专利名称:基于应变监测识别受损索支座广义位移的递进式方法
技术领域:
斜拉桥、悬索桥、桁架结构等结构有一个共同点,就是它们有许多承受拉伸载荷的部件,如斜拉索、主缆、吊索、拉杆等等,该类结构的共同点是以索、缆或仅承受拉伸载荷的杆件为支承部件,为方便起见本发明将该类结构表述为“索结构”。在索结构的服役过程中, 索结构的支承系统(指所有承载索、及所有起支承作用的仅承受拉伸载荷的杆件,为方便起见,本专利将该类结构的全部支承部件统一称为“索系统”,但实际上索系统不仅仅指支承索,也包括仅承受拉伸载荷的杆件)会受损,同时索结构的支座也可能出现广义位移(例如支座广义位移指支座沿X、Y、Z轴的线位移及支座绕Χ、Υ、Ζ轴的角位移;对应于支座广义位移,支座广义坐标指支座关于X、Y、Z轴的坐标及支座关于X、Y、Z轴的角坐标),这些变化对索结构的安全是一种威胁,本发明基于结构健康监测技术,基于应变监测、采用递进式方法来识别支座广义位移和索结构的索系统中的受损索,属工程结构健康监测领域。
背景技术:
支座广义位移对索结构安全是一项重大威胁,同样的,索系统通常是索结构的关键组成部分,它的失效常常带来整个结构的失效,基于结构健康监测技术来识别支座广义位移和索结构的索系统中的受损索是一种极具潜力的方法。当支座出现广义位移时、或索系统的健康状态发生变化时、或者两种情况同时发生时,会引起结构的可测量参数的变化, 例如会引起索力的变化,会影响索结构的变形或应变,会影响索结构的形状或空间坐标,会引起过索结构的每一点的任意假想直线的角度坐标的变化(例如结构表面任意一点的切平面中的任意一根过该点的直线的角度坐标的变化,或者结构表面任意一点的法线的角度坐标的变化),所有的这些变化都包含了索系统的健康状态信息,实际上这些可测量参数的变化包含了索系统的健康状态信息、包含了支座广义位移信息,也就是说可以利用结构的可测量参数来识别支座广义位移和受损索。为了能对索结构的索系统的健康状态和支座广义位移有可靠的监测和判断,必须有一个能够合理有效的建立索结构的可测量参数的变化同支座广义位移和索系统中所有索的健康状况间的关系的方法,基于该方法建立的健康监测系统可以给出更可信的支座广义位移评估和索系统的健康评估。
发明内容
技术问题本发明公开了一种基于应变监测的、采用递进式方法的、能够合理有效地识别支座广义位移和受损索的健康监测方法。技术方案设索的数量和支座广义位移分量的数量之和为见为叙述方便起见,本发明统一称被评估的索和支座广义位移为“被评估对象”,给被评估对象连续编号,本发明用用变量J·表示这一编号,J‘=l,2,3,···,见因此可以说有#个被评估对象。本发明由两大部分组成。分别是一、建立被评估对象健康监测系统所需的知识库和参量的方法、基于知识库(含参量)和实测索结构的应变(或变形)的被评估对象健康状态评估方法;二、健康监测系统的软件和硬件部分。本发明的第一部分建立用于被评估对象健康监测的知识库和参量的方法。可按如下步骤依次循环往复地、递进式进行
第一步每一次循环开始时,首先需要建立或已建立本次循环开始时的被评估对象初始健康状态向量</(i=l,2,3,…)、建立索结构的初始力学计算基准模型Α。(例如有限元基准模型,在本发明中A。是不变的)、建立索结构的力学计算基准模型Ai (例如有限元基准模型,i=l,2,3,…)。字母i除了明显地表示步骤编号的地方外,在本发明中字母i仅表示循环次数,即第i次循环。第i次循环开始时需要的索结构“初始健康状态向量dj” (如式(1)所示),用dj 表示第i次循环开始时索结构(用力学计算基准模型Ai表示)的索结构的初始健康状态。
权利要求
1. 一种基于应变监测识别受损索支座广义位移的递进式方法,其特征在于所述方法包括a.为叙述方便起见,统一称被评估的支承索和支座广义位移分量为被评估对象,设被评估的支承索的数量和支座广义位移分量的数量之和为N,即被评估对象的数量为N ;确定被评估对象的编号规则,按此规则将索结构中所有的被评估对象编号,该编号在后续步骤中将用于生成向量和矩阵;用变量j表示这一编号,j = 1,2,3,... ,N;b.确定指定的被监测点,被监测点即表征结构应变信息的所有指定点,并给所有指定点编号;确定被监测点的被监测的应变方向,并给所有指定的被监测应变编号;“被监测应变编号”在后续步骤中将用于生成向量和矩阵;“结构的全部被监测的应变数据”由上述所有被监测应变组成;本方法将“结构的被监测的应变数据”简称为“被监测量”;所有被监测量的数量之和不得小于N;c.利用被评估对象的无损检测数据等能够表达被评估对象的健康状态的数据建立被评估对象初始健康状态向量f。;如果没有被评估对象的无损检测数据时,向量f。的各元素数值取0 ;向量f。的元素的编号规则和被评估对象的编号规则相同;本发明用i表示循环次数,i = 1,2,3,......;这里是第一次循环,i取1,即这里建立的初始健康状态向量屮。可以具体化为d1。;d.在建立初始健康状态向量d1。的同时,直接测量计算得到索结构的所有被监测量的初始数值,组成被监测量的初始数值向量Citj ;这里是第一次循环,i取1,即这里建立的被监测量的初始数值向量Citj可以具体化为C1。;在实测得到被监测量初始数值向量C1。的同时, 实测得到索结构的所有索的初始索力数据、结构的初始几何数据和初始索结构支座广义坐标数据;支座广义坐标包括线量和角量两种;e.根据索结构的设计图、竣工图和索结构的实测数据、索的无损检测数据和初始索结构支座广义坐标数据建立索结构的力学计算基准模型Ai ;这里是第一次循环,i取1,即这里建立的索结构的力学计算基准模型Ai可以具体化为A1 ;f.在力学计算基准模型Ai的基础上进行若干次力学计算,通过计算获得“单位损伤被监测量数值变化矩阵ACi"和“名义单位损伤向量Diu”,其中i表示循环次数,后面i及上标i都表示循环次数,i = l,2,3,......;g.实测得到索结构的所有指定被监测量的当前实测数值,组成“被监测量的当前数值向量Ci";给本步及本步之前出现的所有向量的元素编号时,应使用同一编号规则,这样可以保证本步及本步之前出现的各向量的、编号相同的元素,表示同一被监测量的、对应于该元素所属向量所定义的相关信息;h.定义当前名义损伤向量< 和当前实际损伤向量dS两个损伤向量的元素个数等于被评估对象的数量,当前名义损伤向量f。的元素数值代表对应被评估对象的当前名义损伤程度或支座广义位移,当前实际损伤向量Cli的元素数值代表对应被评估对象的当前实际损伤程度或支座广义位移,两个损伤向量的元素的元素个数等于被评估对象的数量,两个损伤向量的元素和被评估对象之间是一一对应关系,两个损伤向量的元素的编号规则和被评估对象的编号规则相同; .依据“被监测量的当前数值向量Ci"同“被监测量的初始数值向量ci。”、“单位损伤被监测量数值变化矩阵ACi"和“当前名义损伤向量屮。”间存在的近似线性关系,该近似线性关系可表达为式1,式1中除C^外的其它量均为已知,求解式1就可以算出当前名义损伤向量屮。;
2.根据权利要求1所述的基于应变监测识别受损索支座广义位移的递进式方法,其特征在于在步骤f中,在力学计算基准模型Ai的基础上进行若干次力学计算,通过计算获得“单位损伤被监测量数值变化矩阵ACi"和“名义单位损伤向量Diu”的具体方法为fl.在索结构的力学计算基准模型Ai的基础上进行若干次力学计算,计算次数数值上等于N ;依据被评估对象的编号规则,依次进行计算;每一次计算假设只有一个被评估对象在原有损伤或广义位移的基础上再增加单位损伤或单位广义位移,具体的,如果该被评估对象是索系统中的一根支承索,那么就假设该支承索再增加单位损伤,如果该被评估对象是一个支座的一个方向的广义位移分量,就假设该支座在该广义位移方向再增加单位广义位移,每一次计算中再增加单位损伤或单位广义位移的被评估对象不同于其它次计算中再增加单位损伤或单位广义位移的被评估对象,用“名义单位损伤向量Di/记录记录所有假定的再增加的单位损伤或单位广义位移,其中i表示第i次循环,每一次计算都利用力学方法计算索结构的所有被监测量的当前计算值,每一次计算得到的所有被监测量的当前计算值组成一个被监测量计算当前数值向量;f2.每一次计算得到的被监测量计算当前数值向量减去被监测量初始数值向量后再除以该次计算所假设的单位损伤或单位广义位移数值,得到一个被监测量变化向量,有N个被评估对象就有N个被监测量变化向量;f3.由这N个被监测量变化向量按照N个被评估对象的编号规则,依次组成有N列的索结构被监测量单位变化矩阵Δ C全文摘要
基于应变监测识别受损索支座广义位移的递进式方法基于应变监测,考虑到了被监测量的当前数值向量同被监测量的初始数值向量、单位损伤被监测量变化矩阵和当前名义损伤向量间的线性关系是近似的,为克服此缺陷,本发明给出了使用线性关系分段逼近非线性关系的方法,将大区间分割成连续的一个个小区间,在每一个小区间内上述线性关系都是足够准确的,在每一个小区间内可以利用多目标优化算法等合适的算法快速识别出支座广义位移和受损索。
文档编号G01B21/02GK102323086SQ20111014308
公开日2012年1月18日 申请日期2011年5月31日 优先权日2011年5月31日
发明者韩佳邑, 韩玉林 申请人:东南大学