mi>z</mi></msub></mtd></mtr><mtr><mtd><msub><mi>K</mi><mn>31</mn></msub><msub><mi>k</mi><mi>x</mi></msub></mtd><mtd><msub><mi>K</mi><mn>32</mn></msub><msub><mi>k</mi><mi>y</mi></msub></mtd><mtd><msub><mi>K</mi><mn>33</mn></msub><msub><mi>k</mi><mi>z</mi></msub></mtd></mtr></mtable></mfenced><mfencedopen='('close=')'><mtable><mtr><mtd><mrow><mo>(</mo><msub><mi>g</mi><mi>xm</mi></msub><mo>-</mo><msub><mi>g</mi><mrow><mi>x</mi><mn>0</mn></mrow></msub><mo>)</mo></mrow></mtd></mtr><mtr><mtd><mrow><mo>(</mo><msub><mi>g</mi><mi>ym</mi></msub><mo>-</mo><msub><mi>g</mi><mrow><mi>y</mi><mn>0</mn></mrow></msub><mo>)</mo></mrow></mtd></mtr><mtr><mtd><mrow><mo>(</mo><msub><mi>g</mi><mi>zm</mi></msub><mo>-</mo><msub><mi>g</mi><mrow><mi>z</mi><mn>0</mn></mrow></msub><mo>)</mo></mrow></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow>其中,kx、ky、kz为加速度计x、y、z轴刻度因数;K11、K12、K13、K21、K22、K23、K31、K32及K33为安装误差矩阵元素;gx0、gy0、gz0为加速度计x、y、z轴零位偏差;gxm、gym、gzm为加速度计x、y、z轴测量值;gxa、gya、gza为重力加速度g在载体坐标系下投影分量的计算值;为安装误差和刻度因数的耦合矩阵;进而通过以下5个步骤来完成标定步骤1静基座粗对准,获得载体横滚角γ、俯仰角θ;步骤2利用Kalman滤波进行静基座精对准,提高横滚角γ、俯仰角θ的对准精度,并得到重力加速度g在载体坐标系下的投影的三轴分量的计算值(gxa,gya,gza);步骤3将载体放置在10个不同的位置上进行步骤1与步骤2,判断在10个位置上放置是否完成,若未完成转步骤1执行,若完成则获得10组加速度计x、y、z轴测量值(gxm,gym,gzm)以及10组重力加速度g在载体坐标系下的投影的三轴分量的计算值(gxa,gya,gza),继续步骤4;步骤4通过非线性最小二乘法得到加速度计的三轴零位偏差gx0,gy0,gz0;步骤5通过线性最小二乘法得到安装误差和刻度因数的耦合矩阵<mrow><mfencedopen='('close=')'><mtable><mtr><mtd><msub><mi>K</mi><mn>11</mn></msub><msub><mi>k</mi><mi>x</mi></msub></mtd><mtd><msub><mi>K</mi><mn>12</mn></msub><msub><mi>k</mi><mi>y</mi></msub></mtd><mtd><msub><mi>K</mi><mn>13</mn></msub><msub><mi>k</mi><mi>z</mi></msub></mtd></mtr><mtr><mtd><msub><mi>K</mi><mn>21</mn></msub><msub><mi>k</mi><mi>x</mi></msub></mtd><mtd><msub><mi>K</mi><mn>22</mn></msub><msub><mi>k</mi><mi>y</mi></msub></mtd><mtd><msub><mi>K</mi><mn>23</mn></msub><msub><mi>k</mi><mi>z</mi></msub></mtd></mtr><mtr><mtd><msub><mi>K</mi><mn>31</mn></msub><msub><mi>k</mi><mi>x</mi></msub></mtd><mtd><msub><mi>K</mi><mn>32</mn></msub><msub><mi>k</mi><mi>y</mi></msub></mtd><mtd><msub><mi>K</mi><mn>33</mn></msub><msub><mi>k</mi><mi>z</mi></msub></mtd></mtr></mtable></mfenced><mo>;</mo></mrow>将步骤4中得到的零位偏差gx0、gy0、gz0,以及安装误差和刻度因数的耦合矩阵的值代入式(1)中,构建式(1)误差模型,实现无依托状态下加速度计的标定。FSA00000180442100012.tif2.如权利要求1所述一种无依托状态下加速度计的标定方法,其特征在于步骤4所述三轴零位偏差通过非线性最小二乘法得到,具体包括以下步骤步骤a、构建目标函数;将式⑴变形,令目标函数f(P)其中,向里步骤b、求目标函数f(p)的雅可比矩阵;目标函数f(P)的雅可比矩阵J为其中,..f1Q为第1到第10位置下的目标函数f(P);Pl...Pl2为向量P=[gx0,gy0,gz0,S11JS12S13S21?S22S23S31S32S33]中的第ι到第12个元素;步骤C、迭代逼近未知向量P;解方程得到向量P第k步修正量8(k);其中,Jk为雅可比矩阵J第k步更新值,A=I,2,…;Jf为Jk的转置;Vk为可调迭代步长;ι为12阶单位阵;产=[/;w,/2w...,y;。w],_/^)..C为目标函数f(P)在第1到第10位置时第k步的更新结果;通过p(k+1)=p(k)+δ(k)(5)其中,P(k+1)为向量P第k+1步更新值;P(k)为向量P第k步更新值;对式(2),(3),⑷,(5)反复求解迭代,直到向量ρ收敛到稳定值;向量ρ的前三个元素gx(1,gy0,gz0就是加速度计的零位偏差。3.如权利要求1所述一种无依托状态下加速度计的标定方法,其特征在于步骤5所述安装误差和刻度因数的耦合矩阵通过线性最小二乘法得到,具体包括以下述步骤将零位偏差gx(1,gy(l,gzo带入式(1),将式(1)误差模型蜕化为线性,利用线性最小二乘^iAKnkyKl3k:K21KK22kyK13Icz为法求得耦合矩阵其中G的转置式中,^xal'··^xalO'Syal'··SyalO'^zal'··^zalO为重力加速度g在第1到第10个位置下在载体坐标系下的投影;gxml...gx_,gyml...gy_,gzml...gzml0为载体在第1到第10个位置下加速度计x、y、z轴测量值。4.如权利要求1所述一种无依托状态下加速度计的标定方法,其特征在于选取俯仰角与横滚角分别为(0°,-10°)、(-20°,30°)、(40°,-50°)(-60°,70°)、(80°,-90°(-100°,110°)、(120°,-130°(-140°,150°)、(160°,-170°)、(-180°,10°)为载体所在的10个位置。全文摘要本发明公开了一种无依托状态下加速度计的标定方法,应用对象为具有静基座姿态初始对准能力的惯性导航系统。首先简化误差模型,多次改变载体位置,针对每一个位置利用静基座粗对准、精对准获得姿态信息,并依据姿态信息计算重力加速度g在载体坐标系下投影的三轴分量,并记录每个位置下加速度计测量值。本发明给出了一种10位置标定方案,依据上述投影分量计算值和测量值,利用非线性最小二乘法辨识零位偏差,获得零位偏差后可将误差模型蜕化为线性模型,再使用线性最小二乘法辨识安装误差和刻度因数耦合矩阵,从而实现加速度计关键参数标定。本发明可实现加速度计无依托标定,过程简单、速度快,可有效估计具有时变性的加速度计关键参数。文档编号G01P21/00GK101907638SQ20101020503公开日2010年12月8日申请日期2010年6月11日优先权日2010年6月11日发明者任章,张海,毛友泽,沈晓蓉申请人:北京航空航天大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1