一种高精度纳米划痕测试装置

文档序号:35838571发布日期:2023-10-25 13:55阅读:83来源:国知局
一种高精度纳米划痕测试装置

本技术涉及材料微观力学性能测试仪器领域,特别涉及一种高精度纳米划痕测试装置,结合压电精密驱动技术与高精度传感技术,可面向各种材料进行微纳米级别划痕力学性能测试及加工,结合采集到的力信号,可用于探究材料在微纳米尺度下的力学性能和损伤机制,在微机电系统、纳米工程、表面技术、航空航天等领域具有潜在应用价值。


背景技术:

1、随着科学技术的发展,微纳米力学研究的发展促进和开拓了材料表面工程的实际应用。为了准确地揭示材料深层结构与其表面性质的内在联系,需要在微观尺度下观察材料表面结构形态。而划痕测试作为一种高分辨率的测试手段及检测方法,能够在测试结果中获取材料的摩擦系数、硬度、表面粗糙度等重要表面信息及力学参数,并结合沟槽形貌、试件表面残余形貌来评价试件表面的抗摩擦磨损性能及薄膜的结合能力,因而在薄膜复合材料、聚合物、生物材料以及半导体材料等新兴材料的性能测试及分析中广泛应用。近几年来,此项技术已被广泛地应用于材料表面工程、微电子、微机电系统、生物和医学材料等相关的科学领域。

2、仪器化划痕技术逐渐成为材料力学测试领域的主流测试方法之一。划痕测试技术和划痕仪器日渐成熟,已经成为了目前材料力学性能测试领域内广泛应用的技术之一。国外头部公司已经研发出了成熟的商业化划痕仪,如美国hysitron公司的tribo indenter,mts公司的nano indenterxp和nano indenter g200,英国mml公司的nano test系统和瑞士csm公司的ultrananoindentationtester等,但上述划痕仪定价高昂,采购交易周期长、售后服务流程繁琐,且由于仪器标准化,无法定制功能模块。这些因素使国内对于划痕仪器相关领域的研究门槛变得较高,且由于国内对于划痕仪器领域的研究起步较晚,目前市面上还没有商业化的纳米划痕仪出售。

3、因此,针对目前国内自研发的划痕测试仪器较为匮乏的问题,有必要研发一种高精度微纳米划痕测试装置,为材料去除机理和损伤机制方面的研究提供试验工具和技术支撑。


技术实现思路

1、本实用新型的目的在于提供一种高精度纳米划痕测试装置,解决了现有技术存在的无法实时同步定量检测划痕过程中的轴向力、横向力的问题。本实用新型结构简单,测试精度高,可以动态检测划痕力作用下的被测样品的微观变形行为与磨损机制,在材料科学、生物医学工程、航空航天的领域具有广阔应用前景。

2、本实用新型的上述目的通过以下技术方案实现:

3、高精度纳米划痕测试装置,由大理石基座1、2、z轴方向宏动调整单元3、精密压入驱动单元4、横向力检测单元5、x轴方向调整单元6、y轴方向调整单元7和轴向力检测单元8组成。所述大理石基座1、2由底座1和大理石龙门架2组成,z轴方向宏动调整单元3通过螺钉固定在大理石龙门架2上,精密压入驱动单元4通过螺钉安装在z轴方向宏动调整单元3上,横向力检测单元5通过螺钉横向放置安装在精密压入驱动单元4上;x轴方向调整单元6固定在底座1上,y轴方向调整单元7固定在x轴方向调整单元6上,轴向力检测单元8纵向放置安装在y轴方向调整单元7上。

4、所述的精密压入驱动单元4由连接板401、柔性铰链机构402、压电叠堆403和紧定螺钉a404组成。其中,连接板401通过螺纹连接固定在z轴方向宏动调整单元3上,柔性铰链机构402通过螺纹连接固定在连接板401上,压电叠堆403安装在柔性铰链机构402的方槽中,利用逆压电效应以实现横向力检测单元5的精密压入与压出。所述的精密压入驱动单元4的工作原理为:通过对压电叠堆403施加控制电压来产生变形,利用柔性铰链机构402传递压电叠堆403的输出,进行精密调整横向力检测单元5中金刚石压头504与试件间的距离。

5、所述的横向力检测单元5由高精度单轴力传感器a501、连接件a502、紧定螺钉b503、金刚石压头504和连接件b505组成。高精度单轴力传感器a501一端通过螺纹连接在连接件a502的圆柱端,金刚石压头504则安装在连接件a502的方块端并通过紧定螺钉b503夹紧,高精度单轴力传感器a501另一端通过螺纹连接在连接件b505上,连接件b505轴端与精密压入驱动单元4中的柔性铰链机构402下端孔配合,并通过紧定螺钉a404夹紧,以保证金刚石压头504始终垂直于水平面。

6、所述的轴向力检测单元8由凸字形底座801、高精度单轴力传感器b802和载物台803组成。高精度单轴力传感器b802通过凸字形底座801安装在y轴方向调整单元7上,载物台803通过螺纹连接固定在高精度单轴力传感器b802上端,加工试件通过熔融石蜡粘附到载物台803上。

7、所述的横向力检测单元(5)中横向放置的高精度单轴力传感器a501可实时检测金刚石压头504在划痕过程中压入材料内部的横向力,所述的轴向力检测单元(8)中纵向放置的高精度单轴力传感器b802可实时检测金刚石压头504在划痕过程中压入材料内部的轴向力。

8、本实用新型的有益效果在于:通过本实用新型提供的高精度纳米划痕测试装置,解决了现有技术存在的无法实时同步定量检测划痕过程中的轴向力、横向力的问题,提高了装置的测试分辨率,有效提高了装置整体的刚度和动态特性。本实用新型结构简单,加工、安装方便,测试精度高,可以动态检测划痕力作用下的被测样品的微观变形行为与磨损机制,在材料科学、生物医学工程、航空航天的领域具有广阔应用前景。



技术特征:

1.一种高精度纳米划痕测试装置,其特征在于:由底座(1)、大理石龙门架(2)、z轴方向宏动调整单元(3)、精密压入驱动单元(4)、横向力检测单元(5)、x轴方向调整单元(6)、y轴方向调整单元(7)和轴向力检测单元(8)组成;所述大理石龙门架(2)安装在底座(1)上,z轴方向宏动调整单元(3)通过螺钉固定在大理石龙门架(2)上,精密压入驱动单元(4)通过螺钉安装在z轴方向宏动调整单元(3)上,横向力检测单元(5)通过螺钉横向放置安装在精密压入驱动单元(4)上;x轴方向调整单元(6)固定在底座(1)上,y轴方向调整单元(7)固定在x轴方向调整单元(6)上,轴向力检测单元(8)纵向放置安装在y轴方向调整单元(7)上。

2.根据权利要求1所述的高精度纳米划痕测试装置,其特征在于:所述的精密压入驱动单元(4)由连接板(401)、柔性铰链机构(402)、压电叠堆(403)和紧定螺钉a(404)组成;其中,连接板(401)通过螺纹连接固定在z轴方向宏动调整单元(3)上,柔性铰链机构(402)通过螺纹连接固定在连接板(401)上,压电叠堆(403)安装在柔性铰链机构(402)的方槽中,利用逆压电效应以实现横向力检测单元(5)的精密压入与压出。

3.根据权利要求1所述的高精度纳米划痕测试装置,其特征在于:所述的横向力检测单元(5)由高精度单轴力传感器a(501)、连接件a(502)、紧定螺钉b(503)、金刚石压头(504)和连接件b(505)组成;高精度单轴力传感器a(501)一端通过螺纹连接在连接件a(502)的圆柱端,金刚石压头(504)则安装在连接件a(502)的方块端并通过紧定螺钉b(503)夹紧,高精度单轴力传感器a(501)另一端通过螺纹连接在连接件b(505)上,连接件b(505)轴端与精密压入驱动单元(4)中的柔性铰链机构(402)下端孔配合,并通过紧定螺钉a(404)夹紧,以保证金刚石压头(504)始终垂直于水平面。

4.根据权利要求1所述的高精度纳米划痕测试装置,其特征在于:所述的轴向力检测单元(8)由凸字形底座(801)、高精度单轴力传感器b(802)和载物台(803)组成;高精度单轴力传感器b(802)通过凸字形底座(801)安装在y轴方向调整单元(7)上,载物台(803)通过螺纹连接固定在高精度单轴力传感器b(802)上端,加工试件通过熔融石蜡粘附到载物台(803)上。

5.根据权利要求1所述的高精度纳米划痕测试装置,其特征在于:所述的横向力检测单元(5)中横向放置的高精度单轴力传感器a(501)可实时检测金刚石压头(504)在划痕过程中压入材料内部的轴向力,所述的轴向力检测单元(8)中纵向放置的高精度单轴力传感器b(802)可实时检测金刚石压头(504)在划痕过程中压入材料内部的横向力。


技术总结
本技术涉及一种高精度纳米划痕测试装置,属于机电一体化领域。测试装置包括底座、大理石龙门架、z轴方向宏动调整单元、精密压入驱动单元、横向力检测单元、x轴方向调整单元、y轴方向调整单元和轴向力检测单元。其中z轴方向宏动调整单元安装在大理石龙门架上,精密压入驱动单元安装在z轴方向宏动调整单元上,横向力检测单元安装在精密压入驱动单元底部,x轴方向调整单元、y轴方向调整单元安装在底座上,轴向力检测单元安装在x轴方向调整单元上。优点在于:通过合理设计划痕主运动与力检测单元的结构,达到了结构简单、加工方便的目的,且可以实时检测划痕过程轴向力和横向力,提高了判断涂层剥落或延脆转变临界力的精准度。

技术研发人员:张浩飞,吴浩翔,王博,何贵浩,刘通,刘宇欣,黄雅明,黄虎
受保护的技术使用者:吉林大学
技术研发日:20230410
技术公布日:2024/1/15
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1