专利名称:光声传感器的制作方法
技术领域:
本公开总地涉及传感器技术,更具体地涉及一种光声传感器。
背景技术:
除非另有声明,这一部分中所述的方法并非相对于该申请中权利要求是现有技术,并且并不承认包括在这一部分中就是现有技术。在用于检测一种或多种气体的存在的多种应用中使用气体检测装置,气体检测装置典型地构成设计用于监测对于人类或动物可能有害的气体的系统的一部分。例如,气体检测器通常用于监测可燃气体、毒气、氧气、CO2、挥发性有机化合物等的存在和/或浓度。这种气体检测装置之一是光声气体传感器。光声气体传感器是通过声装置测量由气体吸收的入射光的不同波长的光学吸收。如果幅度调制光源被正在测试的气体吸收,则所述气体将被加热和冷却,产生了与光源的幅度和气体的功率吸收系数成正比的声能量。通过以这种方式测量不同波长的光的吸收,产生了气体的光学吸收谱,并且使用标准吸收光谱方法来识别所述气体。与光学地测量光吸收并且具有有限灵敏度的其他光谱系统不同,光声系统按照完全不同的方式测量由样品吸收的光能量,并且可以具有高得多的灵敏度。一些光声测量系统可用于以十亿分之一(PPB)为单位测量,甚至进入万亿分之一(PPT)的范围。
发明内容
本公开的一个实施例总地涉及一种光声传感器。所述光声传感器可以包括:光调制器,配置为调制输入光束,并且产生导引至样品区域的调制光;声传感器的阵列,设置在所述样品区域的周围,所述声传感器阵列的每一个声传感器与所述样品区域实质上等距,其中所述声传感器的每一个适用于响应于在所述样品区域中检测到的声能量来产生信号;以及控制器,耦合至所述声传感器,并且配置为基于由所述声传感器产生的信号来检测在所述样品区域中存在的一种或多种气体。本公开的另一个实施例总地涉及一种检测样品中的一种或多种气体的方法。所述方法可以包括:调制输入光束以产生调制光;将调制光引导进入包含所述样品的区域中;从设置在所述区域周围并且与所述区域实质上等距的多个声传感器收集声信号;以及评估所收集的声信号以检测在所述样品中存在的一种或多种气体,其中所述声信号由所述调制光与位于所述区域中的所述一种或多种气体的至少一部分的相互作用产生。本发明的再一个实施例总地涉及一种光声传感器,适用于检测来自位于所述光声传感器的样品区域中的样品的一种或多种气体。所述光声传感器可以包括:光栅,配置为将输入光束分离为波长分量;MEMS反射镜阵列,配置为调制所述波长分量以产生针对所述样品区域的调制光分量;声传感器,设置在调制光分量通过的样品区域附近,并且适用于响应于在所述样品区域中检测的声信号来产生电信号;以及控制器,耦合至所述声传感器,并且配置为基于由所述声传感器产生的电信号来检测在所述样品区域中存在的所述一种或多种气体的至少一部分。以上概述只是说明性的而不是意欲按照任何方式进行限制。除了上述说明性的方面、实施例和特征之外,另外的方面、实施例和特征通过参考附图和以下详细描述将变得清楚明白。
根据结合附图的以下描述和所述权利要求,本发明公开的前述和其他特征将变得更加清楚明白。这些附图只是描述了根据本公开的几个实施例,因此不应该看作是限制其范围.将通过使用附图利用附加的特性和细节来描述本公开。在附图中:图1是光声气体传感器的方框图;图2A是基于微机电系统(MEMS)的光调制器的一种配置的不意图;图2B是基于MEMS的光调制器的另一配置的示意图;图2C是具有一个或多个窄带光源(而非宽带光源)的基于MEMS的光调制器的示意图;图2D是具有色散元件、MEMS反射镜阵列、和调制窄带光源阵列(而非宽带光源)的窄带光源的配置的示意图;图3是设置在样品区域周围的声传感器的一种配置的示意图;图4阐述了对光声气体检测的方法加以概述的流程图;以及图5是说明了示例计算设备的方框图,所述示例计算设备配置用于检测样品中的一种或多种气体;所有附图都根据本公开的至少一些实施例配置。
具体实施例方式以下详细描述参考附图,所述附图形成了描述的一部分。在附图中,除非上下文另有规定,类似的符号典型地表示类似的部件。在详细描述、附图和权利要求中描述的说明性实施例并非意味着限制。在不脱离这里所展现主题的精神和范围的情况下,可以利用其他实施例并且可以进行其他变化。应该理解的是如这里一般性描述并且在附图中说明的本公开的方面可以按照多种不同的配置进行排列、替代、组合和设计,这里明确地考虑了这些内容并将这些内容作为本公开的一部分。本公开尤其涉及一种与气体检测装置领域有关的方法、设备和系统,并且在一些示例中涉及空气质量微传感器。本公开仔细考虑了传统的光声系统,并且认识到这些系统依赖于昂贵的可调激光器和移动光学部件,从而有很大的局限性,包括缺乏便携性、对于外部噪声和振动的敏感、仅检测有限数量的化合物的能力和/或笨重的尺寸。本公开阐述了如这里所述的光声传感器中的进一步改善。本公开的一些实施例仔细考虑了用于光声气体检测的设备,即对基于微机电系统(MEMS)的光调制器和声传感器的环形阵列加以组合的光声气体传感器。基于MEMS的光调制器可以提供灵活的波长选择性,所述灵活的波长选择性可以使得能够检测大量的化合物,并且声传感器的环形阵列可以测量光声产生的声信号,而不需要气体传感器的光声单元的谐振增强。在一些实施例中,唯一的不相关确定性信号可以用于调制感兴趣的每一个光波长。在这些实施例中,可以使用先进的信号处理,所述先进的信号处理允许多个光学波长的吸收谱的同时测量以及拒绝可能被声传感器的环形阵列检测到的不想要的噪声。在本公开的一些实施例中,描述了光声气体检测的方法,其中将多个声传感器设置为光声检测器的样品区域附近的阵列。阵列中的每一个声传感器可以相距样品区域等距地设置。可以将宽带光源分离为一个或多个波长部件,其中每一个波长部件可以被调制并且适用于照射气体样品。声传感器的阵列可以适用于通过将由每一个声传感器感测的声信号相干地叠加来产生输出信号。在一个或多个实施例中,可以通过唯一的不相关确定性调制信号来调制每一个波长部件,并且可以使用调制信号作为哈达马德变换(HFT)的基函数,例如利用快速HFT来数字化和处理声传感器的输出。在这些实施例中,可以同时确定气体样品对多个光学波长的吸收谱。图1是根据本公开的至少一些实施例配置的光声气体传感器100的方框图。光声气体传感器100可以包括宽带光源110、基于MEMS的光调制器120、设置在样品区域135周围的声传感器131的环形阵列130以及微控制器140。在一些实施例中,光声气体传感器100还可以包括适用于与用户通信的网络接口 150。宽带光源110可以是宽带红外(IR)、可见或紫外(UV)光源,例如白炽灯、卤素灯、发光二极管(LED)或适用于向基于MEMS的光调制器120提供宽带光源的其他光源。宽带光源110可以配置为使用任意多种光学装置(例如准直透镜、反射镜等)将宽带光111导引至基于MEMS的光调试器120。在一些示例中,基于MEMS的光调制器120可以包括衍射光栅和MEMS光调制器,每一个均在下面结合图2A和2B详细描述。在一些其他示例中,基于MEMS的光调制器120可以是任意其他的光调制器阵列,所述光调制器阵列可以配置为独立地调制多个输入光束的幅度。环形阵列130可以定位于样品区域135周围,并且与基于MEMS的光调制器120的光输出112对准,使得可以将光输出112导引至样品区域135。声传感器131可以是声换能器或者一些其他类型的声传感器。样品区域135是腔体,配置为包含由光声气体传感器100进行分析的所需气体样品。在一些实施例中,样品区域135可以对周围环境开放,以便于光声气体传感器100的大气操作。在一些其他实施例中,样品区域135可以是闭合的采样单元,例如声单元,可以将样品气体抽吸到所述样品单元中。微控制器140可以包括A/D转换器14。微控制器140配置为向基于MEMS的光调制器120提供调制信号,并且还可以适用于对来自声传感器131的信号进行接收、数字化和后处理。在一些示例中,A/D转换器141可以在微控制器140的外部,而在一些其他示例中,A/D转换器141可以在微控制器140的内部。微控制器140可以是任意合适的处理器,包括但是不限于诸如微处理器和数字信号处理器(DSP)之类的通用处理器、或者诸如专用集成电路(ASIC)之类的专用处理器。光声气体传感器100适用于以便于同时检测一种或多种化合物的方式通过声装置测量气体样品的光吸收。在一些实施例中,光声气体传感器100可以是“化学灵活的”,即可以将光声气体传感器100重新编程以监测不同的化合物,而不要求进行硬件配置改变。另外在一些实施例中,由光声气体传感器100正在测试的气体样品产生的光声信号可以使用针对被吸收光的每一个波长的唯一调制信号来产生,并且可以经历信号处理,所述信号处理使得能够同时确定气体样品对于多个光波长的吸收谱。下面结合图2A和2B详细描述这种调制信号和信号处理。当光声气体传感器100在操作时,宽带光源110使用诸如会聚透镜、反射镜等之类的光学装置将宽带光111导引至基于MEMS的光调制器,使得宽带光111按照要求进入基于MEMS的光调制器120。基于MEMS的光调制器120适用于接收宽带光111并且将其分离为多个波长分量,并且可以选择性地对宽带光111的一个或多个所需波长分量执行二进制幅度调制,即通/断调制。依赖于光声气体传感器100配置用于检测的化合物的数量和类型,通过基于MEMS的光调制器120分离的宽带光111的所需波长分量的数量可以是是在几十、几百甚至几千的量级。可以将宽带光111分离为大量的波长分量,因为基于MEMS的光开关120可以包括:衍射光栅,配置为将宽带光111在空间上分离为波长分量,以及MEMS反射镜阵列,配置为选择性地执行任意所需波长分量的二进制调制。基于MEMS的光调制器120可以输出调制的光束112,然后所述调制的光束可以通过在样品区域135中设置的气体样品。通过组成气体样品的一种或多种气体吸收不同波长的光,并且通过光声效应,可以通过气体样品产生声波133。环形阵列130的声传感器131适用于感测声波133并且将声波133转换为传感器输出132,所述传感器输出可以耦合至微控制器140进行信号处理。环形阵列130可以配置为增强由声传感器131接收的声波133的声信号,并且使用相干叠加来减小声传感器131不想要的噪声的声信号。下面结合图3更加详细地描述了环形阵列130的配置和传感器输出132的相干叠加的使用。微控制器140可以设置为经由A/D转换器141接收和数字化传感器输出132,并且也可以设置为执行必要的数字信号处理以确定气体样品针对一个或多个所需波长的吸收幅度。此外,微控制器140可以配置为向基于MEMS的光调制器120提供调制信号115,其中调制信号115可以是唯一的不相关确定性信号,所述信号配置为使得基于MEMS的光调制器120按照针对每一波长分量唯一的模式执行一个或多个入射波长分量的幅度的二进制调制。在一个实施例中,微控制器140配置为通过串行或并行数字接口与基于MEMS的光开关120相接口。根据由样品区域135中的气体样品吸收的波长分量126的调制频率来产生光声产生的声波133。因为在超声范围内(即在大于约20kHz的声音频率处)通常存在极小的环境噪声,在一些实施例中,可以将施加至基于MEMS的光调制器120的调制信号115的频率选择为处于超声范围内。按照这种方式,由声波133产生的声信号可以相对于由低频调制信号115产生的声波133的信噪比具有更优的信噪比。在一些示例中,MEMS反射镜可以在kHz范围中操作,即可以将基于MEMS的光调制器120中的单独MEMS反射镜从二进制“通”改变为二进制“断”位置(反之亦然)的频率可以小于千分之一秒。因此,基于MEMS的光调制器120可以按需要地调制超声范围中的波长分量126。图2A是根据本公开的一个或多个实施例配置的基于MEMS的光调制器120的一种配置的示意图。如所示地,基于MEMS的光调制器120配置为从宽带光源110(图1所示)接收宽带光111,并且适用于将光输出112导引至样品区域135(图1所示)。基于MEMS的光调制器120可以包括色散元件121、MEMS反射镜阵列122以及由准直元件123加以表示的一个或多个光学部件。便于基于MEMS的光调制器120的操作的附加光学部件可以包括准直光器件、聚焦透镜、反射镜、光滤波器、针孔、偏振元件、阻光元件等等的一个或多个,为了清楚起见未示出。色散元件121可以是用于将宽带光111分离成一个或多个波长分量126的现有技术中已知的任意光衍射光器件,例如衍射光栅、棱镜、阵列波导光栅等等。MEMS反射镜阵列122可以是多个MEMS微镜的阵列,可以包括几十、几百甚至几千个微镜。每一个微镜可以配置为沿两个光路之一导引入射光,即波长分量126之一。当命令将入射波长分量126调制为二进制“通”状态时,微镜将入射波长分量126导引至准直元件123。当命令将入射波长分量126调制为二进制“断”状态时,微镜将入射波长分量126导引至光收集器(light dump)或其他光吸收器件。MEMS反射镜阵列122的每一个微镜可以通过微控制器140独立地控制;因此MEMS反射镜阵列122可以配置为独立地调制多个入射束(例如波长分量126)的光强度。准直元件123可以包括一个或多个固定的光学元件,例如透镜和/或反射镜,定位用于对入射光进行准直以产生光输出112,其中所述光输出112可以是准直的且波长调制的光束。图2B是根据本公开的一个或多个实施例配置的基于MEMS的光调制器129的另一种配置的示意图。如所示地,基于MEMS的光调制器129与基于MEMS的光调制器120实质上类似,不同之处在于基于MEMS的光调制器129包括第一 MEMS反射镜阵列122A和第二MEMS反射镜阵列122B。在这种实施例中,第一 MEMS反射镜阵列122A和第二 MEMS反射镜阵列122B每一个均可以从微处理器140(图1所示)接收相同的调制信号115。基于MEMS的光调制器129配置为使得每一个波长分量126的光强度可以经历通过第一 MEMS反射镜阵列122A的二进制调制以及由第二 MEMS反射镜阵列122B的相同二进制调制。按照这种方式,基于MEMS的光调制器129的双MEMS反射镜配置提供了更深的调制幅度,即针对每一个波长分量126增强了二进制“通”和“断”状态之间的光对比度。图2C是根据这里公开的至少一些实施例的具有一个或多个窄带光源195 (而非宽带光源)的基于MEMS的光调制器190的配置的示意图。窄带光源195可以是一个或多个固定和/或可调激光器、二极管、滤波LED或其他窄带光源。因为已经将窄带光196划分为一个或多个离散的光带,基于MEMS的光调制器190的正确操作不需要色散元件121。可以按照通过MEMS反射镜阵列122调制波长分量126的相同方式通过MEMS反射镜阵列122调制窄带光196,如下所述。在基于MEMS的光调制器190中,可以在窄带光入射到MEMS反射镜阵列122之前对窄带光196进行光组合。图2D是根据这里公开的至少一些实施例的调制窄带光源191的配置的示意图,所述调制窄带光源191具有调制窄带光源的阵列197 (而非宽带光源)、色散元件121和MEMS反射镜阵列122。组成阵列197的窄带光源可以包括一个或多个可调激光器、二极管、滤波LED或者可以在kHz或更高范围的频率处被如下所述调制的其他窄带光源。例如,激光二极管可以配置为通过调制供应给二极管的功率而被调制,LED可以配置为通过调制流过LED的电流而被调制,等等。调制窄带光源191的操作与如下所述的基于MEMS的光调制器120的操作类似,不同之处在于:直接调制单独的频率分量,因此不要求MEMS反射镜阵列122进行调制。在操作时,基于MEMS的光调制器120适用于接收宽带光111并且将宽带光划分为波长分量126,将所述波长分量126被导引至所不的MEMS反射镜阵列122。MEMS反射镜阵列122接收波长分量126,并且基于从微控制器140导引至其的调制信号115选择性地调制一个或多个所需的波长分量。通过色散元件121将波长分量126在空间上彼此分离,使得将波长分量126的每一个导引至MEMS反射镜阵列122的不同部分。因为MEMS反射镜阵列122中的每一个单独反射镜可以彼此独立地操作,可以彼此独立地调制波长分量126的每一个。由MEMS反射镜阵列122调制的具体波长分量依赖于光声气体传感器100配置用于检测哪个具体化合物,因为吸收谱对于每一种化合物是不同的。因此,当光声气体传感器100配置为监测相对较小数量的气体和/或化合物时,可以要求几个波长分量的光吸收,以便对气体和化合物的浓度加以量化。相反地,当光声气体传感器100配置为监测大量的气体和/或化合物时,需要确定的气体的吸收谱的数量相应地增加。在任一种情况下,然后可以通过准直元件123将调制的波长分量127进行准直并且导引至样品区域135。在一些实施例中,可以选择调制信号115以按照与传统光声传感器实质上类似的方式产生一个或多个所需波长分量的调制,即可以产生针对单一波长分量的“断续(chopped) ”光束,并且所述“断续”光束通过气体样品以经由光声效应产生声信号。在这些实施例中,可以单独地测量通过光声气体传感器100的吸收进行光声测试的光的每一个波长。与依赖于一个或多个可调激光器的一些光声传感器不同,光声气体传感器100是“波长灵活的”,并且可以通过结合MEMS反射镜阵列122使用色散元件121来单独地产生和调制光的每一个所需波长。具体地,色散元件121可以配置为在空间上分离组成宽带光111的波长分量,并且MEMS反射镜阵列122可以适用于将感兴趣的具体波长分量导引至MEMS反射镜阵列122,并且将所有其他波长分量导引至光收集器或者其他光吸收器件。构成感兴趣的波长分量的断续光束然后可以通过气体样品,并且可以通过利用声传感器131测量声波133来确定气体样品针对感兴趣的具体波长的光吸收。这种方法的独特优势在于代替可调激光器,可以使用不太复杂的光源,即宽带可见、IR或UV光源。在一些实施例中,调制信号115可以选择为按照以下方式调制一个或多个所需波长分量的幅度,使得微控制器140能够同时确定多个化合物的吸收谱。在这些实施例中,可以使用针对由正在监测的气体或化合物吸收的光的每一个波长的唯一的不相关确定性调制信号来产生由气体样品产生的光声信号。因此,调制信号115可以构成多个不相关确定性调制信号,每一个感兴趣的波长分量126对应于一个不相关确定性调制信号,该方法与在现有技术的光声传感器中用于调制光的已知技术(例如简单的光脉冲、简单的二进制通/断链或者光源幅度的正弦调制)明显不同。可以将每一个不相关确定性调制信号施加至MEMS反射镜阵列122的适当的反射镜以调制宽带光111的相应波长分量。因此,参考图1和2A,当将调制的波长分量127导引至样品区域135以产生声波133时,微控制器140可以经由声传感器131接收声信号,并且利用A/D转换器141数字化声信号。微控制器140然后可以通过使用基于不相关调制信号的相关分析来提取正在监测的气体的吸收谱,其中根据声信号单独地确定气体样品对每一个波长分量的光吸收。换句话说,对于气体样品吸收的每一个调制波长分量127,相关分析可以用于将输出(声波133)与施加至每一个光波长的输入调制信号相关,其中相关的幅度(或者量值)表不产生声波133的每一个调制波长分量127的吸收量。在一些实施例中,快速哈达马德变换(FHT)、快速傅里叶变换(FFT)等可以应用于数字化的声信号以执行这种相关分析。在这些实施例中,微控制器140使用调制信号115作为相关分析的基函数,使得FHT、FFT等的不同输出是在感兴趣波长处系统的脉冲响应,其中将这种情况下的“系统”定义为光声气体传感器100。因此,每一个FHT (或者FFT或者其他分析方法)的相关幅度表示在感兴趣的波长处由气体样品吸收的光的量。微控制器140通过向数字化的声信号施加FHT(或者FFT或者其他分析方法)以产生在由具体调制信号115调制的光的波长处的脉冲响应,来执行针对施加至基于MEMS的光调制器120的每一个调制信号115的这种相关分析。在这种实施例中,相关分析方法(FHT、FFT等)使用具体的调制信号115作为其基函数。得到的脉冲响应的每一个与样品气体在具体光波长处的光吸收系数成正比,微处理器140可以使用所述脉冲响应来构建针对正在监测的任意气体的所需吸收谱。应该注意的是这种脉冲响应的相对峰值幅度而不是这种脉冲响应的绝对值可以最适用于确定吸收谱,因为比例常数至少部分地依赖于所使用的特定传感器和光源,并且并非总是易于确定的。在一些实施例中,施加至感兴趣的波长分量126并且用作相关分析的基函数的唯一的确定性不相关调制信号115可以基于伪随机二进制序列(PRBS)。因为PRBS序列的不同成员实质上是不相关的,可以通过使用PRBS来简化施加至每一个波长的每一个确定性不相关调制信号115的选择。在一个实施例中,用于施加至波长分量126的每一个调制信号115的具体PRBS可以是最大长度序列(MLS)。用于这种实施例的基于MLS的信号有利特点是基于MLS的信号具有正交性质,即基于MLS的信号的自相关性是近似理想的单位脉冲,而基于MLS的信号的互相关是O。因此,MLS调制的传感器信号(即传感器输出132)的相关是测量系统对于激励信号的脉冲响应。具体地,MLS调制的调制信号115的正交性表示了所述脉冲响应(即使用调制 信号115之一作为基函数的单一 FHT、FFT等的输出)是在已经调制的具体光波长处的系统响应的量度。脉冲响应的幅度(表示脉冲响应系统中的总能量)与在具体波长处吸收的光的量成正比。这提供了在每一个感兴趣的波长处吸收的光的量,因此微处理器140然后可以容易地针对正在监测的任意气体构建所需吸收谱。因此,在光声气体传感器100中使用基于MLS的信号来调制波长分量126使得微处理器140能够有效地同时提取和分离由气体样品对于每一个波长的光吸收,使得能够监测多种气体。例如,微处理器和其他电子装置可以适用于向调制信号115提供在IOOkHz量级的调制速率,这意味着可以在近似10秒中完成具有22°信号长度的单独测量(即22°/100kHz ^ 10秒),其中每一个测量对大量的(例如几十、几百或者甚至几千)气体和化合物的浓度加以量化。因此,光声气体传感器100可以连续地监测大量气体和化合物。对于实现高灵敏度的光声传感器,要求声噪声的估计。一些光声传感器依赖于密封声单元的使用,所述密封声单元也配置为声谐振器。本公开的实施例可以经由多个确定性不相关信号的施加和上述信号处理方法、并且还通过声传感器的环形阵列的使用来减小外部声噪声的影响。因为PRBS和MLS信号是确定性(即可重复的),可以通过按照某种方式同时对多个测量序列进行平均来有效地去除叠加到声波133并且合并到传感器输出132中的外部噪声。在一个实施例中,在相关分析之前对测量信号进行平均化。在另一个实施例中,可以对所有信号执行相关分析然后进行平均。此外,可以通过配置根据本公开实施例的多个声传感器来最小化叠加至声波133的外部噪声的量。图3是根据本公开的一个或多个实施例的设置在样品区域周围的声传感器的一种配置的示意图。如所示地,环形阵列130可以包括安装并且设置在样品区域135周围的多个声传感器131。应该强调的是尽管环形阵列130的内部体积可以包含样品气体,将样品区域135定义为包含调制光束(例如调制光束112)通过的那部分样品气体。将声传感器131安装到环形阵列130 (或者与其整体地形成),使得将每一个声传感器与样品区域135实质上等距地设置。此外,声传感器131的输出134通过电子电路136直接叠加以组合到传感器输出132中。对输出134(例如电压输出、电流输出、可变电容、可变电感等)进行组合的方式依赖于使用的具体声传感器。在一些实施例中,声传感器131可以是电压输出麦克风,所述电压输出麦克风与模拟求和电路138结合以产生传感器输出132。在一些替代实施例中,可以将来自每一个声传感器131的输出信号经由数字电路中的束形成算法或者通过微控制器140数字地分离然后进行组合。在其他实施例中,声传感器131可以在它们的组件中合并A/D转换器,在这种情况下经由数字电路中的束形成算法或者通过微控制器140对数字化的数据进行组合。在一些实施例中,环形阵列130可以包括成对的声传感器131,每一个传感器与样品区域135成直线地并且实质上等距地设置。在图3中示出了这一实施例。在其他实施例中,环形阵列130包括没有设置为彼此直接相对地配对的声传感器131。在其他实施例中,环形阵列130可以包括单一的圆柱形状的声传感器。在一个实施例中,只要声传感器131每一个均与样品区域135实质上等距,可以将环形阵列130的输出针对样品区域135内部的声音源最大化,并且可以针对源自其他地方的声音源(即不想要的声噪声)显著地减小环形阵列130的输出。因此,如果将调制光束112导引通过样品区域135,可以提高光声信号输出并且降低声噪声的输出(即增加的信噪比(S/N))。光声信号输出的提高是由于每一个声传感器131产生的信号的相干叠加。因为每一个声传感器131与声音源是等距的,发生了声传感器131的输出信号的相干叠加,这意味着来自样品区域135中的任意声源的信号在每一个声传感器131中是相干的(即同相的)。对于N个传感器,声传感器131的输出的相干叠加提供了定位于样品区域135中的声源的输出信号功率的N2增加,因此对于N = 8,即使不将环形阵列130配置为声谐振器,也可以提供几乎20dB的增益。由此,根据本公开的一个或多个实施例设置的环形阵列可以显著地减小任意光声气体传感器中的声噪声的影响。可以通过配置具有多个环形阵列130的光声气体传感器100来进一步增加环形阵列130的有益效果,每一个环形阵列均包括多个声传感器131。图4阐述了对根据本公开的至少一些实施例的光声气体检测方法400加以概述的流程图。为了便于描述,按照与图1中的光声气体传感器100实质上类似的方式描述了方法400。然而,光声传感器的其他配置也可以执行方法400。方法400可以包括由模块401、402、403、404、405和/或406描述的一个或多个功能、操作或动作。在一些实施方式中,可以基于所需结果将针对方法400所述模块的各种特征组合成更少的模块、划分为附加的模块或者取消。针对方法400的处理可以开始于模块401。针对方法400的处理可以开始于模块401“激活光源”。模块401之后可以接着是模块402“将光分离为波长分量”。模块402之后可以接着是模块403“调制波长分量”。模块403之后可以接着是模块404 “照射气体样品”。模块404之后可以接着是模块405 “检测声信号”。模块405之后可以接着是模块406 “相干地叠加声信号”。模块406之后可以接着是模块407 “确定吸收谱”。在模块401 “激活光源”,通过微控制器140激活宽带光源110,并且将宽带光111导引至基于MEMS的光调制器120。在模块402 “将光分离为波长分量”,可以将宽带光111分离为一个或多个组成波长分量126。在至少一些实施例中,衍射光栅用于分离宽带光源。
在模块403 “调制波长分量”,可以将一个或多个波长分量126进行二进制幅度调制以产生调制的波长分量127。在至少一些实施例中,由微控制器140控制的MEMS反射镜阵列122可以用于执行单独的波长分量126的调制。在至少一些实施例中,调制的波长分量126可以选择为与由光声气体传感器100监测的一种或多种气体吸收的光的频率一致。在一个实施例中,针对每一个待调制的波长分量126的调制信号115可以相对于施加至每一个其他波长分量126的调制信号是唯一的。在这种实施例中,所述调制信号115可以是基于PRBS的调制信号,例如基于MLS的调制信号。在模块404 “照射气体样品”,可以通过在模块403产生的调制波长分量127的一个或多个在样品区域中照射气体样品,使得可以通过光声效应产生样品区域135中的声信号,即声波133。在模块405 “检测声信号”,声传感器131可以检测在样品区域135中产生的声波133。在模块406 “相干地叠加声信号”,声传感器131的环形阵列130可以通过使用电子求和装置136将由每一个声传感器131感测的声信号相干地叠加来产生传感器输出132。求和处理可以是数字求和处理或者模拟求和处理。在模块407“确定吸收谱”,微处理器140可以适用于基于求和的传感器输出132来确定合适的吸收谱。如结合图2A、2B如上所述,微控制器140估计求和信号的数字化版本,并且基于不相关调制信号115通过使用相关分析来提取针对正在监测的气体的吸收谱。在调制信号115是基于PRBS或者基于MLS的调制信号的实施例中,微处理器140可以(在一些示例中)使用调制信号115作为FHT的基函数,利用FHT数字化和处理传感器输出132。计算机程序产品可以包括一组或多组可执行指令,用于执行如上所述并且如图4所述的方法400。可以将计算机程序产品记录在计算机可读介质410或者另一种类似的可记录介质412上。图5是说明了根据本公开的至少一些实施例配置的示例计算设备500的方框图,所述示例计算设备配置用于检测样品中的一种或多种气体。在非常基本的配置502中,计算设备500典型地可以包括一个或多个处理器504和系统存储器506。存储器总线508可以用于在处理器504和系统存储器506之间通信。根据所期望的配置,处理器504可以是任意类型的,包括但不限于微处理器(μ P)、微控制器(μ C)、数字信号处理器(DSP)或其任意组合。处理器504可以包括一级或多级缓存(例如,一级高速缓存510和二级高速缓存512)、处理器核514、以及寄存器516。示例处理器核514可以包括算术逻辑单元(ALU)、浮点单元(FPU)、数字信号处理核(DSP核)或其任意组合。示例存储器控制器518也可以与处理器504 —起使用,或者在一些实施方式中,存储器控制器518可以是处理器504的内部部件。根据所期望的配置,系统存储器506可以是任意类型的,包括但不限于易失性存储器(如RAM)、非易失性存储器(如ROM、闪存等)或其任意组合。系统存储器506可以包括操作系统520、一个或多个应用程序522和程序数据524。应用程序522可以包括光声气体检测算法526,所述算法配置为执行如相对于图4的方法400所述的功能。程序数据524可以包括用于如这里所述的光声气体检测算法526的操作的信号数据528。在一些示例实施例中,应用程序522可以设置为在操作系统520上以程序数据524进行操作。这里所描述的基本配置502在图5中由虚线内的部件来图示。计算设备500可以具有额外特征或功能以及额外接口,以有助于基本配置502与任意所需设备和接口之间进行通信。例如,总线/接口控制器530可以有助于基本配置502与一个或多数量据存储设备532之间经由存储接口总线534进行通信。数据存储设备532可以是可拆除存储设备536、不可拆除存储设备538或其组合。可拆除存储设备和不可拆除存储设备的示例包括磁盘设备(如软盘驱动器和硬盘驱动器(HDD))、光盘驱动器(如紧致盘(CD)驱动器或数字通用盘(DVD)驱动器)、固态驱动器(SSD)以及磁带驱动器,这仅仅是极多例子中的一小部分。示例计算机存储介质可以包括以任意信息存储方法或技术实现的易失性和非易失性、可拆除和不可拆除介质,如计算机可读指令、数据结构、程序模块或其他数据。系统存储器506、可拆除存储设备536和不可拆除存储设备538均是计算机存储介质的示例。计算机存储介质包括但不限于RAM、ROM、EEPR0M、闪存或其他存储器技术,CD-ROM、数字多功能盘(DVD)或其他光存储设备,磁盒、磁带、磁盘存储设备或其他磁存储设备,或可以用于存储所需信息并可以由计算设备500访问的任意其他介质。任何这种计算机存储介质可以是设备500的一部分。计算设备500还可以包括接口总线540,以有助于各种接口设备(例如,输出设备542、外围接口 544和通信设备546)经由总线/接口控制器530与基本配置502进行通信。示例输出设备542包括图形处理单元548和音频处理单元550,其可被配置为经由一个或多个A/V端口 552与多种外部设备(如显示器或扬声器)进行通信。示例外围接口 544包括串行接口控制器554或并行接口控制器556,它们可被配置为经由一个或多个I/O端口 558与外部设备(如输入设备(例如,键盘、鼠标、笔、语音输入设备、触摸输入设备等))或其他外围设备(例如,打印机、扫描仪等)进行通信。示例通信设备546包括网络控制器560,其可以被设置为经由一个或多个通信端口 564与一个或多个其他计算设备562通过网络通信链路进行通信。网络通信链路可以是通信介质的一个示例。通信介质典型地可以由调制数据信号(如载波或其他传输机制)中的计算机可读指令、数据结构、程序模块或其他数据来体现,并可以包括任意信息传送介质。“调制数据信号”可以是通过设置或改变一个或多个特性而在该信号中实现信息编码的信号。例如,但并非限制性地,通信介质可以包括有线介质(如有线网络或直接布线连接)、以及无线介质(例如声、射频(RF)、微波、红外(IR)和其他无线介质)。这里所使用的术语计算机可读介质可以包括存储介质和通信介质。计算设备500可以实现为诸如蜂窝电话、个人数字助手(PDA)、个人媒体播放设备、无线网页浏览设备、个人头戴式设备、专用设备之类的小形状因子便携(或移动电子设备)或包括上述功能任一个在内的混合设备的一部分。计算设备500也可以实现为包括膝上型计算机和非膝上型计算机配置两者在内的个人计算机。总之,本公开的一个或多个实施例可以提供一种便携且自包含的光声传感器,能够在大气中操作并且具有高灵敏度。使用MEMS光系统和板载微计算机,通过减小的尺寸促进了便携性,并且消除了典型的光声系统中的气体采样和管道输运。此外,根据本公开的一个或多个实施例设置的光声传感器可以具有在百万分之一(PPM)或者甚至PPB级别的灵敏度,同时提供比传统光声检测器更高的数据收集速度,甚至是当监测大量气体时也是如此。另外,由于基于MEMS反射镜的光调制器的“波长灵活”性质,根据本公开的一个或多个实施例设置的光声传感器也可以易于重新编程以监测不同的气体和化合物,无需硬件变化。因此,根据本公开的一个或多个实施例配置的光声传感器提供了现有小型化的近红外和光学MEMS光谱仪的便携性和选择性,并且便于大气中的操作。此外,这里描述的光声传感器可以适用于测量固体和/或液体表面的光吸收。在这些实施例中,可以将来自基于MEMS的光调制器的波长调制输出划分为两个束,将两个束之一导引至固体或液体的表面。第二组传感器将测量从固体/液体表面重新辐射的声信号。空气传感器输出和固体/液体传感器输出之间的比较将固体/液体的吸收与固体/液体前面紧邻的空气相隔离。在系统方案的硬件和软件实现方式之间存在一些小差别;硬件或软件的使用一般(但并非总是,因为在特定情况下硬件和软件之间的选择可能变得很重要)是一种体现成本与效率之间权衡的设计选择。可以各种手段(例如,硬件、软件和/或固件)来实施这里所描述的工艺和/或系统和/或其他技术,并且优选的工艺将随着所述工艺和/或系统和/或其他技术所应用的环境而改变。例如,如果实现方确定速度和准确性是最重要的,则实现方可以选择主要为硬件和/或固件配置的手段;如果灵活性是最重要的,则实现方可以选择主要是软件的实施方式;或者,同样也是可选地,实现方可以选择硬件、软件和/或固件的特定组合。以上的详细描述通过使用方框图、流程图和/或示例,已经阐述了设备和/或工艺的众多实施例。在这种方框图、流程图和/或示例包含一个或多个功能和/或操作的情况下,本领域技术人员应理解,这种方框图、流程图或示例中的每一功能和/或操作可以通过各种硬件、软件、固件或实质上它们的任意组合来单独和/或共同实现。在一个实施例中,本公开所述主题的若干部分可以通过专用集成电路(ASIC)、现场可编程门阵列(FPGA)、数字信号处理器(DSP)、或其他集成格式来实现。然而,本领域技术人员应认识到,这里所公开的实施例的一些方面在整体上或部分地可以等同地实现在集成电路中,实现为在一台或多台计算机上运行的一个或多个计算机程序(例如,实现为在一台或多台计算机系统上运行的一个或多个程序),实现为在一个或多个处理器上运行的一个或多个程序(例如,实现为在一个或多个微处理器上运行的一个或多个程序),实现为固件,或者实质上实现为上述方式的任意组合,并且本领域技术人员根据本公开,将具备设计电路和/或写入软件和/或固件代码的能力。此外,本领域技术人员将认识到,本公开所述主题的机制能够作为多种形式的程序产品进行分发,并且无论实际用来执行分发的信号承载介质的具体类型如何,本公开所述主题的示例性实施例均适用。信号承载介质的示例包括但不限于:可记录型介质,如软盘、硬盘驱动器(HDD)、紧致盘(CD)、数字通用盘(DVD)、数字磁带、计算机存储器等;以及传输型介质,如数字和/或模拟通信介质(例如,光纤光缆、波导、有线通信链路、无线通信链路等)。本领域技术人员应认识到,上文详细描述了设备和/或工艺,此后使用工程实践来将所描述的设备和/或工艺集成到数据处理系统中是本领域的常用手段。也即,这里所述的设备和/或工艺的至少一部分可以通过合理数量的试验而被集成到数据处理系统中。本领域技术人员将认识到,典型的数据处理系统一般包括以下各项中的一项或多项:系统单元外壳;视频显示设备;存储器,如易失性和非易失性存储器;处理器,如微处理器和数字信号处理器;计算实体,如操作系统、驱动程序、图形用户接口、以及应用程序;一个或多个交互设备,如触摸板或屏幕;和/或控制系统,包括反馈环和控制电动机(例如,用于感测位置和/或速度的反馈;用于移动和/或调整分量和/或数量的控制电动机)。典型的数据处理系统可以利用任意合适的商用部件(如数据计算/通信和/或网络计算/通信系统中常用的部件)予以实现。本公开所述的主题有时说明不同部件包含在不同的其他部件内或者不同部件与不同的其他部件相连。应当理解,这样描述的架构只是示例,事实上可以实现许多能够实现相同功能的其他架构。在概念上,有效地“关联”用以实现相同功能的部件的任意设置,从而实现所需功能。因此,这里组合实现具体功能的任意两个部件可以被视为彼此“关联”从而实现所需功能,而无论架构或中间部件如何。同样,任意两个如此关联的部件也可以看作是彼此“可操作地连接”或“可操作地耦合”以实现所需功能,且能够如此关联的任意两个部件也可以被视为彼此“能可操作地耦合”以实现所需功能。能可操作地耦合的具体示例包括但不限于物理上可配对和/或物理上交互的部件,和/或无线交互和/或可无线交互的部件,和/或逻辑交互和/或可逻辑交互的部件。至于本文中任何关于多数和/或单数术语的使用,本领域技术人员可以从多数形式转换为单数形式,和/或从单数形式转换为多数形式,以适合具体环境和应用。为清楚起见,在此明确声明单数形式/多数形式可互换。本领域技术人员应当理解,一般而言,所使用的术语,特别是所附权利要求中(例如,在所附权利要求的主体部分中)使用的术语,一般地应理解为“开放”术语(例如,术语“包括”应解释为“包括但不限于”,术语“具有”应解释为“至少具有”等)。本领域技术人员还应理解,如果意在所引入的权利要求中标明具体数目,则这种意图将在该权利要求中明确指出,而在没有这种明确标明的情况下,则不存在这种意图。例如,为帮助理解,所附权利要求可能使用了引导短语“至少一个”和“一个或多个”来引入权利要求中的特征。然而,这种短语的使用不应被解释为暗示着由不定冠词引入的权利要求特征将包含该特征的任意特定权利要求限制为仅包含一个该特征的实施例,即便是该权利要求既包括引导短语“一个或多个”或“至少一个”又包括不定冠词(例如,不定冠词应当被解释为意指“至少一个”或“一个或多个”);在使用定冠词来引入权利要求中的特征时,同样如此。另外,即使明确指出了所引入权利要求特征的具体数目,本领域技术人员应认识到,这种列举应解释为意指至少是所列数目(例如,不存在其他修饰语的短语“两个特征”意指至少两个该特征,或者两个或更多该特征)。另外,在使用类似于“A、B和C等中至少一个”这样的表述的情况下,一般来说应该按照本领域技术人员通常理解该表述的含义来予以解释(例如,“具有
A、B和C中至少一个的系统”应包括但不限于单独具有A、单独具有B、单独具有C、具有A和
B、具有A和C、具有B和C、和/或具有A、B、C的系统等)。在使用类似于“A、B或C等中至少一个”这样的表述的情况下,一般来说应该按照本领域技术人员通常理解该表述的含义来予以解释(例如,“具有A、B或C中至少一个的系统”应包括但不限于单独具有A、单独具有B、单独具有C、具有A和B、具有A和C、具有B和C、和/或具有A、B、C的系统等)。本领域技术人员还应理解,实质上任意表示两个或更多可选项目的转折连词和/或短语,无论是在说明书、权利要求书还是附图中,都应被理解为给出了包括这些项目之一、这些项目任一方、或两个项目的可能性。例如,短语“A或B”应当被理解为包括“A”或“B”、或“A和B”的可能性。尽管已经在此公开了多个方案和实施例,但是本领域技术人员应当明白其他方案和实施例。这里所公开的多个方案和实施例是出于说明性的目的,而不是限制性的,本公开的真实范围和精神由所附权利要求表征。
权利要求
1.一种光声传感器,包括: 光调制器,配置为调制输入光束,并且产生被导引至样品区域的调制光; 声传感器的阵列,设置在所述样品区域的周围,所述声传感器阵列的每一个声传感器与所述样品区域实质上等距,其中每一个声传感器适用于响应于在所述样品区域中检测到的声能量来产生信号;以及 控制器,耦合至所述声传感器,并且配置为基于由所述声传感器产生的信号来检测在所述样品区域中存在的一种或多种气体。
2.根据权利要求1所述的光声传感器,其中所述声传感器的阵列在所述样品区域周围环形地设置。
3.根据权利要求1所述的光声传感器,其中所述控制器耦合至所述光调制器,并且适用于控制所述输入光束的调制。
4.根据权利要求1所述的光声传感器,其中所述光调制器包括色散元件,所述色散元件配置为将输入光束分离为波长分量,并且还配置为不均匀地调制所述波长分量。
5.根据权利要求1所述的光声传感器,其中所述光调制器包括光栅,所述光栅配置为将输入光束分离为波长分量,并且还配置为不均匀地调制所述波长分量。
6.根据权利要求1所述的光声传感器,其中所述光调制器包括MEMS反射镜阵列,所述MEMS反射镜阵列适用于调制输入光束。
7.根据权利要求1所述的光声传感器,其中所述光调制器包括:第一MEMS反射镜阵列,适用于调制所述输入光束的第一波长分量;以及第二 MEMS反射镜阵列,适用于调制所述输入光束的相同波长分量 。
8.根据权利要求1所述的光声传感器,其中所述光调制器包括一个或多个窄带光源以及MEMS反射镜阵列,所述MEMS反射镜阵列用于调制来自所述一个或多个窄带光源的窄带光,以产生被导引至所述样品区域的调制光。
9.根据权利要求1所述的光声传感器,其中所述光调制器包括调制窄带光源的阵列,所述已调制窄带光源产生被导引至所述样品区域的调制光。
10.一种检测样品中的一种或多种气体的方法,所述方法包括: 调制输入光束以产生调制光; 将调制光导引至包含所述样品的区域中; 从设置在所述区域周围并且与所述区域实质上等距的多个声传感器收集声信号;以及 评估所收集的声信号以检测在所述样品中存在的一种或多种气体,其中所述声信号由所述调制光与位于所述区域中的一种或多种气体的至少一部分的相互作用产生。
11.根据权利要求10所述的方法,还包括对所述声信号数字化,其中在所述样品中检测到的所述一种或多种气体是通过评估数字化的声信号而检测到的。
12.根据权利要求10所述的方法,其中调制所述输入光束包括: 将所述输入光束分离为波长分量;以及 不均匀地调制所述波长分量的每一个以产生所述调制光。
13.根据权利要求10所述的方法,其中调制所述输入光束包括:根据正在被检测的所述一种或多种气体的波长吸收谱来调制所述输入光束。
14.根据权利要求10所述的方法,其中调制所述输入光束包括:使用第一确定性调制信号来调制所述输入光束的第一波长分量,并且使用第二确定性调制信号来调制所述输入光束的第二波长分量,其中所述第一确定性调制信号和所述第二确定性调制信号彼此不相关。
15.根据权利要求10所述的方法,还包括:在调制之后且在调制光到达所述区域之前对所述调制光进行准直。
16.根据权利要求10所述的方法,其中将所述调制光的第一波长分量导引至所述区域中,并且不将所述调制光的第二波长分量导引至所述区域中。
17.根据权利要求10所述的方法,其中通过光声传感器执行调制、导引、收集和/或检测的一种或多种。
18.根据权利要求10所述的方法,其中从一个或多个窄带光源产生所述输入光束,并且利用MEMS反射镜阵列调制所述输入光束。
19.根据权利要求10所述的方法,其中通过调制窄带光源的阵列来产生所述调制光。
20.—种光声传感器,适用于从位于所述光声传感器的样品区域中的样品检测一种或多种气体,所述光声传感器包括: 光栅,配置为将输入光束分离为波长分量; MEMS反射镜阵列,配置为调制所述波长分量以产生针对所述样品区域的调制光分量; 声传感器,设置在调制光分量通过的样品区域附近,并且适用于响应于在所述样品区域中检测到的声信号来产生电信号;以及 控制器,耦合至所述声传感器,并且配置为基于由所述声传感器产生的电信号来检测在所述样品区域中存在的一种或多种气体的至少一部分。
21.根据权利要求20所述的光声传感器,所述MEMS反射镜阵列包括第一MEMS反射镜阵列和第二MEMS反射镜阵列,其中所述第一MEMS反射镜阵列配置为调制第一组波长分量,并且其中所述第二 MEMS反射镜阵列配置为调制第二组波长分量。
22.根据权利要求20所述的光声传感器,其中所述控制器适用于向所述MEMS反射镜阵列提供唯一的不相关确定性调制信号以调制所述波长分量的每一个,并且其中所述控制器配置为通过对已经数字化的由所述声传感器产生的信号进行处理来检测所述气体。
23.根据权利要求20所述的光声传感器,其中所述唯一的调制信号包括基于最大长度序列的调制信号。
24.根据权利要求20所述的光声传感器,其中所述输入光束从宽带可见光源、IR光源和UV光源之一产生。
全文摘要
总地描述了一种光声气体传感器、系统和方法。在一些示例中,光声气体传感器包括光栅和操作为波长选择光调制器的MEMS反射镜阵列的组合,以及布置在气体样品区域周围的环形声传感器阵列。所述基于MEMS的光调制器可以适用于提供灵活的波长选择性,使得可以检测到大量的化合物。所述声传感器的环形阵列可以适用于测量光声产生的声信号,而不需要气体传感器的光声单元的谐振增强。在一些示例中,唯一的不相关确定性信号可以用于调制感兴趣的每一个波长。可以使用允许多个光波长的吸收谱的同时测量并且拒绝不想要的声噪声的信号处理。
文档编号G01J3/12GK103180698SQ201080069829
公开日2013年6月26日 申请日期2010年10月28日 优先权日2010年10月28日
发明者拉尔夫·穆尓雷森 申请人:英派尔科技开发有限公司