煤炭样品中全硫的新型快速检测方法

文档序号:6245428阅读:344来源:国知局
煤炭样品中全硫的新型快速检测方法
【专利摘要】本发明公开了一种煤炭样品中全硫的新型快速检测方法。所述方法包括以下步骤:S1.收集和制备若干个煤炭样品,常规方法分别测定每个样品的全硫含量;S2.用NIRS分析仪扫描收集所述煤炭样品的光谱数据和曲线;S3.对S2所得样品的光谱数据进行处理,经回归计算获得全硫的定标方程,修正和验证全硫定标方程,建立检测模型;S4.将待测煤炭样品依次直接装满NIR仪的进样器,启动扫描键,NIR仪自动记录存储样品光谱,确定样品归属谱图类型,选择相应的检测模型,获得检测结果。本发明建立的煤炭中全硫检测方法的准确度符合现行标准方法再现性限差的要求,操作非常简便快速,50秒左右就可以完成一个样品的扫描检测,包括数据的输出。整个检测操作的过程中,无需称样,无需添加任何化学试剂,具有快速、便捷、无污染的特点。
【专利说明】煤炭样品中全硫的新型快速检测方法

【技术领域】
[0001] 本发明涉及煤炭分析检测【技术领域】,更具体地,涉及一种煤炭样品中全硫的新型 快速检测方法。

【背景技术】
[0002] 煤炭资源是我国的第一大能源,是工业发展所需的基础能源材料。我国煤炭资源 非常丰富,占我国总能源的70%左右。
[0003] 按照国际的煤炭检测标准,煤炭通常需要检测固定碳等品质项目。按我国国家 规定和贸易需要,煤炭通常需检测内水、全硫、挥发分、灰分、发热量、固定碳、可燃体等指 标,现行标准方法主要是:内水有GB/T 212、IS0 11722、ASTMD3173,灰分有GB/T 212、IS0 1171、ASTMD 3174,挥发分有 GB/T 212、
[0004] ISO 562、ASTMD 3175,全硫有 GB/T 214、ISO 351、ASTMD 4239,发热量有 GB/T 213、ISO 1928、ASTMD 5865,固定碳和可燃体参照煤炭的工业分析方法中的要求进行。
[0005] 上述标准方法普遍采用的经典或现代的化学法和物理化学法:全硫、挥发分、灰 分、固定碳、可燃体都是经典重量分析方法,涉及天平、烘箱、高温炉等设备,碳化、灰化、恒 重、称量、计算是经常需要进行的步骤,相当繁琐费时;目前就算使用比较先进的仪器,一个 技术人员完成这些项目也得5?6天,同时现代化的物理化学仪器的操作、维护、标定、核查 等工作也很繁重。煤炭传统的检测方法由于工作繁杂,花费成本比较高,花费时间比较长。 煤炭的分类销售,出口贸易和电厂的快速需求等,传统的煤炭检验周期太长,不利于煤炭的 销售,为此需要缩短煤炭的检验时间,需要寻找新的检验方法。
[0006] NIRS是近红外光谱的英文缩写。NIRS技术是近十年来发展最为迅速的高新分析 技术之一。NIRS分析技术应用光谱区段波长范围大约为3?0. 70mm,属干红外光谱范围,和 可见光一样,都是电磁波的一个组成部分,具有电磁波和物体作用时表现出的一般特性,如 透射、漫反射、吸收等。此外,其最突出的特点是这一光谱区域为含氢基团(〇H、SH、CH、NH) 的倍频和合频吸收区。物质的近红外光谱是其中各基团振动的倍频和组合频率的综合吸收 表现。
[0007] NIRS近十年来发展迅速,我国从上世纪80年代开始主要应用于农产品的品质分 析,现已经应用于各个领域,已从传统的农副产品分析扩展到石油化工和基本有机化工、高 分子化工、制药与临床医学、生物化工、环境科学、纺织工业和食品工业等领域。但是,目前 NIRS技术在煤炭方面的研究报道很少。
[0008] 资料显示,国外报道利用NIRS技术对煤炭进行检测的存在很多困难,国内有采用 傅立叶变换近红外光谱法建立煤炭挥发分、水分测定模型,但是没有提出采用NIRS技术定 量分析煤炭水分、挥发分的具体技术方案。本 申请人:经过长期大量的研究,总结出利用近红 外分析技术建立煤炭的相关品质项目快速检测方法是可行的,但是,以下重点要解决的技 术问题一直未得到有效解决:(1)寻找煤炭NIRS光谱数据合适的数学转换形式;(2)寻找 合适数学转换的NIRS检测数据与煤炭品质成分常规法的检测数据之间可靠的函数关系; (3)对所得函数关系进一步修正和验证。未见利用近红外分析技术建立煤炭的全硫的快速 检测方法的技术报道。


【发明内容】

[0009] 本发明要解决的技术问题是针对煤炭全硫的检测,提供具体的NIRS光谱数据合 适的数学转换形式、总结出合适数学转换的NIRS检测数据与煤炭品质成分常规法的检测 数据之间可靠的函数关系,并对所得函数关系进一步修正和验证,提供一种煤炭样品中全 硫的新型快速检测方法。
[0010] 本发明的目的通过以下技术方案予以实现:
[0011] 提供一种煤炭样品中全硫的新型快速检测方法,包括以下步骤:
[0012] Si.收集和制备若干个煤炭样品,常规方法分别测定每个样品的全硫含量;
[0013] S2.用NIRS分析仪扫描收集所述煤炭样品的光谱数据和曲线;
[0014] S3.对S2所得样品的光谱数据进行处理,经回归计算获得全硫的定标方程,修正 和验证全硫定标方程,建立检测模型;
[0015] S4.将待测煤炭样品依次直接装满NIR仪的进样器(不需称样),启动扫描键,NIR 仪自动记录存储样品光谱。确定样品归属谱图类型,选择相应的检测模型,获得检测结果。
[0016] S2所述用NIRS分析仪扫描收集所述样品的光谱数据是将样品(不需称样),依次 直接装满NIR仪的进样器,采用数字光栅系统进行扫描,通过NIRS仪自动记录和存储样品 光谱。将收集到的样品原始光谱按其不同变化趋势分类,按照峰型和变化趋势相同或接近 的图谱合在一起,进行归类,分别得到Y型原始光谱、W型原始光谱、P型原始光谱和X型原 始光谱。
[0017] S3所述对S2所得样品的光谱数据进行数学处理是采用WinISI软件进行光谱分析 和建立检测模型,将S2所得样品的光谱数据导入NIR仪,确定检测模型,打印检测结果。光 谱预处理分别采用趋势变换法、标准正态变量转换法、多元离散校正、反相多元离散校正等 方法的一种或多种,最终确定最佳处理方法;回归校正方法采用逐步回归分析法(SMLR)、 主成分分析法(PCA)和最小偏差分析法(PLS),将数据降维,以消除众多信息共存中相互重 叠的信息部分并最终作到对光谱的量化。
[0018] 利用检测模型检测一组未知待测成分含量的样品中全硫含量,再将NIR法所得的 检测值与常规物理化学法检测值进行比较和评价。两种方法的比较结果用预测标准偏差 (SEP, Standard Error of Prediction)和相应的决定系数(RSQp)或相关系数Rp进行衡 量。
[0019] 所述的检测模型的建立方法包括以下步骤:
[0020] S31. GH值分析,将所述GH值大于3. 0的样品剔除,用GH值小于3. 0的样品集分别 建立相应类型谱图的定标(检测)模型;
[0021] S32?通过计算S31所述定标(检测)模型的SEC值和RSQ值;
[0022] S33.对检测模型进行评价实验确定最佳检测模型。本发明采用交互验证误 差(Standard Error of cross validation,SECV)和交互验证决定系数(I minus the variance ratio, 1-VR)或相关系数Rv来衡量检测模型。通过这两个指标可以有效评估检 测模型的预测准确度。采用具有低的SECV值和高的(I-VR)或Rv值评价良好的检测模型 与所有检测模型进行交互验证试验,选出最低SECV值和最高(I-VR)或Rv值的检测模型, 确定为最佳检测模型。
[0023] 本发明的有益效果如下:
[0024] 煤炭现有检测标准的原理都是经典或现代的化学法和物理化学法:内水、挥发分、 灰分、固定碳、可燃体都是经典重量分析方法,涉及天平、烘箱、高温炉等设备,碳化、灰化、 恒重、称量、计算是经常需要进行的步骤,相当繁琐费时;发热量、全硫,目前最先进的是采 用高温高压燃烧法,但是现代化的物理化学仪器的操作、维护、标定也很繁重。
[0025] 长期以来,近红外光谱技术只用来分析纯粹的有机物。因为近红外光谱的波数在 4000CHT 1以上(即2500nm以下),因此,只有振动频率在2000CHT1以上的振动,才可能在近红 外区内产生一级倍频,而能够在2000CHT 1以上产生基频振动的主要是含氢官能团,如C-H、 N-H、S-H和O-H的伸缩振动。几乎有机物中所有含氢基团的信息,都能在近红外光谱中得 以反映。
[0026] 煤炭是一种可燃性岩石。本发明首次将近红外光谱技术应用于煤炭这种由大部分 有机物质和部分矿物质及水分组成的混合物质体系,并成功建立全硫含量的测定方法,从 而在一定程度上证明近红外光谱技术可以应用于分析无机物质,克服了现有技术偏见。
[0027] 本发明建立了煤炭全硫的近红外检测方法,填补了现有技术空白,并解决了以下 重点技术难题:总结出煤炭NIRS光谱数据合适的数学转换形式,提供了合适数学转换的 NIRS检测数据与煤炭品质成分常规法的检测数据之间可靠的函数关系,对所得函数关系提 供了切实可行、稳定可靠的修正和验证方法。
[0028] 基于本发明方法,获得了煤炭中全硫含量的4个检测模型,并建立可实际应用于 日常实际检验工作中新检测方法。本发明检测煤炭样品中的全硫含量需几分钟,而且无 需称样、无需使用化学试剂或高温、高压、大电流等测试条件,不会产生化学、生物或电磁污 染,不会对操作人员和环境造成不良影响,可实现连续检测,对大批量检测任务,其优越性 更加突出。
[0029] 本发明与高温燃烧红外吸收法相比:Y型原始谱图定标标准偏差为0.06%,定标 相关系数为0. 9838 ;交互验证标准差0. 07%,交互验证相关系数0. 9822 ;初步应用的标 准偏差为〇. 08%,相关系数为0. 976。W型原始谱图定标标准偏差为0. 04%,定标相关系 数为0. 9496 ;交互验证标准差0. 05%,交互验证相关系数0. 9379 ;初步应用的标准偏差为 0. 05%,相关系数为0. 917。P型原始谱图定标标准偏差为0. 17%,定标相关系数为0. 9572 ; 交互验证标准差0. 21 %,交互验证相关系数0. 9330 ;初步应用的标准偏差为0. 22%,相关 系数为〇. 927。X型原始谱图定标标准偏差为0. 11 %,,定标相关系数为0. 8988 ;交互验 证标准差0. 16%,交互验证相关系数0. 7412 ;初步应用的标准偏差为0. 12%,相关系数为 0. 849 〇
[0030] 本发明仅需要采用一台近红外光谱分析仪,就可以代替现有技术多种、多台分析 仪器,只需要磨样设备,不需要分析天平,通常只需一个人操作,并在几分钟内,通过采集一 次被测样品的光谱,就可以同时完成全硫含量的测定。在光谱采集过程中除消耗电能外,不 需消耗任何试剂和标准物质,这样可以节省大量仪器设备的购置、操作、维修等费用,节省 大量的时间和人力,极大地降低分析成本,显著提高检测工作的效率。

【专利附图】

【附图说明】
[0031] 图1 509个无烟煤样品的近红外漫反射DDS原始光谱总图。
[0032] 图2 134个烟煤样品的近红外漫反射DDS原始光谱总图。
[0033] 图3 155个水汽煤样品的近红外漫反射DDS原始光谱总图。
[0034] 图4 60个贫瘦煤样品的近红外漫反射DDS原始光谱总图。
[0035] 图5 134个动力煤样品的近红外漫反射DDS原始光谱总图。
[0036] 图6 179个未明确分组的样品的近红外漫反射DDS原始光谱总图。
[0037] 图7 202个无烟煤样品的近红外漫反射DDS原始光谱总图(2008年样品)。
[0038] 图8 235个未明确分组的样品的近红外漫反射DDS原始光谱总图(2008年样品)。
[0039] 图9标样原始谱图(上为103f号无烟煤,下为IOlL号烟煤)。
[0040] 图10标准煤样原始谱图。
[0041] 图11 2008年无烟煤和标样无烟煤的原始谱图。
[0042] 图12 2005-2008年烟煤和标样烟煤的原始谱图。
[0043] 图13 2008年无烟煤和标样无烟煤原始光谱经(N0NE+0011)处理图。
[0044] 图14 2008年无烟煤和标样无烟煤原始光谱经(N0NE+1441)处理图。
[0045] 图15 2008年无烟煤和标样无烟煤原始光谱经(D+1441)处理图。
[0046] 图16 2008年无烟煤和标样无烟煤原始光谱经(D+1441)处理图。
[0047] 图17 2005-2008年烟煤和标样烟煤的原始光谱经(N0NE+0011)处理图。
[0048] 图18 2005-2008年烟煤和标样烟煤的原始光谱经(D+1441)处理图。
[0049] 图19 2005-2008年烟煤和标样烟煤的原始光谱经(D+0011)处理图。
[0050] 图20 509个无烟煤样品原始光谱经(N0NE+1441)处理图。
[0051] 图21 509个无烟煤样品原始光谱经(N0NE+0011)处理图。
[0052] 图22 509个无烟煤样品原始光谱经(D+1441)处理图。
[0053] 图23Y型(374个)原始光谱图。
[0054] 图24W型(1367个)原始光谱图。
[0055] 图25P型(436个)原始谱图。
[0056] 图26X型(52个)原始光谱。
[0057] 图27Y型原始谱图的GH值分布图。
[0058] 图28W型原始谱图的GH值分布图。
[0059] 图29P型原始谱图的GH值分布图。
[0060] 图30X型原始谱图的GH值分布图。
[0061] 图31经交互验证的Y型原始光谱全硫检测模型(MPLS+N0NE+1441)。
[0062] 图32经交互验证的W型原始光谱全硫检测模型(MPLS+N0NE+1441)。
[0063] 图33经交互验证的P型原始光谱全硫检测模型(MPLS+D+1441)。
[0064] 图34经交互验证的X型原始光谱全硫检测模型(MPLS+D+1441)。

【具体实施方式】
[0065] 下面结合附图和具体实施例进一步说明本发明。本发明实施例采用的设 备可参照《高温管式炉燃烧法分析煤和焦碳分析样品中硫含量的标准试样方法》 (ASTMD-4239-2010el)、《煤的工业分析方法》(GB/T212-2008)、《煤的发热量测定方法》(GB/ T213-2008)中所列设备和试剂。其他除非特别说明,本发明实施例采用的试剂和设备为本 领域常规使用的试剂和设备。
[0066] 实施例1
[0067] 本实施例提供一种煤炭样品中全硫的新型快速检测方法,包括以下步骤:
[0068] SI.收集和制备若干个煤炭样品,常规方法分别测定每个样品的全硫含量;
[0069] S2.用NIRS分析仪扫描收集所述煤炭样品的光谱数据和曲线;
[0070] S3.对S2所得样品的光谱数据进行处理,经回归计算获得全硫的定标方程,修正 和验证全硫定标方程,建立检测模型;
[0071] S4.将待测煤炭样品依次直接装满NIR仪的进样器(不需称样),启动扫描键,NIR 仪自动记录存储样品光谱。在判断样品归属谱图类型后,点击相应的检测模型,获得检测结 果。
[0072] 其中,Sl所述收集和制备煤炭样品的方法是参照《商品煤样采取方法》 (GB475-2008)和《煤样的制备方法》(GB474-2008)中的要求进行。所述常规方法测定样品 的全硫含量的方法是按《高温管式炉燃烧法分析煤和焦碳分析样品中硫含量的标准试样方 法》(ASTMD-4239-2010el)进行。
[0073] S2所述用NIRS分析仪扫描收集所述样品的光谱数据是将样品(不需称样),依次 直接装满NIR仪的进样器,采用数字光栅系统进行扫描,通过NIRS仪自动记录和存储样品 光谱。
[0074] 本实施例采用丹麦FOSSANALYTICALA/S公司生产的SY-3650 - 2型近红外分析 仪,单色器:单光束全息数字光栅,波长范围1100?2500nm ;光源:钨丝灯;检测器:PBS,自 动移动输送多点定位检测,检测点大于32个;操作温度:15?32°C;分析时间:每分钟用连 续光谱扫描32个子样品以上并完成其光谱分析;系统噪音:噪音信号值小于2 X KT5AU ;结 果报告:在终端屏幕上显示结果和显示"已超越校正范围"的样品,同时由打印机报告结果, 也可通过RS-232C接口与外部电子计算机相联。
[0075] 操作方法:仔细搅拌煤样,装取适量的试样于石英制的样品槽中,装填过程中务必 使样品厚度均匀,盖上小纸板,轻轻按压,使样品紧密分布。装填完毕后,观察样品槽表面的 样品情况,如果发现有缝隙或样品有松动的现象,应重新装填试样。将装填好的样品槽置于 进样轨道上,点击"扫描",通过上下往复运动的进样方式,完成扫描检测和据的输出。整个 检测操作的过程中,无需称样,无需添加任何化学试剂。
[0076] 首先,采用数字光栅系统(Digital Dispersive System, DDS)进行扫描采集样品 光谱。本发明科学地进行分类,将煤炭样品分别按照无烟煤、烟煤、水汽煤、贫瘦煤、动力煤 加以分组,对没有具体分类的样品则单独列为一组。煤样不需要称样,依次直接装满NIR仪 的进样器,然后把满出进样器的样品铲去,近红外分析仪自动记录存储样品的DDS光谱,得 原始谱图,见附图1至附图8所示。由附图1至附图8所示原始光谱图可知,只有附图4显 示的贫瘦煤样品的近红外漫反射DDS原始光谱的变化趋势比较接近或一致,其他煤种如无 烟煤、烟煤、水汽煤、动力煤的原始谱图都出现比较明显差异的变化趋势。由于附图1至图 6为近三个月集中采集的谱图,综合考虑分析样品贮藏时间和环境对其原始光谱存在的影 响,本发明收集2008年煤样及时采集谱图,得图7至图8,可以看到,图7与图1基本一致, 图8各种煤炭样品的近红外漫反射DDS原始光谱基本涵盖了前述无烟煤、烟煤、水汽煤、动 力煤的原始谱图的变化趋势。这说明我们的样品贮存条件或光谱采集时间对原始光谱影响 不明显,可以满足本发明研究需要。为更好考察煤炭原始光谱,我们对煤炭标准样品采用同 样方式采集原始光谱,得图9至图10。并将所得标准样品原始光谱与相应煤种的原始谱图 合在一起进行观察,得图11至图12。由图11和图12可以看到光谱变化趋势与前述相应煤 种基本一致。
[0077] 接着,本发明对图11至图12分别进行光谱预处理,得图13至图19。光谱预处理 方式分别为:N0NE+0011、NONE+1441、D+1441、D+1441、N0NE+0011、D+1441、D+0011(其中, NONE表示未进行光谱预处理,即为原始谱图,D表示趋势变换法,1441表示以每4个光谱点 为间隔作一阶导数的数学处理,0011表示不作任何导数处理。例如,D+1441为对原始光谱 图进行趋势变换法预处理后,再以每4个光谱点为间隔作一阶导数进行数学处理)。由图 13至图19可以看到经预处理后的谱图变化趋势更加明显、清晰,但同一煤种的各种不同处 理方式所得效果均普遍存在明显不同的峰型和变化。总体看来,光谱预处理并未能获得比 较一致的谱图。对前述采集到的各种煤原始光谱进行预处理,所得情况基本相同,以509个 无烟煤样品原始光谱经(N0NE+1441)处理图为例,处理结果请见附图20至附图22所示,其 他样品预处理图在此不一一赘述(图略)。
[0078] S2是将收集到的样品原始光谱按其不同变化趋势分类,按照峰型和变化趋势相同 或接近的图谱合在一起,进行归类,分别得到Y型原始光谱、W型原始光谱、P型原始光谱和 X型原始光谱。本发明将前述采集到的原始光谱按其不同变化趋势分组,再将峰型和变化 趋势相同或比较接近的图谱合在一起,进行归类,得谱图23至图26。图23的谱图标记为Y 型原始光谱,代表大多数的水汽煤和部分烟煤、部分动力煤等煤种,共有374个样品。图24 被标记为W型原始光谱,代表大多数的无烟煤、部分烟煤、部分动力煤等煤种,共有1367个 样品。图25被标记为P型原始光谱,代表大多数的贫瘦煤、部分烟煤、部分动力煤等煤种, 共有436个样品。图26被标记为X型原始光谱,代表非常见煤种,共有195个样品。
[0079] S3所述对S2所得样品的光谱数据进行数学处理是采用WinISI软件进行光谱分析 和建立检测模型,将S2所得样品的光谱数据导入NIR仪,确定检测模型,打印检测结果。光 谱预处理分别采用趋势变换法、标准正态变量转换法、多元离散校正、反相多元离散校正等 方法的一种或多种,最终确定最佳处理方法;回归校正方法采用逐步回归分析法(SMLR)、 主成分分析法(PCA)和最小偏差分析法(PLS),将数据降维,以消除众多信息共存中相互重 叠的信息部分并最终作到对光谱的量化。
[0080] 利用检测模型检测一组未知待测成分含量的样品中全硫含量,再将NIR法所得的 检测值与常规物理化学法检测值进行比较和评价。两种方法的比较结果用预测标准偏差 (SEP, Standard Error of Prediction)和相应的决定系数(RSQp)或相关系数Rp进行衡 量。
[0081] 所述的检测模型的建立方法包括以下步骤:
[0082] S31. GH值分析:GH值即马氏距离,是光谱数据回归校正的得分三维图中,每个样 品距离中心样品点的距离。GH值在近红外光谱数据分析中通常被设定为3.0,含义是标准 变异单位的3倍,即就是近似于标准差(SD)的2. 84倍,这意味着将有大约10%的样品的 GH值会大于3.0。如果哪个样品的GH值大于3.0,该样品需剔除,另作分析。本发明采用 主成分分析法(PCR)对Y型原始光谱、W型原始光谱、P型原始光谱和X型原始光谱分别进 行聚类分析;结果见附图27至附图30所示,由附图27至30分析可知,四种类型原始谱图 的GH值绝大多数小于3. 0, Y型大于3. 0的样品有8个,W型大于3. 0的样品有10个,P型 大于3. 0的样品有13个,X大于3. 0的样品共有9个,本发明将所述GH值大于3. 0的样品 剔除后,用GH值小于3. 0的样品集分别建立相应类型谱图的定标(检测)模型,其中Y型 366个,W型1357个,P型423个,X型186个。
[0083] S32?通过计算S31所述定标(检测)模型的SEC值和RSQ值;
[0084] 利用WinISI软件中光谱处理和回归校正方法对上述四类原始光谱进行光谱处 理和数据分析。光谱预处理分别采用趋势变换法、标准正态变量转换法、多元离散校正、 反相多元离散校正等方法的一种或多种,最终确定最佳处理方法;数学处理采用以每4个 光谱点的间隔(Gap)作一阶导数(1441)或二阶导数(2441)方法,(0011)表示不做任何 导数处理。回归校正方法采用逐步回归分析法(Stepwise Mutiple Linear Regression, SMLR)、主成分分析法(Principal Component Analysis, PCR)、最小偏差分析法(Partial Least Squares Regression, PLS)和偏最小偏差分析法(Modified Partial Least Squares Regression,MPLS)计算所述定标(检测)模型的SEC值和RSQ值。
[0085] SEC是定标标准偏差(Standard Error of Calibration,SEC),指通过建立的定标 模型对定标样品集进行预测所得到的近红外分析值和传统化学法分析值的标准偏差,是回 归读数和实际读数吻合程度的标志。SEC越低,说明近红外分析结果与传统分析结果越吻 合,可信度越高。RSQ(R squared)为定标决定系数,是相关系数(Re)的平方,指定标模型对 定标样品集变异所能描述出的百分率,表示近红外分析值与常规方法分析值线性关系密切 的程度。一个好的检测模型要求有低的SEC和高的RSQ(Rc)。根据本领域现有公知常识, 理论上,具备最低SEC值和最高RSQ值的模型就应该是最佳的检测模型。但是本发明经过 大量长期的实验总结发现,并非最低SEC值和最高RSQ值的模型就是最佳的检测模型,但最 终能被定为最佳检测模型的一定具有较低的SEC值和较高的RSQ值。为此本发明对建立的 全部检测模型逐一进行评价试验。以Y型原始谱图为例,其他可参照Y型进行实验总结,不 一一赘述。煤炭样品的全硫光谱处理和回归校正结果分别见表1所示(Y型原始谱图):
[0086] 表I Y型原始谱图光谱处理和回归校正效果(全硫)
[0087]

【权利要求】
1. 一种煤炭样品中全硫的新型快速检测方法,其特征在于,包括以下步骤:
51. 收集和制备若干个煤炭样品,常规方法分别测定每个样品的全硫含量;
52. 用NIRS分析仪扫描收集所述煤炭样品的光谱数据和曲线;
53. 对S2所得样品的光谱数据进行处理,经回归计算获得全硫的定标方程,修正和验 证全硫定标方程,建立检测模型;
54. 将待测煤炭样品依次直接装满NIR仪的进样器,启动扫描键,NIR仪自动记录存储 样品光谱,确定样品归属谱图类型,选择相应的检测模型,获得检测结果。
2. 根据权利要求1所述煤炭样品中全硫的新型快速检测方法,其特征在于,所述的检 测模型的建立方法包括以下步骤: 531. GH值分析,将所述GH值大于3. 0的样品剔除,用GH值小于3. 0的样品集分别建 立相应类型谱图的检测模型;
532. 通过计算S31所述检测模型的SEC值和RSQ值;
533. 对检测模型进行评价实验确定最佳检测模型。
3. 根据权利要求2所述煤炭样品中全硫的新型快速检测方法,其特征在于,S33所述确 定最佳检测模型是采用交互验证误差和交互验证决定系数或相关系数来衡量检测模型。
4. 根据权利要求3所述煤炭样品中全硫的新型快速检测方法,其特征在于,是采用具 有低的交互验证误差值和高的交互验证决定系数或相关系数值评价良好的检测模型与所 有检测模型进行交互验证试验,选出最低交互验证误差值和最高的交互验证决定系数或相 关系数值的检测模型,确定为最佳检测模型。
5. 根据权利要求1所述煤炭样品中全硫的新型快速检测方法,其特征在于,S2还包括 将收集到的样品原始光谱按照峰型和变化趋势相同或接近的图谱合在一起,进行归类,分 别得到Y型原始光谱、W型原始光谱、P型原始光谱和X型原始光谱。
【文档编号】G01N21/3563GK104374735SQ201410578071
【公开日】2015年2月25日 申请日期:2014年10月24日 优先权日:2014年10月24日
【发明者】苏彩珠, 郑建国, 李国伟, 邱敏敏, 郑淑云, 蔡英俊, 姚柏辉 申请人:中华人民共和国黄埔出入境检验检疫局
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1