牛奶中掺三聚氰胺的中红外-近红外相关谱判别方法

文档序号:6218711阅读:159来源:国知局
牛奶中掺三聚氰胺的中红外-近红外相关谱判别方法
【专利摘要】本发明涉及一种牛奶中掺三聚氰胺的中红外-近红外相关谱判别方法,其步骤为:⑴准备实验用纯牛奶以及掺杂三聚氰胺牛奶;⑵扫描实验用纯牛奶以及掺杂三聚氰胺牛奶的中红外光谱和近红外光谱;⑶计算实验用纯牛奶二维中红外-近红外相关同步谱矩阵以及掺杂三聚氰胺牛奶二维中红外-近红外相关同步谱矩阵;⑷采用多维偏最小二乘法建立判别模型;⑸未知样品奶扫描计算得到未知样品奶二维中红外-近红外相关同步谱矩阵,代入判别模型,得到是否掺杂三聚氰胺。本发明既充分利用二维中红外-近红外相关谱提取牛奶中掺杂物特征信息的能力,又克服基于二维相关图谱直接比对法判别掺杂样品的主观性,该方法简易、科学、分析效率和判别正确率高。
【专利说明】牛奶中掺三聚氰胺的中红外-近红外相关谱判别方法
【技术领域】
[0001]本发明属于检测方法领域,尤其是一种牛奶中掺三聚氰胺的中红外-近红外相关谱判别方法。
【背景技术】
[0002]牛奶具有较高的营养价值,其中含有促进人体生长发育及维持健康水平的必需营养成分,如蛋白质、脂肪、乳糖和其他固形物等。随着人们生活水平的提高,奶制品在国内的消费量迅速增加。在巨大经济利益的驱使下,一些不法商贩为了达到以次充好、赚取非法利润的目的,在牛奶中添加各种掺杂物,直接危害人体健康,并给乳品加工企业造成巨大的经济损失。目前,采用光谱的方法对牛奶掺杂的报道很多,但牛奶是一种悬浮状态和乳浊状态共存的胶体性液体,对光具有较强的散射,同时掺杂物的多样化、微量化以及掺杂物特征峰与牛奶特征峰相互重叠等因素的影响,导致常规一维光谱很难从复杂、重叠、变动的光谱中提取微弱的信息,与常规一维光谱方法相比,二维相关谱将传统光谱在第二维上展开,提高了谱图的分辨率,适合于那些常规光谱方法难以满足的相似样品的鉴别分析。因此二维同谱相关谱,即中红外相关与近红外相关,和二维异谱相关谱,即中红外-近红外相关,已被应用于掺杂食品的定性分析。但上述分析基本都是基于相关谱的指纹信息,通过对掺杂样品与未掺杂样品的图谱进行逐一比对,这就需要相关专业的、有经验的的是技术人员,存在主观的误判因素,且对于判别大量的样品,通过上述方法进行分析是非常繁琐,而且低效的。

【发明内容】

[0003]本发明的目的在于克服现有技术的不足,提供一种牛奶中掺三聚氰胺的中红外-近红外相关谱判别方法,该检测方法充分利用了异谱中红外-近红外相关谱提取牛奶中掺杂物特征信息的能力,同时也克服了基于二维相关图谱直接比对法判别掺杂样品的主观性,该方法简易、科学、分析效率和判别正确率高。
[0004]本发明是通过以下技术方案实现的:
[0005]一种牛奶中掺三聚氰胺的中红外-近红外相关谱判别方法,其步骤为:
[0006]⑴、准备实验用纯牛奶以及用实验用纯牛奶掺杂不同浓度三聚氰胺的掺杂三聚氰胺牛奶;
[0007](2)、分别扫描实验用纯牛奶的中红外光谱和近红外光谱、掺杂三聚氰胺牛奶的中红外光谱和近红外光谱,分别得到实验用纯牛奶一维中红外光谱数据、实验用纯牛奶一维近红外光谱数据、掺杂三聚氰胺牛奶一维中红外光谱数据、掺杂三聚氰胺牛奶一维近红外光谱数据,并通过计算得到实验用纯牛奶一维中红外平均谱数据以及实验用纯牛奶一维近红外平均谱数据;
[0008]⑶、将实验用纯牛奶一维中红外平均谱数据与实验用纯牛奶一维中红外光谱数据按行排列组成第一光谱矩阵,将实验用纯牛奶一维近红外平均谱数据与实验用纯牛奶一维近红外光谱数据按行排列组成第二光谱矩阵,将第一光谱矩阵与第二光谱矩阵进行二维相关同步谱计算得到实验用纯牛奶二维中红外-近红外相关同步谱矩阵;将实验用纯牛奶一维中红外平均谱数据与掺杂三聚氰胺牛奶一维中红外光谱数据按行排列组成第三光谱矩阵,将实验用纯牛奶一维近红外平均谱数据与掺杂三聚氰胺牛奶一维近红外光谱数据按行排列组成第四光谱矩阵,将第三光谱矩阵与第四光谱矩阵进行二维相关同步谱计算得到掺杂三聚氰胺牛奶二维中红外-近红外相关同步谱矩阵;
[0009]⑷、将实验用纯牛奶二维中红外-近红外相关同步谱矩阵以及掺杂三聚氰胺牛奶二维中红外-近红外相关同步谱矩阵与类别变量矩阵采用多维偏最小二乘法建立判别模型;
[0010](5)、将未知样品奶进行中红外光谱和近红外光谱扫描得到未知样品奶一维中红外光谱数据、未知样品奶一维近红外光谱数据,将实验用纯牛奶一维中红外平均谱数据与未知样品奶一维中红外光谱数据按行排列组成第五光谱矩阵,将实验用纯牛奶一维近红外平均谱数据与未知样品奶一维近红外光谱数据按行排列组成第六光谱矩阵,将第五光谱矩阵与第六光谱矩阵进行二维相关同步谱计算得到未知样品奶二维中红外-近红外相关同步谱矩阵,将未知样品奶二维中红外-近红外相关同步谱矩阵代入步骤⑷中的判别模型,得到未知样品奶是否掺杂三聚氰胺。
[0011]而且,所述的中红外光谱采用波段是700-4000(3!^1,近红外光谱采用波段是4000-10000cm_1o
[0012]而且,所述的中红外光谱优选波段范围是:1400-1704(^'近红外光谱优选波段范围是:4200-4800cm_1o
[0013]本发明的优点及有益效果是:
[0014]1、本发明牛奶中掺三聚氰胺的中红外-近红外相关谱判别方法相对二维同谱相关谱,对未知样本的预测更为准确,可广泛应用于食品掺伪检测中。
[0015]2、本发明采用二维相关技术将光谱信号扩张到第二维上,故具有较高的分辨率,可以区分出在一维光谱上被覆盖的小峰和弱峰,从而提高了光谱的分辨率。
[0016]3、本发明通过中红外-近红外光谱之间相关性的分析,能够详细地研究不同分子间或分子内的相互作用,通过交叉峰的相关性可以分析信息来源,从而提高光谱的解释能力。
[0017]4、本发明基于中红外-近红外光谱相关分析可以相互验证,从而减小由于基线、噪音或吸收峰位置红移/蓝移所造成的二维分析误差,大大提高二维分析的准确度。
[0018]5、本发明将二维中红外-近红外相关同步谱矩阵与多维偏最小二乘法相结合实现掺杂三聚氰胺牛奶与纯牛奶的定性判别,既充分利用了二维中红外-近红外相关谱提取牛奶中掺杂物特征信息的能力,同时也克服了基于二维相关图谱直接比对法判别掺杂样品的主观性。该方法简易、科学、分析效率和判别正确率高。
【专利附图】

【附图说明】
[0019]图1为纯牛奶的二维中红外-近红外相关同步谱;
[0020]图2为掺杂三聚氰胺牛奶的二维中红外-近红外相关同步谱;
[0021]图3基于二维中红外-近红外相关同步谱多维偏最小二乘判别模型对校正集内部样品预测结果(*表示掺杂三聚氰胺牛奶样品,〇表示纯牛奶样品);
[0022]图4基于二维中红外-近红外相关同步谱多维偏最小二乘判别模型对预测集未知样品的预测结果(☆表示掺杂三聚氰胺牛奶样品,+表示纯牛奶样品)。
【具体实施方式】[0023]本发明通过以下实施例进一步详述。需要说明的是:下述实施例是说明性的,不是限定性的,不能以下述实施例来限定本发明的保护范围。
[0024]一种牛奶中掺三聚氰胺的中红外-近红外相关谱判别方法,其步骤为:
[0025]⑴、准备实验用纯牛奶以及用实验用纯牛奶掺杂不同浓度三聚氰胺的掺杂三聚氰胺牛奶;
[0026](2)、分别扫描实验用纯牛奶的中红外光谱和近红外光谱、掺杂三聚氰胺牛奶的中红外光谱和近红外光谱,分别得到实验用纯牛奶一维中红外光谱数据、实验用纯牛奶一维近红外光谱数据、掺杂三聚氰胺牛奶一维中红外光谱数据、掺杂三聚氰胺牛奶一维近红外光谱数据;中红外光谱采用波段是700-4000011'近红外光谱采用波段是4000-lOOOOcnr1,中红外光谱优选波段范围是:1400-1704CHT1,近红外光谱优选波段范围是:4200-4800cm^。
[0027]⑶、将实验用纯牛奶一维中红外光谱数据、实验用纯牛奶一维近红外光谱数据与实验用纯牛奶一维中红外光谱数据、实验用纯牛奶一维近红外光谱数据进行二维相关同步谱计算得到实验用纯牛奶二维中红外-近红外相关同步谱矩阵;将实验用纯牛奶一维中红外光谱数据、实验用纯牛奶一维近红外光谱数据与掺杂三聚氰胺牛奶一维中红外光谱数据、掺杂三聚氰胺牛奶一维近红外光谱数据进行二维相关同步谱计算得到掺杂三聚氰胺牛奶二维中红外-近红外相关同步谱矩阵;
[0028]⑷、将实验用纯牛奶二维中红外-近红外相关同步谱矩阵以及掺杂三聚氰胺牛奶二维中红外-近红外相关同步谱矩阵与类别变量矩阵采用多维偏最小二乘法建立判别模型;类别变量矩阵中纯牛奶可以用“O”表示,掺杂三聚氰胺牛奶可以用“I”表示;
[0029](5)、将未知样品奶进行中红外光谱和近红外光谱扫描得到未知样品奶一维中红外光谱数据、未知样品奶一维近红外光谱数据,将未知样品奶一维中红外光谱数据、未知样品奶一维近红外光谱数据与实验用纯牛奶一维中红外光谱数据、实验用纯牛奶一维近红外光谱数据进行二维相关同步谱计算得到未知样品奶二维中红外-近红外相关同步谱矩阵,将未知样品奶二维中红外-近红外相关同步谱矩阵代入步骤⑷中的判别模型,得到未知样品奶是否掺杂三聚氰胺。即根据未知样品奶的预测值进行判别,当未知样品奶类别变量的预测值大于0.5时,判定该样品属于掺杂三聚氰胺牛奶类;当未知样品奶类别变量的预测值小于0.5时,判定该样品属于纯牛奶类。
[0030]本实施例中三聚氰胺为天津市赢达稀贵化学试剂厂提供;实验采用伊利全脂灭菌纯牛奶,随机选取上述纯牛奶为母样本,分别配置纯牛奶样品40个和掺杂三聚氰胺牛奶样品40个,其浓度范围为0.01g/L-3g/L。
[0031]本发明中光谱采集采用美国Per中红外-近红外inElmer公司的Spectrum GX傅立叶变换红外光谱仪。中红外光谱扫描范围为700-4000(3!^1 ;近红外光谱扫描范围为4000-10000^1 ;两个波段的仪器参数如下:分辨率为4CHT1,扫描间隔为ScnT1,扫描次数16。实验前,对所配置的掺杂三聚氰胺牛奶进行均质处理。为了消除仪器漂移的影响,在测量每个样品后再采集蒸馏水的光谱作为背景,用样品光谱扣除相邻背景光谱后作为待分析的光谱数据。
[0032]计算二维中红外-近红外相关同步谱矩阵
[0033]二维中红外-近红外相关同步谱的计算主要基于下述原理:假设原始常规一维中红外光谱A (kXm)和近红外光谱B (kXn)中都包含k个光谱,根据二维相关Noda理论,则二维中红外-近红外相关同步谱Φ ( V1, v2)可表示为:
[0034]
【权利要求】
1.一种牛奶中掺三聚氰胺的中红外-近红外相关谱判别方法,其步骤为: (I)、准备实验用纯牛奶以及用实验用纯牛奶掺杂不同浓度三聚氰胺的掺杂三聚氰胺牛奶; ⑵、分别扫描实验用纯牛奶的中红外光谱和近红外光谱、掺杂三聚氰胺牛奶的中红外光谱和近红外光谱,分别得到实验用纯牛奶一维中红外光谱数据、实验用纯牛奶一维近红外光谱数据、掺杂三聚氰胺牛奶一维中红外光谱数据、掺杂三聚氰胺牛奶一维近红外光谱数据,并通过计算得到实验用纯牛奶一维中红外平均谱数据以及实验用纯牛奶一维近红外平均谱数据; ⑶、将实验用纯牛奶一维中红外平均谱数据与实验用纯牛奶一维中红外光谱数据按行排列组成第一光谱矩阵,将实验用纯牛奶一维近红外平均谱数据与实验用纯牛奶一维近红外光谱数据按行排列组成第二光谱矩阵,将第一光谱矩阵与第二光谱矩阵进行二维相关同步谱计算得到实验用纯牛奶二维中红外-近红外相关同步谱矩阵;将实验用纯牛奶一维中红外平均谱数据与掺杂三聚氰胺牛奶一维中红外光谱数据按行排列组成第三光谱矩阵,将实验用纯牛奶一维近红外平均谱数据与掺杂三聚氰胺牛奶一维近红外光谱数据按行排列组成第四光谱矩阵,将第三光谱矩阵与第四光谱矩阵进行二维相关同步谱计算得到掺杂三聚氰胺牛奶二维中红外-近红外相关同步谱矩阵; ⑷、将实验用纯牛奶二维中红外-近红外相关同步谱矩阵以及掺杂三聚氰胺牛奶二维中红外-近红外相关同步谱矩阵与类别变量矩阵采用多维偏最小二乘法建立判别模型; (5)、将未知样品奶进行中红外光谱和近红外光谱扫描得到未知样品奶一维中红外光谱数据、未知样品奶一维近红外光谱数据,将实验用纯牛奶一维中红外平均谱数据与未知样品奶一维中红外光谱数据按行排列组成第五光谱矩阵,将实验用纯牛奶一维近红外平均谱数据与未知样品奶一维近红外光谱数据按行排列组成第六光谱矩阵,将第五光谱矩阵与第六光谱矩阵进行二维相关同步谱计算得到未知样品奶二维中红外-近红外相关同步谱矩阵,将未知样品奶二维中红外-近红外相关同步谱矩阵代入步骤⑷中的判别模型,得到未知样品奶是否掺杂三聚氰胺。
2.根据权利要求1所述的牛奶中掺三聚氰胺的中红外-近红外相关谱判别方法,其特征在于:所述的中红外和近红外光谱采用波段分别是700-40000^1与^OO-lOOOOcnT1。
3.根据权利要求2所述的牛奶中掺三聚氰胺的中红外-近红外相关谱判别方法,其特征在于:所述的中红外和近红外光谱优选波段范围分别是:1400-170?!^1和与4200-4800cm_1o
【文档编号】G01N21/25GK103792198SQ201410060479
【公开日】2014年5月14日 申请日期:2014年2月24日 优先权日:2014年2月24日
【发明者】杨仁杰, 杨延荣 申请人:天津农学院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1