接近传感器及接近感测方法与流程

文档序号:19732101发布日期:2020-01-18 04:03阅读:327来源:国知局
接近传感器及接近感测方法与流程

本发明关于一种传感器,尤其是一种接近传感器及接近感测方法。



背景技术:

目前许多电子装置设置有接近传感器,例如移动电话,以感测是否有人体接近,以关闭部分功能,例如屏幕。目前业界大都使用电容式的单一独立传感器感测人体是否接近,且可进一步当作降低特定吸收率(specificabsorptionrate,sar)的传感器。现也有利用天线作为传感器而感测人体是否接近。然而,习用传感器只有单一感测信息可供参考,而判断人体是否接近,如此容易辨别错误。传感器容易受到水、湿气或其它环境噪声干扰,如此仅依赖单一感测信息容易判别错误,而影响电子装置的效能,例如在无需降低射频功率时却降低射频功率。此外,接近传感器的感测运作容易干扰电子装置的通讯模块的运作,如此会影响电子装置的通讯效能。

鉴于上述问题,本发明提出一种接近传感器与接近感测方法,其可提升感测人体是否接近传感器的准确度,亦可降低接近传感器的运作对于通讯模块的干扰,如此可提升电子装置的效能。



技术实现要素:

本发明的目的,在于提供一种接近传感器及接近感测方法,其藉由两种不同感测讯号判断人体是否接近传感器,如此可提升感测人体是否接近传感器的准确度。

本发明的目的,在于提供一种接近传感器及接近感测方法,其藉由对应通讯模块的状态发送驱动讯号或者接收感测讯号,如此可降低接近传感器的运作对于通讯模块的干扰。

本发明揭示一种接近传感器,其包含一感测元件与一感测电路。感测元件分别接收一第一驱动讯号与一第二驱动讯号,而分别产生一第一感测讯号与一第二感测讯号。感测电路耦接感测元件,并发送第一驱动讯号与第二驱动讯号至感测元件,且依据第一感测讯号与第二感测讯号产生一近接讯号。

本发明另揭示一种接近感测方法,其包含执行一自感感测模式与一互感感测模式,而分别产生一自感感测讯号与一互感感测讯号,并依据自感感测讯号与互感感测讯号产生一近接讯号。

本发明另揭示一种接近传感器,其包含一感测元件与一感测电路。感测电路耦接感测元件,并发送至少一驱动讯号至感测元件,感测元件接收该至少一驱动讯号,而产生至少一感测讯号,感测电路依据该至少一感测讯号产生一近接讯号。感测电路更耦接一射频电路,感测电路对应射频电路的状态发送该至少一驱动讯号或/及接收该至少一感测讯号。

附图说明

图1:其为本发明的接近传感器的第一实施例的示意图;

图2:其为本发明的接近传感器的感测元件的一实施例的结构图;

图3:其为本发明的接近传感器的第二实施例的示意图;

图4:其为本发明的接近传感器的第三实施例的示意图;

图5:其为本发明的接近传感器的第四实施例的示意图;

图6:其为本发明的感测电路与射频电路的运作的第一实施例的时序图;

图7:其为本发明的感测电路与射频电路的运作的第二实施例的时序图;

图8:其为本发明的感测电路与射频电路的运作的第三实施例的时序图;

图9:其为本发明的感测电路与射频电路的运作的第四实施例的时序图;

图10:其为本发明的感测电路与射频电路的运作的第五实施例的时序图;

图11:其为本发明的感测电路与射频电路的运作的第六实施例的时序图;

图12:其为本发明的感测电路与射频电路的运作的第七实施例的时序图。

【图号对照说明】

10接近传感器

20感测元件

21天线元件

201第一感测部

202第二感测部

30感测电路

31射频电路

ant1第一天线端

ant2第二天线端

out1第一传输端

out2第二传输端

rfo射频讯号

rfi无线讯号

rx1第一讯号端

rx2第一传输端

rx3第三传输端

sin1第一感测讯号

sin2第二感测讯号

sout1第一驱动讯号

sout2第二驱动讯号

sync同步讯号

t1时间

t2时间

t3时间

t4时间

t5时间

t6时间

tx1第二讯号端

tx2第二传输端

具体实施方式

为了使本发明的结构特征及所达成的功效有更进一步的了解与认识,特用较佳的实施例及配合详细的说明,说明如下:

在说明书及后续的请求项当中使用了某些词汇指称特定的组件,然,所属本发明技术领域中具有通常知识者应可理解,制造商可能会用不同的名词称呼同一个组件,而且,本说明书及后续的请求项并不以名称的差异作为区分组件的方式,而是以组件在整体技术上的差异作为区分的准则。在通篇说明书及后续的请求项当中所提及的「包含」为一开放式用语,故应解释成「包含但不限定于」。再者,「耦接」一词在此包含任何直接及间接的连接手段。因此,若文中描述一第一装置耦接一第二装置,则代表第一装置可直接连接第二装置,或可透过其他装置或其他连接手段间接地连接至第二装置。

请参阅图1,其为本发明的接近传感器的第一实施例的示意图。如图所示,本发明的接近传感器10包含一感测元件20与一感测电路30。接近传感器10可设置于一行动装置(mobiledevice),行动装置亦称为手持装置(handhelddevice),其可以为一智能型手机、平板计算机或智能型手表等等。行动装置可以包含一显示面板、一电池、一外壳、各种驱动芯片及/或各种感测芯片,惟实施例图式皆未绘出上述部分。

感测元件20包含一第一讯号端rx1与一第二讯号端tx1。感测电路30耦接感测元件20的第一讯号端rx1与第二讯号端tx1,且感测电路30包含一第一传输端rx2与一第二传输端tx2。感测电路30输出一第一驱动讯号sout1至感测元件20的第一讯号端rx1,感测元件20对应第一驱动讯号sout1产生一第一感测讯号sin1,感测讯号sin1会因人体使用或接近行动装置时而变化,即感测元件20可以感测人体是否接近行动装置(接近传感器10)。第一感测讯号sin1经由第一讯号端rx1与第一传输端rx2传输至感测电路30,感测电路30依据第一感测讯号sin1而可以产生一近接讯号,近接讯号表示人体是否近接接近传感器10,即是否近接行动装置。于本发明的一实施例中,近接讯号可传输至一主机(host),其可为行动装置的控制器或者微处理器(microcontroller),主机可依据近接讯号而得知是否有人体接近行动装置,若人体接近行动装置时,主机可执行对应事件,例如控制通讯模块降低射频功率。此外,于本发明的另一实施例中,近接讯号可传输至通讯模块,通讯模块可直接依据近接讯号决定是否降低射频功率。

再者,当一液体(例如水)或者湿气接触行动装置时,即近接接近传感器10,感测元件20所产生的第一感测讯号sin1可能无法确实表示人体或液体或者湿气接触行动装置的差异。所以,感测电路30可经由第二传输端tx2输出一第二驱动讯号sout2至感测元件20的第二讯号端tx1,感测元件20对应第二驱动讯号sout2产生一第二感测讯号sin2,第二感测讯号sin2亦会因人体使用或接近行动装置时而变化。第二感测讯号sin2经由第一讯号端rx1与第一传输端rx2传输至感测电路30,如此,感测电路30接收第一感测讯号sin1与第二感测讯号sin2,并依据第一感测讯号sin1与第二感测讯号sin2产生近接讯号。此时感测电路30可依据第一感测讯号sin1与第二感测讯号sin2辨识人体或液体或湿气接近行动装置,而可以确实感测人体是否近接行动装置。

因此,感测电路30分别发送第一驱动讯号sout1与第二驱动讯号sout2至感测元件20。感测元件20的第一讯号端rx1与第二讯号端tx1分别耦接感测电路30的第一传输端rx2与第二传输端tx2,且分别接收第一驱动讯号sout1与第二驱动讯号sout2,而分别产生第一感测讯号sin1与第二感测讯号sin2。感测电路30经由第一讯号端rx1接收第一感测讯号sin1与第二感测讯号sin2,依据第一感测讯号sin1与第二感测讯号sin2产生近接讯号。第一讯号端rx1与第二讯号端tx1为不同讯号端。

请参阅图2,其为本发明的接近传感器的感测元件的一实施例的结构图。如图所示,感测元件20包含一第一感测部201与一第二感测部202。第一感测部201及一第二感测部202可以为一导体结构,例如各种金属体,并依据需求而修改外形、尺寸或设置位置,其非本发明所限。第一感测部201的第一讯号端rx1耦接感测电路30的第一传输端rx2,感测电路30发送第一驱动讯号sout1至第一感测部201的第一讯号端rx1。第一感测部201对应第一驱动讯号sout1而自感产生第一感测讯号sin1。第二感测部202的第二讯号端tx1耦接感测电路20的第二传输端tx2,并相邻第一感测部201有一间距。感测电路20发送第二驱动讯号sout2至第二感测部202的第二讯号端tx1,第一感测部201对应传输至第二感测部202的第二驱动讯号sout2而互感产生第二感测讯号sin2。

藉由第一感测部201与第二感测部202,接近传感器10可以执行自感感测模式与互感感测模式两种感测方式。如此,第一驱动讯号sout1与第一感测讯号sin1分别为自感感测模式的一自感驱动讯号与一自感感测讯号,而第二驱动讯号sout2与第二感测讯号sin2分别为互感感测模式的一互感驱动讯号与一互感感测讯号,于本发明的一实施例中,接近传感器10于不同时间执行自感感测模式与互感感测模式。当手指或者水(湿气)近接该接近传感器10时,接近传感器10执行自感感测模式所得到的第一感测讯号sin1,可表示如下:

crx=crx1+crx(finger)

crx=crx1+crx(water)

于自感感测模式下,crx为第一感测讯号sin1的数值,其可表示电容值,crx1为并未有任何人体或者水等物质近接该接近传感器10所得到的第一感测讯号sin1的数值,其也可表示电容值,crx(finger)为人体近接该接近传感器10所导致的第一感测讯号sin1的数值变化量,其也表示电容值变化量,crx(water)为水近接该接近传感器10所导致的第一感测讯号sin1的数值变化量,其也表示电容值变化量。所以,当无人体的手指及水近接该接近传感器10时,第一感测部201的第一讯号端rx1输出的第一感测讯号sin1的数值crx等于crx1。再者,由上述方程式可知,因手指或者水近接该接近传感器皆会导致第一感测讯号sin1的数值crx增加,而无法精确判断是何物近接该接近传感器10。

当手指或者水(湿气)近接该接近传感器10时,接近传感器10执行互感感测模式所得到的第二感侧讯号sin2,,可表示如下:

ctrx=ctrx1–ctrx(finger)

ctrx=ctrx1+ctrx(water)

于互感感测模式下,ctrx为第二感测讯号sin2的数值,其可表示电容值,ctrx1为并未有任何人体或者水等物质近接该接近传感器10所得到的第二感测讯号sin2的数值,其也可表示电容值,ctrx(finger)为人体近接该接近传感器10所导致的第二感测讯号sin2的数值变化量,其也表示电容值变化量,ctrx(water)为水近接该接近传感器10所导致的第二感测讯号sin2的数值变化量,其也表示电容值变化量。互感感测模式与自感感测模式不同之处在于,对应于人体的感测值为正负相反,而对应于水的感测值同样为正值。于互感模式下,因为水和人体的物理特性并不相同,所以两者对于第二感测讯号sin2的数值会有反向影响。所以,当人体接近或接触行动装置时,其会导致第二感测讯号sin2的数值ctrx下降。然而,当水接近或者接触行动装置时,其会导致第二感测讯号sin2的数值ctrx上升。如此,藉由互感感测模式与自感感测模式所获得的第一感测讯号sin1的数值crx、第二感测讯号sin2的数值ctrx相互比较,即可以判断人体或液体(水)接近或者接触行动装置。于本发明的一实施例中,近接讯号可传输至一主机(图未示),主机可依据近接讯号而得知是否有人体接近行动装置,若人体接近行动装置时,主机可执行对应事件,例如控制通讯模块降低射频功率。此外,于本发明的另一实施例中,近接讯号可传输至射频电路31,射频电路31可直接依据近接讯号决定是否降低射频功率,即是否降低射频讯号的功率。

请参阅图3,其为本发明的接近传感器10的一第二实施例的示意图。如图所示,图1实施例的感测元件20可以是图3实施例的一天线元件21,所以,图2的第一感测部201与第二感测部202可以分别为一第一天线部与一第二天线部。天线元件21具有一第一天线端ant1与一第二天线端ant2,第一天线端ant1与一第二天线端ant2相当于前述实施例的第一讯号端rx1与第二讯号端tx1。此外,天线元件21可以不同于图2所示的结构,其可包含两支不同天线而分别作为第一天线部与第二天线部,此两支不同天线可以是一网络天线、一电信天线或其他通讯用天线,其非本发明所限。此实施例的天线元件21可以作为近接感测的用,天线元件21耦接感测电路30与一通讯模块的一射频电路31。天线元件21的第一天线端ant1耦接感测电路30的第一传输端rx2与射频电路31的一第一传输端out1,天线元件21的第二天线端ant2耦接感测电路30的第二传输端tx2。于本发明的一实施例中,天线元件21可另外具有一端点(图未示),以耦接射频电路31的第一传输端out1。

此外,感测电路30在执行自感感测模式或/及互感感测模式下,执行驱动事项或/及接收事项,而分别产生自感感测讯号与互感感测讯号,并且依据自感感测讯号与互感感测讯号产生近接讯号。因此,当感测电路30执行驱动事项时系发送第一驱动讯号(自感驱动讯号)sout1至天线元件21的第一天线端ant1或第二驱动讯号(互感驱动讯号)sout2至天线元件21的第二天线端ant2。当感测电路30执行接收事项时系从天线元件21的第一天线端ant1接收第一感测讯号(自感感测讯号)sin1或第二感测讯号(互感感测讯号)sin2。换言之,感测电路30执行自感感测模式系发送自感驱动讯号(第一驱动讯号sin1)至感测元件20(或天线元件21),感测元件20对应自感驱动讯号产生自感感测讯号(第一感测讯号sout1),感测电路30则接收自感感测讯号。感测电路30执行互感感测模式系发送互感驱动讯号(第二驱动讯号sin2)至感测元件20(或天线元件21),感测元件20对应互感驱动讯号产生互感感测讯号(第二感测讯号sout2),并接收互感感测讯号。此外,接近传感器10可以选择性执行自感感测模式、互感感测模式或交互执行自感感测模式与互感感测模式,其可以依需求所设计或调整。

复参阅图3,射频电路31可以处于一发射状态或一接收状态。当射频电路31处于发射状态时,发送一射频讯号rfo至天线元件21。当射频电路31处于接收状态时,从天线元件21接收天线元件21所接收的一无线讯号rfi。此外,由于图3实施例为接近传感器10共享通讯模块的天线元件21,所以,通讯模块可以包含天线元件21与射频电路31,射频电路31耦接天线元件21。通讯模块处于发射状态时系射频电路31发送射频讯号rfo至天线元件21,通讯模块处于接收状态系射频电路31从天线元件21接收天线元件21所接收的无线讯号rfi。

请参阅图4,其为本发明的接近传感器的一第三实施例的示意图。如图所示,接近传感器10可以同时包含感测元件20、感测电路30与通讯模块,通讯模块包含天线元件21与射频电路31,或者接近传感器10的感测电路30外接通讯模块,其中,感测元件20与感测电路30的运作可以参考图1与图2实施例的说明,而天线元件21与射频电路31的运作可以参考图3实施例的说明,于此不再重复。图4实施例与前面实施例的差异在于,射频电路31更具有一第二传输端out2,感测电路30更具有一第三传输端rx3。射频电路31的第二传输端out2耦接感测电路30的第三传输端rx3。感测电路30与射频电路31间传递一同步讯号sync。于此实施例中,射频电路31产生同步讯号sync,同步讯号sync经由第二传输端out2与第三传输端rx3传输至感测电路30。感测电路30依据同步讯号sync而执行驱动事项或/接收事项。于本发明的一实施例中,感测电路30产生同步讯号sync,并经由第三传输端rx3与第二传输端out2传输至射频电路31。因共享单一天线元件21,所以感测电路30对应通讯模块(射频电路31)的状态而执行一驱动事项或/及一接收事项。

上述的同步讯号sync可表示射频电路31的目前状态为发射状态或接收状态,如此感测电路30可依据同步讯号sync执行驱动事项或/接收事项,即感测电路30对应射频电路31的状态执行驱动事项或/及接收事项,以可降低感测电路30传输的驱动讯号或者接收的感测讯号对于射频电路31传输的射频讯号或者接收的无线讯号的干扰。于本发明的另一实施例中,同步讯号sync可为感测电路30所产生,其可让射频电路31依据同步讯号sync进入发射状态或接收状态,如此,射频电路31可配合感测电路30执行驱动事项或/及接收事项而进入发射状态或接收状态。

请参阅图5,其为本发明的接近传感器的一第四实施例的示意图。如图所示,在共享天线元件21的实施方式下,射频电路31与感测电路30间同样可以传递同步讯号sync,驱使感测电路30依据同步讯号sync而执行驱动事项或/接收事项。再者,感测电路30与射频电路31依据同步讯号sync而运作的方式有多种变化,例如图6所示,同步讯号sync具有一第一准位(syncon)与一第二准位(syncoff),其中,第一准位与第二准位可以分别为一高准位与一低准位,但也可以相反。于图6实施方式中,于时间t1、t3,同步讯号sync的准位为第一准位,其表示射频电路31处于发射状态时,而感测电路30执行驱动事项。于时间t2、t4,同步讯号sync的准位为第二准位,其表示射频电路31处于接收状态时,感测电路30执行接收事项。即射频电路31发送射频讯号时,感测电路30也同样发送驱动讯号,而射频电路31接收无线讯号时,感测电路30也同样接收感测讯号,如此可降低感测电路30的运作对于射频电路31的运作的干扰。

请参阅图7,其为本发明的感测电路与射频电路的运作的第二实施例的时序图。如图所示,于时间t1、t3,同步讯号sync的准位为第一准位(syncon),其表示射频电路31处于发射状态时,而感测电路30执行驱动事项与接收事项。于时间t2、t4,同步讯号sync的准位为第二准位(syncoff),其表示射频电路31处于接收状态,而感测电路30无执行事项。

请参阅图8,其为本发明的感测电路与射频电路的运作的第三实施例的时序图。如图所示,图8实施例与图7实施例差别在于,射频电路31处于发射状态时,感测电路30无执行事项。射频电路31处于接收状态时,感测电路30执行驱动事项与接收事项。

请参阅图9,其为本发明的感测电路与射频电路的运作的第四实施例的时序图。如图所示,射频电路31于发射射频讯号后会处于一闲置状态,的后射频电路31才接收无线讯号,于此实施例中,同步讯号sync的准位为第二准位(syncoff),其表示射频电路处于发射状态或者接收状态,同步讯号sync的准位为第一准位(syncon),其表示射频电路31处于闲置状态,感测电路30可依据同步讯号sync而在射频电路31处于闲置状态时执行驱动事项与接收事项。

请参阅图10,其为本发明的感测电路与射频电路的运作的第五实施例的时序图。如图所示,图10实施方式相似于图9实施方式,其差异在于,图10实施例的同步讯号sync的准位为第一准位(syncon),其表示射频电路处于发射状态或者接收状态,同步讯号sync的准位为第二准位(syncoff),其表示射频电路31处于闲置状态,感测电路30仅在同步讯号sync的准位为第二准位时,执行驱动事项与接收事项。

请参阅图11与图12,其为本发明的感测电路与射频电路的运作的第六实施例与第七实施例的时序图。如图所示,射频电路31于发射射频讯号与接收无线讯号后,即会进入闲置状态,的后才又发射射频讯号与接收无线讯号,在射频电路31处于限制状态时,感测电路30执行驱动事项与接收事项,于图11实施例,同步讯号sync的准位为第二准位(syncoff),其表示射频电路31处于闲置状态,而感测电路30执行驱动事项与接收事项。于图12实施例,同步讯号sync的准位为第一准位(syncon),其表示射频电路31处于闲置状态,而感测电路30执行驱动事项与接收事项。于上述实施例中,当射频电路31处于闲置状态时,感测电路30可仅执行驱动事项或者接收事项。

综上所述,本发明揭示一种接近传感器,其包含一感测元件与一感测电路。感测元件分别接收一第一驱动讯号与一第二驱动讯号,而分别产生一第一感测讯号与一第二感测讯号。感测电路耦接感测元件,并发送第一驱动讯号与第二驱动讯号至感测元件,且依据第一感测讯号与第二感测讯号产生一近接讯号。

本发明另揭示一种接近感测方法,其包含执行一自感感测模式与一互感感测模式,而分别产生一自感感测讯号与一互感感测讯号,并依据自感感测讯号与互感感测讯号产生一近接讯号。

本发明另揭示一种接近传感器,其包含一感测元件与一感测电路。感测电路耦接感测元件,并发送至少一驱动讯号至感测元件,感测元件接收该至少一驱动讯号,而产生至少一感测讯号,感测电路依据该至少一感测讯号产生一近接讯号。感测电路更耦接一射频电路,感测电路对应射频电路的状态发送该至少一驱动讯号或/及接收该至少一感测讯号。

上文仅为本发明的较佳实施例而已,并非用来限定本发明实施的范围,凡依本发明权利要求范围所述的形状、构造、特征及精神所为的均等变化与修饰,均应包括于本发明的权利要求范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1