专利名称:一种流体流速流量测量装置的制作方法
技术领域:
本实用新型涉及流体流速流量測量技木,尤其涉及ー种流体流速流量測量装置。
背景技术:
管道中的流体广泛存在于石油化工、食品制药、冶金、公用工程和环保等行业部门,其流速与流量的在线测量对于エ业生产过程中生产操作、可靠运行和质量控制等具有重要的意义。随着电子技术、材料和加工技术的飞速发展,以流程エ业为先导的各エ业部门发展迅速,エ业装置小型化、精细化趋势日益明显,エ业生产对小流量检测的要求也日益提高。现有的流速流量测量仪表对エ业生产过程中10毫米以上管径中的导电流体的流速、流量的测量已经较为成熟,但对于毫米级及以下管径中的导电流体流速流量測量问题,仍然缺乏相关的检测手段。电容耦合式非接触电导测量技术是ー种新型电导测量技术。由于电极不与被测液体直接接触,因此不存在传统接触式电导测量中的电化学腐蚀和电极极化效应等问题,具有广阔的エ业实际应用需求。然而,目前该技术的研究与应用主要局限于分析化学等领域中毛细管尺度及以下管径的离子浓度检测,在エ业过程中毫米级管径中的导电流体流速流量测量领域基本上属于空白。本实用新型将电容耦合式非接触测电导測量技术应用于エ业过程中导电流体流速流量测量领域,设计了ー种流体流速流量測量装置及方法。相应装置具有结构简单、非接触、无压カ损耗、成本低和应用范围广等优点,为测量毫米级管道内流体流速流量提供了一条有效的新途径。
发明内容本实用新型的目的克服现有技术的不足,提供一种稳定、可靠的流体流速流量测
量装置。流体流速流量測量装置包括交流激励源、三电极非接触式电导传感器、信号处理模块、数据采集模块、微型计算机,三电极非接触式电导传感器由第一电子开关、第二电子开关、第三电子开关、第四电子开关、绝缘測量管道、第一电极、第一电感模块、第三电感模块、第二电极、第三电极、第二电感模块构成;在绝缘测量管道的外壁等间距安装有第一电极、第二电极和第三电极,第一电极与第一电感模块一端相连,第二电极与第三电感模块ー端相连,第三电极与第二电感模块一端相连,第一电感模块另一端与第一电子开关一端相连,第三电感模块另一端与第二电子开关一端、第三电子开关一端相连,第二电感模块另ー端与第四电子开关一端相连,第一电子开关另一端、第二电子开关另一端与交流激励源相连,第三电子开关另一端与信号处理模块、数据采集模块、微型计算机顺次相连,第四电子开关另一端与信号处理模块、数据采集模块、微型计算机顺次相连。本实用新型与现有技术相比具有有益效果I)三电极非接触式电导传感器中的第一电子开关、第二电子开关、第三电子开关、第四电子开关的成对使用,保证了检测到的上游和下游的电导信号具有良好的独立性,不存在信号耦合的情况,符合相关流速流量測量原理应用的要求。同吋,由于上游传感器和下游传感器共用第二电极,精简了相应的电极个数,使得装置得到了简化;2)測量方式为非接触式,对被测介质流动特性无影响,不会导致压力损失和管道阻塞,同时,该方式也适用于非洁净流体的測量;3)三个电极上分别串联ー个电感模块,用以分别抵消管道内导电流体、绝缘测量管道和金属电极形成的相应耦合电容,即使相应的耦合电容间存在微小的差别,但由于这三组电感模块可以独立调整,使得这种消除了耦合电容对测量范围和測量精度的不利影响、扩大了測量装置适用的管道尺寸的方法易于实现,有效提高了装置的精确性和可调性。
图I是流体流速流量測量装置的结构示意图;图2是本实用新型的三电极非接触式电导传感器等效电路图;图3是本实用新型的三电极非接触式电导传感器在串联谐振状态时的简化等效电路图;图中交流激励源I、第一电子开关2、第二电子开关3、第三电子开关4、第四电子开关5、信号处理模块6、数据采集模块7、微型计算机8、绝缘测量管道9、第一电极10、第一电感模块11、第三电感模块12、第二电极13、第三电极14、第二电感模块15。
具体实施方式
如图I所示,流体流速流量測量装置包括交流激励源I、三电极非接触式电导传感器、信号处理模块6、数据采集模块7、微型计算机8,三电极非接触式电导传感器由第一电子开关2、第二电子开关3、第三电子开关4、第四电子开关5、绝缘测量管道9、第一电极10、第一电感模块11、第三电感模块12、第二电极13、第三电极14、第二电感模块15构成;在绝缘测量管道9的外壁等间距安装有第一电极10、第二电极13和第三电极14,第一电极10与第一电感模块11 一端相连,第二电极13与第三电感模块12 —端相连,第三电极14与第ニ电感模块15 —端相连,第一电感模块11另一端与第一电子开关2 —端相连,第三电感模块12另一端与第二电子开关3 —端、第三电子开关4 一端相连,第二电感模块15另一端与第四电子开关5 —端相连,第一电子开关2另一端、第二电子开关3另一端与交流激励源I相连,第三电子开关4另一端与信号处理模块6、数据采集模块7、微型计算机8顺次相连,第四电子开关5另一端与信号处理模块6、数据采集模块7、微型计算机8顺次相连。利用该装置和方法測量流体流速流量流程为用设定频率的脉冲信号激励两组开关交互闭合,当第一电子开关2和第三电子开关4闭合时,第二电子开关3和第四电子开关5断开,交流激励源I输出频率为谐振频率的交流激励信号,交流激励信号通过第一电子开关2和第一电感模块11后施加到第一电极10上,再通过第二电极13、第三电感模块12和第三电子开关4得到直接反映流体流动的ー组上游电导信号,此后,第二电子开关3和第四电子开关5闭合,第一电子开关2和第三电子开关4断开,交流激励信号通过第二电子开关3和第三电感模块12施加到第二电极13上,再通过第三电极14、第二电感模块15和第四电子开关5得到直接反映流体流动的ー组下游电导信号,上游电导信号和下游电导信号是相互独立的,两组独立电导信号经过信号处理模块6处理后,通过数据采集模块7输出到微型计算机8上进行互相关运算求出渡越时间并进ー步求出流速和流量。流体流速流量測量方法的步骤如下I)三电极非接触式电导传感器中的第一电子开关2、第二电子开关3、第三电子开关4、第四电子开关5呈成对工作状态,第一电子开关2和第三电子开关4作为ー个工作组,第二电子开关3和第四电子开关5作为ー个工作组,用设定频率的脉冲信号作为开关工作组的激励信号,两个工作组交互闭合,当第一电子开关2和第三电子开关4均闭合时,第二电子开关3和第四电子开关5断开,此时,由绝缘测量管道9、第一电极10、第一电感模块
11、第三电感模块12、第二电极13构成的上游传感器导通,由绝缘测量管道9、第三电感模块12、第二电极13、第三电极14、第二电感模块15构成下游的电导传感器不导通,当第二电子开关3和第四电子开关5均闭合时,第一电子开关2和第三电子开关4断开,此吋,下游的电导传感器导通,上游的电导传感器不导通;
·[0019]三电极非接触式电导传感器中的第一电子开关2、第二电子开关3、第三电子开关
4、第四电子开关5的成对使用,保证了检测到的上游和下游的电导信号的独立性,不存在信号耦合的情况,符合相关流速流量測量原理应用的要求。同吋,由于上游传感器和下游传感器共用第二电极13,精简了相应的电极个数,使得装置得到了简化;2)当第一电子开关2和第三电子开关4均闭合时,第二电子开关3和第四电
{I ^
子开关5断开,此时,等效电路的阻抗み=i xl+プAnfij--—,当第二电子开关3和第
I冗K)
四电子开关5均闭合吋,第一电子开关2和第三电子开关4断开,此时,等效电路的阻抗
fI )—
+J ^fL———,其中,f为交流激励源I的激励频率,C为电导传感器等效电路 i ポ)
中的第一电容Ctl、第二电容C1、第三电容C2的值并且Ctl=C1 = C2 = C,L为电感模块第一电感U、第二电感L1和第三电感L2的电感值并且Ltl = L1 = L2 = L,第一电容Ctl为第一电极
10、绝缘测量管道9和管道内流体形成的耦合电容,第二电容C1为第二电极13、绝缘测量管道9与管道内流体形成的耦合电容,第三电容C2为第二电极13、绝缘测量管道9与管道内流体形成的耦合电容,第一电感Ltl为第三电感模块12,第二电感L1为第一电感模块I1,第三电感L2为第二电感模块15,第一阻抗Rxl为第一电容Ctl与第二电容C1两者之间流体等效阻杭,第二阻抗Rx2为第二电容C1与第三电容C2两者之间流体等效阻杭,设置交流激励源
I的激励频率f为三电极非接触式电导传感器的谐振频率/、=丄J丄,在该频率激励信号
Tm V LC
作用下,电导传感器处于谐振状态,则等效电路阻抗的虚部为零,等效电路总阻抗呈现出纯阻性; 这种在三个电极上分別串联ー个电感模块的方法,使得三电极非接触式电导传感器中采用的三组独立的电感模块,即第一电感U、第二电感L1和第三电感L2可以独立调整,从而分别抵消管道内导电流体、绝缘测量管道9和金属电极形成的相应耦合电容,解决了在实际情况下,第一电容Ctl、第二电容C1、第三电容C2的值之间有微小的差别的问题,使得这种消除了耦合电容对测量范围和測量精度的不利影响、扩大了測量装置适用的管道尺寸的方法易于实现,有效提高了装置的精确性和可调性;[0022]3)在谐振状态下,第一电感Ltl的感抗与第二电容C1的容抗、第二电感L1的感抗与第一电容Ctl的容抗、第三电感L2的感抗与第三电容C2的容抗相互抵消,其中,第一电感L。、第二电感L1和第三电感L2能独立调整,在导通情况下,第一阻抗Rxl与第二电容C1、第二阻抗Rx2与第三电容C2的连接端直接与信号处理模块6中的运算放大器反向输入端相连,与运算放大器同相输入端等地电位,同时第一电容Ctl与第二电感L1相互抵消,由于电子开关成对交互闭合,消除了由绝缘测量管道9、第一电极10、第一电感模块11、第三电感模块12、第ニ电极13构成的上游传感器与由绝缘测量管道9、第三电感模块12、第二电极13、第三电极14、第二电感模块15构成下游的电导传感器的耦合关系,上游、下游电导传感器相互独立,信号处理模块6通过三电极非接触式电导传感器获得两组独立的电导信号;4)信号处理模块6对上游、下游电导传感器输出的两组独立电导信号,进行放大、整流、滤波处理后将由数据采集模块7采集到微型计算机8中,通过以下步骤计算流速和流
量,利用公式
权利要求1.ー种流体流速流量測量装置,其特征在于包括交流激励源(I)、三电极非接触式电导传感器、信号处理模块(6)、数据采集模块(7)、微型计算机(8),三电极非接触式电导传感器包括第一电子开关(2)、第二电子开关(3)、第三电子开关(4)、第四电子开关(5)、绝缘测量管道(9)、第一电极(10)、第一电感模块(11)、第三电感模块(12)、第二电极(13)、第三电极(14)、第二电感模块(15);在绝缘测量管道(9)的外壁等间距安装有第一电极(10)、第ニ电极(13 )和第三电极(14),第一电极(10)与第一电感模块(11) 一端相连,第二电极(13)与第三电感模块(12) 一端相连,第三电极(14)与第二电感模块(15) 一端相连,第一电感模块(11)另一端与第一电子开关(2) —端相连,第三电感模块(12)另一端与第二电子开关(3)—端、第三电子开关(4) 一端相连,第二电感模块(15)另一端与第四电子开关(5) —端相连,第一电子开关(2)另一端、第二电子开关(3)另一端与交流激励源(I)相连,第三电子开关(4)另一端与信号处理模块(6)、数据采集模块(7)、微型计算机(8)顺次相连,第四电子开关(5)另一端与信号处理模块(6)、数据采集模块(7)、微型计算机(8)顺次相连。
专利摘要本实用新型公开了一种流体流速流量测量装置。包括交流激励源、三电极非接触式电导传感器、电子开关、信号处理模块、数据采集模块以及微型计算机。本实用新型基于非接触式电导测量技术实现流体流速流量测量。发明中利用相关流速流量测量原理可以对测量到的流体电导信号进行处理从而获得流体的流速及流量的在线测量值,同时,由于使用了三电极非接触式电导传感器和电子开关,保证了两组电导信号的独立性。而串联谐振方法的采用有效消除了耦合电容对测量范围和灵敏度的不利影响。相应装置具有结构简单、成本低、非接触、无压力损耗和应用范围广等优点,为测量毫米级管道内导电流体流速、流量提供了一条有效的途径。
文档编号G01F1/712GK202631565SQ20122022038
公开日2012年12月26日 申请日期2012年5月16日 优先权日2012年5月16日
发明者吕颖超, 黄志尧, 李忠柱, 王保良, 冀海峰, 李海青 申请人:浙江大学