一种热磁成像方法及其装置的制作方法

文档序号:5945786阅读:251来源:国知局
专利名称:一种热磁成像方法及其装置的制作方法
技术领域
本发明涉及热成像技术领域,提供了一种热磁成像方法及其装置。
背景技术
目前现有的热成像仪的探测焦平面处理的原始数字图像经过转换后,由于存在混叠现象难免产生模糊、边缘锐化差、锯齿形凸显。图像锐化的主要目的在于补偿图像轮廓、 突出图像的边缘信息以使图像显得更为清晰,从而符合人类的视觉惰性观察习惯。图像锐化的实质是增强原图像的高频分量。常规的锐化算法以此为依据,对整幅图像进行高频增强。这就产生了一个问题由于退化图像的高频分量既包含有效信息,又含有随机噪声,整体锐化的做法在增强原始信息的同时也放大了高频噪声,表现为图像经过锐化后出现明显的毛刺噪声。整体锐化之所以导致噪声放大,原因在于将所有像素高频分量不加区分地视为图像的轮廓和边缘,而忽略了其中也包含了噪声。目前现有的热成像仪的探测器感应出的热电信号中有一部份的热磁红外交变小信号更无法进行放大识别提取,这部份的热磁红外交变信号都是判断目标与背景介质的细节,微弱信号通过锗、硒玻璃物镜辐射到vox氧化钒焦平面阵列探测器上的,这些微弱小信号中存在着一定的低频、中频、高频热磁红外交变信号,尤其是小于17um以下的物标,这种信号若能拾取、进行有效放大与整形便可在恶劣环境状态下提高空间分辨率与温域背景补差效果,提高探测器的透雾、透尘能力,一般可提高15 20%的效果。红外探测器是红外成像系统的关键部件,但红外图像的非均匀性直接影响系统的质量。因此解决非均匀性校正成了头等重要的问题。尽管世界范围内的FPA非均匀性校正问题的研究工作、技术途径多种多样,但目前在商业上有推广价值的和军事上能够实用的还是两点法或扩展两点法和其它非线性校正方法,如神经网络校正法、时域高通滤波器法。

发明内容
本发明的目的在于针对现有热成像整体锐化噪声大,图像经过锐化后出现明显的毛刺噪声等问题,提供了一种运用同极性相位背景补差技术,对热信号与磁信号的进行叠加,增强了空间分辨率以及对目标像元的边缘锐化、非均匀校正、自动增益控制的自适应能力的热磁成像方法及其装置。本发明为实现上述目的采用以下技术方案
一种热磁成像方法,步骤包括
(1)被判断的物标与空气介质背景补差的热红外辐射信号与热磁交变信号,通过锗、硒玻璃物镜辐射到红外热敏探测器,红外热敏探测器将感应到的热红外辐射信号和热磁信号进行转换,形成模拟信号;
(2)前述信号进入A/D转换器进行模数转换;
(3)磁信号增强模块将步骤(2)中输出的数字信号,通过同极性相位叠加、拉普拉斯滤波变换、中值滤波加权进行降噪处理;
(4)将前述经过降噪处理后的信号通过LC耦合振荡调制以获取热红外视频中的高频 (波长12 14. 5um)、中频(波长9. 5 12um)、低频(波长7. 2 9. 5um)磁信号,再将这些磁信号进行反相放大、鉴相处理,并与步骤(2)输出的信号进行同极性视频信号二次叠加、 整形放大,输出增强后的视频信号;
(5)前述信号进入边缘锐化控制模块,先使用边缘检测算法检出图像的所有边缘信息, 最后对认定为边缘的像素进行微积分卷积码冗余度差错控制锐化处理,输出锐化后的视频信号;
(6)前述信号进入D/A转换器进行数模转换;
(7)运算放大器将模拟信号进行相位判别运算,同极性信号进行放大,最终输出增强后的视频信号。进一步的说,所述磁信号增强模块对步骤(2)输出的信号进行饱和度的抽样、对比,识别出接收到的热磁信号强弱,当红外热敏探测器探测到物标与空气介质中的热敏感应信号过强时,由磁信号增强模块输出一个门槛箝位控制电压,由正负反馈电路分别同时抑制探测器焦平面内部的阵列光伏二极管的前端感应电压。这样由电子快门自动增益方式控制使停顿时间降到15毫秒(m/s)内,满足视觉惰性达到视觉连续要求O 25帧/秒)。这种处理方式既避免了因外界复杂环境因素的非均匀信号过强造成烧坏焦平面阵列探测器的情况,同时保证了视频的连续性。进一步的说,所述步骤(5)边缘锐化控制模块先用导数方法检出图像梯度信息,进而设定门限,将幅值最大的一部分梯度位置视为图像的边缘和轮廓,再以梯度二值化信息为依据,对原始图像进行两种高频分量增强,最后通过边缘锐化算法增强图像边缘和轮廓, 输出最终的图像信号。一种热磁成像装置,包括红外热敏探测器、A/D转换器、D/A转换器、运算放大器, 其特征在于,还包括磁信号增强模块、边缘锐化控制模块,所述红外热敏探测器、A/D转换器、磁信号增强模块、边缘锐化控制模块、D/A转换器、运算放大器顺序连接。进一步的说,所述磁信号增强模块对红外热敏探测器输出的信号进行饱和度的抽样、对比,识别出接收到的热磁信号强弱,当红外热敏探测器探测到物标与空气介质中的热敏感应信号过强时,由磁信号增强模块输出一个门槛箝位控制电压,由正负反馈电路分别同时抑制探测器焦平面内部的阵列光伏二极管的前端感应电压。进一步的说,所述磁信号增强模块将A/D转换器输出的数字信号,进行同极性相位叠加、拉普拉斯滤波变换、中值滤波加权处理以达到降噪效果,随后再将降噪处理后的信号进行LC耦合振荡调制以获取热红外视频中的高频、中频、低频,再将这些磁信号进行反相放大、鉴相处理,并与A/D转换器输出的信号进行同极性视频信号二次叠加、整形放大。本发明具有以下有益效果
一、本发明运用同极性相位背景补差技术,进行热信号与磁信号的叠加,增强了空间分辨率以及对目标像元的边缘锐化、非均匀校正、自动增益控制的自适应能力,可用于全天时全天候侦察,有效提高侦察部(分)队的侦察作战能力。二、本发明通过热磁信号增强模块还原出微弱的视频分量中的热磁交变信号,提高探测器的空间与温差背景的分辨率。在极限范围内提高了探测器在恶劣环境中的宽动态透雾、透尘功能,使发现目标辨认距离得到了提高。三、本发明边缘锐化控制模块使用边缘检测算法检出图像的所有边缘信息,所在的相位与极性信息进而设定阈值判决哪些是真正的边缘,哪些应被视为噪声信息,最后对认定为边缘的像素进行微积分卷积码冗余度差错控制锐化,从而认定为边缘的像素则保持原状达到边缘清淅处理。该算法形成的电路模块有很强的增强图像边缘和轮廓的能力,同时不会对图像产生噪声失真。四、本发明非均匀校正自动控制技术的使用避免了因外界复杂环境因素的非均匀信号过强造成烧坏焦平面阵列探测器、有效克服了环境因素造成焦平面探测器出现死像元 (盲元),提高了焦平面探测器的寿命,有效避免了强光、强磁环境下对探测器的损伤。


图I为本发明的整体方法流程图2为本发明的锐化控制电路模块实现逻辑原理;
图3为现有探测器中微弱的热磁信号提电路;
图4为本发明探测器中微弱的热磁信号提与电路;
图5为本发明非均匀校正自动控制电路图。
具体实施例方式
热磁成像仪在原有的红外热成像技术基础上,运用同极性相位背景补差技术,进行热信号与磁信号的叠加,增强了空间分辨率以及对目标像元的边缘锐化、非均匀校正、自动增益控制的自适应能力,可用于全天时全天候侦察,有效提高侦察部(分)队的侦察作战能力。一种热磁成像方法,步骤包括
(1)被判断的物标与空气介质背景补差的热红外辐射信号与热磁交变信号,通过锗、硒玻璃物镜辐射到红外热敏探测器,红外热敏探测器将感应到的热红外辐射信号和热磁信号进行转换,形成模拟信号;
(2)前述信号进入A/D转换器进行模数转换;
(3)磁信号增强模块将步骤(2)中输出的数字信号,通过同极性相位叠加、拉普拉斯滤波变换、中值滤波加权进行降噪处理;
(4)将前述经过降噪处理后的信号通过LC耦合振荡调制以获取热红外视频中的高频 (波长12 14. 5um)、中频(波长9. 5 12um)、低频(波长7. 2 9. 5um)磁信号,再将这些磁信号进行反相放大、鉴相处理,并与步骤(2)输出的信号进行同极性视频信号二次叠加、 整形放大,输出增强后的视频信号;
(5)前述信号进入边缘锐化控制模块,先使用边缘检测算法检出图像的所有边缘信息, 最后对认定为边缘的像素进行微积分卷积码冗余度差错控制锐化处理,输出锐化后的视频信号;
(6)前述信号进入D/A转换器进行数模转换;
(7)运算放大器将模拟信号进行相位判别运算,同极性信号进行放大,最终输出增强后的视频信号。进一步的说,所述磁信号增强模块对步骤(2)输出的信号进行饱和度的抽样、对比,识别出接收到的热磁信号强弱,当红外热敏探测器探测到物标与空气介质中的热敏感应信号过强时,由磁信号增强模块输出一个门槛箝位控制电压,由正负反馈电路分别同时抑制探测器焦平面内部的阵列光伏二极管的前端感应电压。这样由电子快门自动增益方式控制使停顿时间降到15毫秒(m/s)内,满足视觉惰性达到视觉连续要求O 25帧/秒)。这种处理方式既避免了因外界复杂环境因素的非均匀信号过强造成烧坏焦平面阵列探测器的情况,同时保证了视频的连续性。进一步的说,所述步骤(5)边缘锐化控制模块先用导数方法检出图像梯度信息,进而设定门限,将幅值最大的一部分梯度位置视为图像的边缘和轮廓,再以梯度二值化信息为依据,对原始图像进行两种高频分量增强,最后通过边缘锐化算法增强图像边缘和轮廓, 输出最终的图像信号。一种热磁成像装置,包括红外热敏探测器、A/D转换器、D/A转换器、运算放大器, 其特征在于,还包括磁信号增强模块、边缘锐化控制模块,所述红外热敏探测器、A/D转换器、磁信号增强模块、边缘锐化控制模块、D/A转换器、运算放大器顺序连接。进一步的说,所述磁信号增强模块对红外热敏探测器输出的信号进行饱和度的抽样、对比,识别出接收到的热磁信号强弱,当红外热敏探测器探测到物标与空气介质中的热敏感应信号过强时,由磁信号增强模块输出一个门槛箝位控制电压,由正负反馈电路分别同时抑制探测器焦平面内部的阵列光伏二极管的前端感应电压。进一步的说,所述磁信号增强模块将A/D转换器输出的数字信号,进行同极性相位叠加、拉普拉斯滤波变换、中值滤波加权处理以达到降噪效果,随后再将降噪处理后的信号进行LC耦合振荡调制以获取热红外视频中的高频、中频、低频,再将这些磁信号进行反相放大、鉴相处理,并与A/D转换器输出的信号进行同极性视频信号二次叠加、整形放大。边缘锐化处理
在拉普拉斯算子方式的基础上,采用了梯度微积分等效面积同极性相位的像元叠加, 同时采用了中值加权滤波电路。有效克服了在边缘锐化的同时,降低了噪声系数与边缘锯齿波的凸显。边缘检测图像锐化算法模块原理图像锐化是一种补偿轮廓、突出边缘信息以使图像更为清晰的处理方法。锐化的目标实质增强原始图像的高频成分。常规的锐化算法对整幅图像进行高频增强,结果呈现明显噪声。为此,在对锐化原理进行深入研究处理的基础上,采用边缘检测算法检出边缘高频信息,然后根据检出的边缘对图像进行高频增强的方法,有效地解决了图像锐化后的噪声问题,从而提高图像清晰度。问题提出
探测焦平面处理的原始数字图像经过转换后,由于存在混叠现象难免产生模糊、边缘锐化差、锯齿形凸显。图像锐化的主要目的在于补偿图像轮廓、突出图像的边缘信息以使图像显得更为清晰,从而符合人类的视觉惰性观察习惯。图像锐化的实质是增强原图像的高频分量。常规的锐化算法以此为依据,对整幅图像进行高频增强。这就产生了一个问题由于退化图像的高频分量既包含有效信息,又含有随机噪声,整体锐化的做法在增强原始信息的同时也放大了高频噪声,表现为图像经过锐化后出现明显的毛刺噪声。为此本电路是一种基于边缘检测的图像锐化方法,在实现锐化的同时,增加了一个特殊有效方案避免了放大噪声的问题。现有整体锐化(锐化算法方程)相对加强高频成分的方法在空间域上较常用的时反锐化掩模法。该方法在计算机中实现起来很方便,其基本算法如下
g (x,y)=f (x,y)+C[f (x,y)-l (x,y)](I)
其中f (X,y)为原始图像;I (X,y)是用人为方法模糊f (X,y)所得到的图像;C是常数,用以控制图像的锐化程度。式(I)中第二项的差值消除了原始图像的大部分低频成分, 而较完整地保留了高频部分。因此,在第一项上叠加此差值的C倍,将增强图像的高频分量,而低频部分几乎不受影响。在实现时,I (x,y)可用简单局部平均法计算,领域尺寸取3X3窗口,掩模为
权利要求
1.一种热磁成像方法,步骤包括(1)被判断的物标与空气介质背景补差的热红外辐射信号与热磁交变信号,通过锗、硒玻璃物镜辐射到红外热敏探测器,红外热敏探测器将感应到的热红外辐射信号和热磁信号进行转换,形成模拟信号;(2)前述信号进入A/D转换器进行模数转换;(3)磁信号增强模块将步骤(2)中输出的数字信号,通过同极性相位叠加、拉普拉斯滤波变换、中值滤波加权进行降噪处理;(4)将前述经过降噪处理后的信号通过LC耦合振荡调制以获取热红外视频中的高频、 中频、低频磁信号,再将这些磁信号进行反相放大、鉴相处理,并与步骤(2)输出的信号进行同极性视频信号二次叠加、整形放大,输出增强后的视频信号;(5)前述信号进入边缘锐化控制模块,先使用边缘检测算法检出图像的所有边缘信息, 最后对认定为边缘的像素进行微积分卷积码冗余度差错控制锐化处理,输出锐化后的视频信号;(6)前述信号进入D/A转换器进行数模转换;(7)运算放大器将模拟信号进行相位判别运算,同极性信号进行放大,最终输出增强后的视频信号。
2.根据权利要求I所述的一种热磁成像方法,其特征在于磁信号增强模块对步骤(2) 输出的信号进行饱和度的抽样、对比,识别出接收到的热磁信号强弱,当红外热敏探测器探测到物标与空气介质中的热敏感应信号过强时,由磁信号增强模块输出一个门槛箝位控制电压,由正负反馈电路分别同时抑制探测器焦平面内部的阵列光伏二极管的前端感应电压。
3.根据权利要求I所述的一种热磁成像方法,其特征在于所述步骤(5)边缘锐化控制模块先用导数方法检出图像梯度信息,进而设定门限,将幅值最大的一部分梯度位置视为图像的边缘和轮廓,再以梯度二值化信息为依据,对原始图像进行两种高频分量增强,最后通过边缘锐化算法增强图像边缘和轮廓,输出最终的图像信号。
4.一种热磁成像装置,包括红外热敏探测器、A/D转换器、D/A转换器、运算放大器,其特征在于,还包括磁信号增强模块、边缘锐化控制模块,所述红外热敏探测器、A/D转换器、 磁信号增强模块、边缘锐化控制模块、D/A转换器、运算放大器顺序连接。
5.根据权利要求4所述的一种热磁成像装置,其特征在于所述磁信号增强模块对红外热敏探测器输出的信号进行饱和度的抽样、对比,识别出接收到的热磁信号强弱,当红外热敏探测器探测到物标与空气介质中的热敏感应信号过强时,由磁信号增强模块输出一个门槛箝位控制电压,由正负反馈电路分别同时抑制探测器焦平面内部的阵列光伏二极管的前端感应电压。
6.根据权利要求4所述的一种热磁成像装置,其特征在于所述磁信号增强模块将A/D 转换器输出的数字信号,进行同极性相位叠加、拉普拉斯滤波变换、中值滤波加权处理以达到降噪效果,随后再将降噪处理后的信号进行LC耦合振荡调制以获取热红外视频中的高频、中频、低频,再将这些磁信号进行反相放大、鉴相处理,并与A/D转换器输出的信号进行同极性视频信号二次叠加、整形放大。
7.根据权利要求4所述的一种热磁成像装置,其特征在于所述边缘锐化控制模块先用导数方法检出磁信号增强模块输出的图像梯度信息,进而设定门限,将幅值最大的一部分梯度位置视为图像的边缘和轮廓,再以梯度二值化信息为依据,对原始图像进行两种高频分量增强,最后通过边缘锐化算法增强图像边缘和轮廓,输出最终的图像信号。
全文摘要
本发明涉及热成像技术领域,提供了一种热磁成像方法及装置。该装置包括顺序连接的红外热敏探测器、A/D转换器、磁信号增强模块、边缘锐化控制模块、D/A转换器、运算放大器,该装置在热磁成像在原有的红外热成像技术基础上,运用同极性相位背景补差技术,进行热信号与磁信号的叠加,增强了空间分辨率以及对目标像元的边缘锐化、非均匀校正、自动增益控制的自适应能力,可用作为夜视仪器,用于在夜间或恶劣气候条件下的侦察和监视;利用热磁成像仪作为跟踪、火控、制导等传感器;用于车辆、舰船、飞机等导航设备;民用方面,在工业上可用于无损探测,在医学上可用于诊断某些疾病。
文档编号G01J5/02GK102607715SQ20121010436
公开日2012年7月25日 申请日期2012年4月11日 优先权日2012年4月11日
发明者张蔚楠, 李东方, 李建友, 胡海, 陈昌志 申请人:四川省众望科希盟科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1