机器视觉系统对医疗产品包装异物的自动检测方法

文档序号:6008999阅读:181来源:国知局
专利名称:机器视觉系统对医疗产品包装异物的自动检测方法
技术领域
本发明涉及利用机器视觉系统进行在线检测的技术领域,尤其涉及在医疗产品包装现场,利用机器视觉系统对医疗产品包装中是否存在异物进行自动检测的方法。
背景技术
在流水作业的医疗产品包装现场,需要对包装袋中是否存在异物进行在线检测。 现有技术中,对医疗产品包装异物的在线检测依靠人工进行检测,在包装袋生产机旁设约 80人进行医疗产品包装异物的检测和处理,根据检测结果将产品分为合格品(包装无异物) 和不合格品(包装有异物)。不合格品需进行二次加工,等待去除包装中的异物。人工检测存在的缺点主要有生产车间现场通风差,工人检测工作环境恶劣,劳动强度大;正常人眼在不间断观测运动物体30min左右,即会眼花、眼胀等不适,检测人员无法长时间不间断工作,无法保证产品出厂合格率;医疗产品包装异物检测是带较多部件的检测,人眼无法准确判断,易缺漏,出错机会很多,无法保证检测质量;专业人员检测包装袋的速度最高为0. 5个/s,对生产速率有极大限制。发明的内容
针对现有技术对医疗产品包装异物的在线检测依靠人工进行检测,工人容易产生视觉疲劳,劳动强度大,无法保证产品合格率以及检测质量,监测速度低等问题,本发明提供一种机器视觉系统对医疗产品包装异物的自动检测方法,其大大降低工人的检测劳动强度, 检测精度高、速度快,可以有效保证出厂产品的合格率。本发明的技术方案如下
一种机器视觉系统对医疗产品包装异物的自动检测方法,包括以下步骤
(1)将已包装的医疗产品包装袋固定在工装条夹具上,使工装条夹具在线运行,将拍摄相机固定在在线运行的工装条夹具一侧;根据待检测医疗产品包装袋的尺寸大小及朝向, 选择镜头的焦距,调整拍摄相机的拍摄角度、放大倍数、拍摄距离、光圈大小、曝光时间,以便获取清晰的拍摄图像;
(2)启动所述工业相机,预拍摄一无异物的医疗产品包装袋的图像,并将拍摄的图像传输至计算机,计算机通过图像算法处理,提取医疗产品包装袋的图像,并通过模式识别算法处理,识别出包装袋中的各个部件,将各部件分别编号作为标准库,贮存于计算机中;
(3)将医疗产品包装袋图像中有无标准库中没有的部件设为检测参量;
(4)计算机取得相机与生产进程同步的触发与控制信号,由外部触发与控制信号启动所述相机实时拍摄在线运行医疗产品包装袋的图像,并将拍摄的图像传输至计算机供检测;
(5)计算机通过图像算法处理,提取医疗产品包装袋的图像;并通过模式识别算法处理,识别出包装袋中的各个部件;
(6)计算机对所述医疗产品包装袋中是否存在异物进行检测;该检测是将识别出的包装袋中的各个部件与标准库进行比较,检测该包装袋中任何一个部件是否都在标准库中有相应的编号存在;
(7)通过包装异物检测判断该医疗产品包装是属于合格品还是可再加工次品,通过外部触发与控制信号将可再加工次品从指定的出料口进行剔除。其进一步的技术方案为对所述第(7)步,具体按下述步骤进行包装异物的判断和分检
(8)判断第一个部件在标准库中是否有相应的编号存在,如存在则转向第(9)步,若不存在则转向第(12)步;
(9)判断下一个尚未经过判断的部件;
(10)重复第(8)、第(9)步,直到所有部件均已遍历;
(11)若所有部件在标准库中均有相应的编号存在,则作为合格品进行分拣;
(12)作为可再加工次品,进行二次加工,去除包装中的异物。以及,其进一步的技术方案为对所述第(7)步,当检测到产品为可再加工次品时,计算机将通过人机界面进行图像提示,并启动报警装置。本发明的有益技术效果是
本发明采用机器视觉系统对医疗产品包装异物进行自动在线检测,取代人工检测,用户可自动进行检测精度的调节。具有对产品检测合格品、不合格品这两类产品的记录、分类、统计、存储、查询功能。并通过友好人机界面在图像中提示不合格品情况,并给予声、光报警提示,大大降低工人的检测劳动强度。人工检测速度一般为0. 5个/s,而机器视觉系统检测速度可达3、个/s,机器视觉系统的产品检测速度是人工的6、倍,极大提高了生产效率。人工检测由于环境和生理的原因,无法M小时不间断进行产品质量检测,而采用机器视觉系统检测则使其成为可能。设备的生产时间可最大限度地延长,提高了设备的利用率。人为检测由于通风差、视觉易疲劳,很难连续跟踪产品质量。检测正确率靠人工很难保证,非正常次品率一般在8 10%左右,造成了生产资源和生产成本的极大浪费;机器视觉系统的检测精度较高,从而大大提高产品合格率以及检测质量。


图1是无异物的医疗产品包装袋图像。图2是有异物的医疗产品包装袋图像。图3是本发明的工艺步骤图。
具体实施例方式
下面结合附图对本发明的具体实施方式
做进一步说明。图1、图2是从医疗产品包装袋侧面拍摄并经过处理后的实际图像。在图1、图2所示的拍摄图像中,四周空白部分为包装袋图像经过去噪软件处理后的透明空间,所示线条为包装袋中各部件处理后的轮廓图像。实施例1,对合格医疗产品包装袋的检测
如图1所示的医疗产品包装袋图像,其为的无异物的视觉图形。将Basler ACA640-100GM型工业相机固定在医疗产品包装袋的正上方,相机距医疗产品包装袋正面的距离约为100mm,使用施耐得变焦镜头,焦距调至8mm,光圈调到最大值,曝光时间调为0. 41ms。采用专用白色LED碗光源,从相机对医疗产品包装袋的同侧方进行照射(正光),并使用半封闭遮挡金属框体来屏蔽外界杂光的影响,以便比较稳定地取得视觉图像,体现医疗产品包装袋的明显特征。本项目的LED碗光源使用CCS公司的机器视觉专用光源(也可使用其他公司的LED碗光源),以便能比较稳定地拍摄到清晰的图像,并显示于计算机的屏幕。采用生产线上的工装条夹具将已包装的医疗产品包装袋整体固定。通过皮带传输系统进行医疗产品包装袋的输送,保证医疗产品包装袋按一定的方向和速度, 稳定地进入检测装置。启动所述工业相机,预拍摄一无异物的医疗产品包装袋的图像,并将拍摄的图像传输至计算机,计算机通过图像算法处理,提取医疗产品包装袋的图像,并通过模式识别算法处理,识别出包装袋中的各个部件,将各部件分别编号作为标准库(如图1,本实施例中假设标准库只包括部件A、B、C、D、E),贮存于计算机中;
计算机根据不同生产厂商所生产设备的不同控制系统,取得相机与生产进程同步的触发与控制信号,启动所述工业相机拍摄在线运行的包装袋的图像,并将获取的包装袋图像, 贮存于计算机中。计算机对所拍摄的图像通过边缘提取、平滑去噪、二值化处理、傅利叶变换等算法进行图像处理,使图像更清晰,更符合包装袋中各部件的真实情况。同时,计算机通过模式识别算法处理,识别出包装袋中的各个部件。上述图像处理过程以及模式识别处理过程中所采用的算法均为现有技术中的常规算法。计算机对所述医疗产品包装袋中是否存在异物进行检测。该检测是将识别出的包装袋中的各个部件与标准库进行比较,检测该包装袋中任何一个部件是否都在标准库中有相应的编号存在。由于所检测的医疗产品包装袋中有A、B、C、D、E共5个部件。首先判断第一个部件A是否在标准库中存在,如存在则继续判断第二个部件B是否在标准库中存在,以此类推,直到所有部件A、B、C、D、E均已遍历。如检测出所有部件均是标准库中的部件,则该产品为合格品。计算机对该类合格品进行记录、分类、统计入库。实施例2,对有异物的医疗产品包装袋的检测
如图2所示的医疗产品包装袋图像,其为的有异物的视觉图形。将Basler ACA640-100GM型工业相机固定在医疗产品包装袋的正上方,相机距医疗产品包装袋正面的距离约为100mm,使用施耐得变焦镜头,焦距调至8mm,光圈调到最大值,曝光时间调为0. 41ms。采用专用白色LED碗光源,从相机对医疗产品包装袋的同侧方进行照射(正光),并使用半封闭遮挡金属框体来屏蔽外界杂光的影响,以便比较稳定地取得视觉图像,体现医疗产品包装袋的明显特征。本项目的LED碗光源使用CCS公司的机器视觉专用光源(也可使用其他公司的LED碗光源),以便能比较稳定地拍摄到清晰的图像,并显示于计算机的屏幕。采用生产线上的工装条夹具将已包装的医疗产品包装袋整体固定。通过皮带传输系统进行医疗产品包装袋的输送,保证医疗产品包装袋按一定的方向和速度, 稳定地进入检测装置。启动所述工业相机,预拍摄一无异物的医疗产品包装袋的图像,并将拍摄的图像传输至计算机,计算机通过图像算法处理,提取医疗产品包装袋的图像,并通过模式识别算法处理,识别出包装袋中的各个部件,将各部件分别编号作为标准库(如图1,本实施例中假设标准库只包括部件A、B、C、D、E),贮存于计算机中;
计算机根据不同生产厂商所生产设备的不同控制系统,取得相机与生产进程同步的触发与控制信号,启动所述工业相机拍摄在线运行的包装袋的图像,并将获取的包装袋图像, 贮存于计算机中。计算机对所拍摄的图像通过边缘提取、平滑去噪、二值化处理、傅利叶变换等算法进行图像处理,使图像更清晰,更符合包装袋中各部件的真实情况。同时,计算机通过模式识别算法处理,识别出包装袋中的各个部件。上述图像处理过程以及模式识别处理过程中所采用的算法均为现有技术中的常规算法。计算机对所述医疗产品包装袋中是否存在异物进行检测。该检测是将识别出的包装袋中的各个部件与标准库进行比较,检测该包装袋中任何一个部件是否都在标准库中有相应的编号存在。由于所检测的医疗产品包装袋中有A、B、C、D、E、F共6个部件。首先判断第一个部件A是否在标准库中存在,如存在则继续判断第二个部件B是否在标准库中存在,以此类推,直到所有部件均已遍历(从图1和图2的对比可知,部件在包装袋中所处位置的不同并不影响识别结果)。只要检测出任何一个部件在标准库中不存在(图2中的部件F是标准库中没有的部件),则该医疗产品包装袋中存在异物即部件F,为不合格品(或称为可再加工次品)。计算机通过友好人机界面在图像中提示不合格品情况,并给予声、光报警提示,对该类可再加工次品进行记录、分类、统计入库,从指定的出料口进行剔除,等待进行二次加工,去除包装中的异物。以上所有实施例中使用的图像采集设备(相机、照射光源、电源、图像采集卡等)及存贮设备(硬盘、光盘、软盘等)、图像处理设备(图像处理器的硬件及软件)、图像显示设备 (硬件及软件)、报警装置以及上述各部分的控制系统(硬件及软件)皆采用已有技术设计制作或直接采用相关市售产品。以上所述的本发明的工艺步骤示于图3。最后需要注意的是,以上所述的仅是本发明的优选实施方式,本发明不限于以上实施例。可以理解,本领域技术人员在不脱离本发明的精神和构思的前提下直接导出或联想到的其他改进和变化,均应认为包含在本发明的保护范围之内。
权利要求
1.一种机器视觉系统对医疗产品包装异物的自动检测方法,其特征在于包括以下步骤(1)将已包装的医疗产品包装袋固定在工装条夹具上,使工装条夹具在线运行,将拍摄相机固定在在线运行的工装条夹具一侧;根据待检测医疗产品包装袋的尺寸大小及朝向, 选择镜头的焦距,调整拍摄相机的拍摄角度、放大倍数、拍摄距离、光圈大小、曝光时间,以便获取清晰的拍摄图像;(2)启动所述工业相机,预拍摄一无异物的医疗产品包装袋的图像,并将拍摄的图像传输至计算机,计算机通过图像算法处理,提取医疗产品包装袋的图像,并通过模式识别算法处理,识别出包装袋中的各个部件,将各部件分别编号作为标准库,贮存于计算机中;(3)将医疗产品包装袋图像中有无标准库中没有的部件设为检测参量;(4)计算机取得相机与生产进程同步的触发与控制信号,由外部触发与控制信号启动所述相机实时拍摄在线运行医疗产品包装袋的图像,并将拍摄的图像传输至计算机供检测;(5)计算机通过图像算法处理,提取医疗产品包装袋的图像;并通过模式识别算法处理,识别出包装袋中的各个部件;(6)计算机对所述医疗产品包装袋中是否存在异物进行检测;该检测是将识别出的包装袋中的各个部件与标准库进行比较,检测该包装袋中任何一个部件是否都在标准库中有相应的编号存在;(7)通过包装异物检测判断该医疗产品包装是属于合格品还是可再加工次品,通过外部触发与控制信号将可再加工次品从指定的出料口进行剔除。
2.根据权利要求1所述机器视觉系统对医疗产品包装异物的自动检测方法,其特征在于对所述第(7)步,具体按下述步骤进行包装异物的判断和分检(8)判断第一个部件在标准库中是否有相应的编号存在,如存在则转向第(9)步,若不存在则转向第(12)步;(9)判断下一个尚未经过判断的部件;(10)重复第(8)、第(9)步,直到所有部件均已遍历;(11)若所有部件在标准库中均有相应的编号存在,则作为合格品进行分拣;(12)作为可再加工次品,进行二次加工,去除包装中的异物。
3.根据权利要求1所述机器视觉系统对医疗产品包装异物的自动检测方法,其特征在于对所述第(7)步,当检测到产品为可再加工次品时,计算机将通过人机界面进行图像提示,并启动报警装置。
全文摘要
本发明提供一种机器视觉系统对医疗产品包装异物的自动检测方法,预拍摄一无异物的医疗产品包装袋的图像,识别出包装袋中的各个部件,将各部件分别编号作为标准库;将医疗产品包装袋图像中有无标准库中没有的部件设为检测参量;由外部触发与控制信号启动所述相机实时拍摄在线运行包装袋的图像,并将拍摄的图像传输至计算机供检测,计算机通过图像算法、模式识别算法处理,识别出包装袋中的各个部件;检测该包装袋中任何一个部件是否都在标准库中有相应的编号存在,判断该产品是属于合格品还是可再加工次品,通过外部触发与控制信号将可再加工次品从指定出料口进行剔除。本发明对医疗产品包装异物的检测精度高、速度快,可以有效保证产品的合格率。
文档编号G01N21/89GK102305797SQ20111010965
公开日2012年1月4日 申请日期2011年4月29日 优先权日2011年4月29日
发明者董仲伟 申请人:无锡众望四维科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1