一种基于互相关偏移与最小二乘思想的微地震定位方法

文档序号:10569041阅读:304来源:国知局
一种基于互相关偏移与最小二乘思想的微地震定位方法
【专利摘要】本发明公开了一种微地震震源定位方法,包括以下步骤:1)、通过互相关偏移方法确定震源空间位置的初始定位结果和微地震震源的激发时刻;2)、基于确定的激发时刻,使用最小二乘Kirchhoff方法进行迭代求解,获得精确定位结果。本方法可以在无需知道激发时刻的情况下求取震源空间位置的初始定位结果,在互相关偏移初始定位结果的基础上,生成反偏移记录,然后用反偏移记录与原始记录进行互相关,求取激发时刻,然后基于确定的激发时刻,利用最小二乘Kirchhoff方法进行迭代,获得精确定位结果,方法简单且精确度高。
【专利说明】
一种基于互相关偏移与最小二乘思想的微地震定位方法
技术领域
[0001] 本发明属于地球物理学领域中的地震技术领域,尤其涉及一种微地震震源定位方 法。
【背景技术】
[0002] 震源定位问题一直是地球物理学的研究热点。随着低孔、低渗油气藏的不断开发, 水力压裂已成为这类非常规油气藏保持产量的必要手段。而通过对压裂诱发裂缝的位置和 形态等信息进行监测,可以有效保证压裂施工的有效性,可以进一步指导油气田的后续开 发。
[0003] 目前的震源定位主要有以下几种方式:
[0004] 1、以波场逆时不变性理论为基础的成像类定位方法(Artman et al. ,2010);此类 定位方法,计算量较大,比较难以满足压裂过程的实时性监测要求,一般只能用于后续数据 分析。
[0005] 2、根据波形的时移和叠加思想,借鉴绕射叠加或Kirchhoff偏移的成像类定位方 法(Burch et al.,2009;Gajewski et al.,2007);此类定位方法需要知道精确的激发时 亥IJ,而微地震观测中,这个时间是未知的。
[0006] 3、借鉴常规地震偏移思想并采用地震干涉法中互相关成像条件的互相关偏移方 法(Schuster et al. ,2004);此种方法相比前两种方法,既具有较高的计算效率又无需知 道激发时刻,但是互相关偏移获取的微地震定位结果分辨率较差。
[0007] 综上,需要一种新的定位方法来克服上述方法的缺点。

【发明内容】

[0008] 本发明的目的是提供一种微地震震源定位方法,能够获得精确定位结果。
[0009] 为达到上述目的,本发明采用的技术方案是:本发明公开了一种基于互相关偏移 与最小二乘思想的微地震定位方法,具体包括以下步骤:
[0010] 1)、通过互相关偏移方法确定震源空间位置的初始定位结果和微地震震源的激发 时刻;
[0011] 2)、基于确定的激发时刻,使用最小二乘Kirchhoff方法进行迭代求解,获得精确 定位结果。
[0012] 其中所述步骤1)中确定震源空间位置的初始定位结果具体如下所述:
[0013] 11)、获取同一震源原始的微地震记录gather(t,n),其中t代表每个检波点记录的 时间序列,n代表检波点的个数,然后设置一个选择函数M(t,n),该选择函数与原始的微地 震记录gather (t,n)大小一致,每个检波点的选择函数结果如式(1)所示:
[0014] 0 ^ 0 〇 :rlj J ^ ? ^ ^ ^ ^
[0015]其中,直达波信息为需要保留的信息,它对应位置的值为1,直达波外的信息是不 需要保留的信息,它对应位置的值为0;
[0016] t代表第i个检波器的时间序列,th代表第i个检波器中直达波的开始记录时刻, t2i代表第i个检波器中直达波的结束时刻;
[0017] 然后,将选择函数M(t,n)和原始的微地震记录gather(t,n)相乘,得到只含有直达 波信息的记录D(t,n),如式(2)所示:
[0018] D(t,n) =M(t,n)gather(t,n) (2);
[0019] 然后假设^为震源的激发时刻,W为震源子波,假设不重合的任意两个检波器A和B 接收到的直达波信息为分别为II和笔,则鬆;和i;分别如式(3)和(4)所示:
[0020] If
[0021] 馬獄 (4) ?
[0022] 此式中《代表震源的主频,G(A,s,《 )和G(B,s,《 )分别代表震源s到检波器A和B 的格林函数;
[0023] 12)、基于上述馬和Pi,得到基于互相关偏移的微地震震源成像表达式:
[0026] 上述式(5)、式(6)中nhonU^)为定位结果,x和z代表定位结果的横坐标 和纵坐标,tsA为震源s到检波点A的旅行时,tsB为震源s到检波点B的旅行时,该旅行时根据 测井资料建立的速度模型计算得到,其中,定位结果m。? (x,z)任意一点的振幅代表该点为 震源点的可能性,该点振幅越大,代表其越有可能是真实的震源位置。
[0027] 所述步骤1)中确定微地震震源的激发时刻具体如下所述:
[0028] 13)、根据震源定位结果m_(X,z)进行反偏移得到反偏移的微地震直达波信息D&; [0029]反偏移如式(7)所示:
[0030] DJ( = Lmrrm=J^W((〇)G(Un^ (1) i
[0031] 其中,L为反偏移算子,i表示观测系统中的检波点;
[0032] 14)、根据反偏移获得的微地震直达波信息Dde和实际采集微地震直达波信息D(t, n)的互相关值,确定微地震震源的激发时刻ts ;
[0033] ^ = ^gm^x(c〇!T(D(t,n),DJt,n))) (8) t
[0034] 其中(3〇^(0(^),叫6(^))代表的是获取互相关值,£1@^^^代表的是当互相关 t 值最大时^的值。
[0035]其中所述的步骤2)具体为:
[0036] 基于确定的激发时刻构造最小二乘框架进行反演求解:
[0037] f(miSm) = | | L(Ts)miSm(x,z)-D(t,n) | 12 (9)
[0038] 其中,f (mism)是构造的最小二乘目标函数,mism为最小二乘Kirchhoff方法进行迭 代更新后的精确定位结果,miSm( X,z)的大小和m。。]^ X,z) -致,横坐标和纵坐标为X,z,L (Ts) 为已知激发时刻的正演算子;经过迭代,得到最终的精确定位结果mism( X,z)。
[0039] 所述最小二乘Kirchhoff方法的迭代过程为:
[0040] 假设初始模型为:misii/inkaii;
[0041] 则,在第k+1次迭代的流程为:
[0042] A m = LT(Lmismk-D);
[0043] mismk+1=rnismk-a Am;
[0044]其中,k为迭代的次数,mlsmk代表第k次迭代的定位结果,Am代表在第k次迭代过程 中求取的对定位结果的更新误差,a为对第k+1次定位结果mlsmk+1进行更新时的计算步长。
[0045] 本发明具有的优点是:本发明可以在无需知道激发时刻的情况下通过互相关偏移 求取震源空间位置的初始定位结果,在互相关偏移初始定位结果的基础上,生成反偏移记 录,然后用反偏移记录与原始记录进行互相关,求取激发时刻,然后基于确定的激发时刻, 利用最小二乘Kirchhoff方法进行迭代,获得精确定位结果。
【附图说明】 [0046]
[0047]图1是微地震激发的示意图;
[0048]图2是采集的微地震原始数据图;
[0049] 图3是选取的初始波波形图;
[0050] 图4是根据测井数据建立的速度模型图;
[0051 ]图5是使用互相关偏移进行的初始定位图;
[0052]图6是基于互相关偏移的结果求取的最佳激发时间示意图;
[0053] 图7是最小二乘定位结果不意图;
[0054] 图8是定义的目标函数收敛情况示意图。
【具体实施方式】
[0055] 本发明公开了一种基于互相关偏移与最小二乘思想的微地震定位方法,包括 [0056] 以下步骤:
[0057]步骤1)、通过互相关偏移方法确定震源空间位置的初始定位结果和微地震震源的 激发时刻;
[0058] 11)、获取同一震源原始的微地震记录gather(t,n),其中t代表每个检波点记录的 时间序列,n代表检波点的个数,如图2、图3所示,横坐标是n,纵坐标是t,然后设置一个选择 函数M( t,n ),该选择函数与原始的微地震记录gather (t,n)大小一致,每个检波点的选择函 数结果如式(1)所示: v 、 { ^ tv < t: < t3 : _9] M
[0060] 其中,直达波信息为需要保留的信息,它对应位置的值为1,直达波外的信息是不 需要保留的信息,它对应的位置的值为〇;
[0061] t代表第i个检波器的时间序列,th代表第i个检波器中直达波的开始记录时刻, t2i代表第i个检波器中直达波的结束时刻。其中检波点代表检波器所在的方位。然后,将选 择函数M( t,n)和原始的微地震记录gather (t,n)相乘,得到只含有直达波信息的记录D (t, n),如式(2)所示:
[0062] D(t,n) =M(t,n)gather(t,n) (2);
[0063] 然后假设^为震源的激发时刻,W为震源子波,为更清楚表示互相关偏移的过程, 如图1所示,则只含有直达波信息的记录D(t,n)中,假设不重合的任意两个检波器A和B接收 到的直达波信息为分别为_和舄,则迄和%分别如式⑶和(4)所示:
[0064] 1% :微.' :義爲翁觀《 ' 〇);
[0065] H数撳 <瓣_|慕為病费(4)
[0066] 此式中《代表震源的主频,G(A,s,《 )和G(B,s,《 )分别代表震源s到检波器A和B 的格林函数,i是虚数单位,e是自然常数。
[0067] 12)、基于上述I;和吞"得到基于互相关偏移的微地震震源成像表达式;
[0068] ^ ( 5 );
[0069] 甘中,.參發')徽錢談丨梦:從I獻|:齡》I*说為爲録 '、 (6 )
[0070] 上述式(5)、式(6)中nhonU^)为定位结果,x和z代表定位结果mc^mU^)的横坐标 和纵坐标,t sA为震源s到检波点A的旅行时,tsB为震源s到检波点B的旅行时,该旅行时根据 测井资料建立的速度模型计算得到,如图4所示。其中,定位结果m。?(x,z)任意一点的振幅 代表该点为震源点的可能性,该点振幅越大,代表其越有可能是真实的震源位置。
[0071] 13)、根据震源定位结果mc^(X,z)进行反偏移得到反偏移的微地震直达波信息 Dde ;
[0072]反偏移如式(7)所示:
[0073] A/, = (7) i
[0074] 其中,L为反偏移算子,其中,i表示观测系统中的检波点;
[0075] 14)、根据反偏移的微地震直达波信息Dde和微地震直达波信息D(t,n)的互相关值, 确定微地震震源的激发时刻TS ;
[0076] rs = arg max (corr(D(t, n),Ddc (U n))) (g ^ t
[0077]其中(3〇^(〇(^),〇心(111))代表的是获取互相关值,^胃0严〇代表的是当互相 关值最大时ts的值。
[0078]步骤2)、基于确定的激发时刻,使用最小二乘Kirchhoff方法进行迭代求解,获得 精确定位结果:
[0079] 基于确定的激发时刻构造最小二乘框架进行反演求解:
[0080] f(miSm) = | | L(Ts)miSm(x,z)-D(t,n) | 12 (9);
[0081 ] 其中,f(miSm)是构造的最小二乘目标函数,mism为最小二乘Kirchhoff方法进行迭 代更新后的精确定位结果,mism(X,Z )的大小和IlhanU,Z )-致,横坐标和纵坐标为X和Z,两者 均为空间信息,具体关系为:m_(x,z)为提供了一个很好的初始结果,通过迭代,mlsm(x,z) 的空间分辨率会得到提高,L(Ts)为已知激发时刻的正演算子;经过迭代,得到最终的精确 定位结果miSm(x,z)。
[0082]
[0083] 其中最小二乘Kirchhoff方法的迭代过程为:
[0084]假设初始模型(第一次迭代结果)为:nujimc?
[0085]贝1J,在第k+1次迭代的流程为:
[0086] A m = LT(Lmismk-D);
[0087] mismk+1=rnismk-a Am;
[0088] 其中,k为迭代的次数,mlsmk代表第k次迭代的定位结果,Am代表在第k次迭代过程 中求取的对定位结果的更新误差,a为对第k+1次定位结果m lsmk+1进行更新时的计算步长。
[0089] 迭代后的定位结果如图7所示,通过对比可以看出,迭代后的定位结果更加聚焦。 此外,最小二乘Kirchhoff方法目标函数收敛情况如图8所示,横坐标代表迭代次数,纵坐标 代表迭代误差,该图表示随着迭代不断增加误差不断减小。
[0090] 以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精 神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。应 当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不 脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
【主权项】
1. 一种基于互相关偏移与最小二乘思想的微地震定位方法,其特征在于:包括以下步 骤: 1) 、通过互相关偏移方法确定震源空间位置的初始定位结果和微地震震源的激发时 刻; 2) 、基于确定的激发时刻,使用最小二乘Kirchhoff方法进行迭代求解,获得精确定位 结果。2. 如权利要求1所述的基于互相关偏移与最小二乘思想的微地震定位方法,其特征在 于:所述步骤1)中确定震源空间位置的初始定位结果具体如下所述: 11) 、获取同一震源原始的微地震记录gather(t,n),其中t代表每个检波点记录的时间 序列,η代表检波点的个数,然后设置一个选择函数M(t,n),该选择函数与原始的微地震记 录gather (t,n)大小一致,每个检波点的选择函数结果如式(1)所示:其中,直达波信息为需要保留的信息,它对应位置的值为1,直达波外的信息是不需要 保留的信息,它对应位置的值为〇; U代表第i个检波器的时间序列,th代表第i个检波器中直达波的开始记录时刻, 表第i个检波器中直达波的结束时刻; 然后,将选择函数M(t,n)和原始的微地震记录gather(t,n)相乘,得到只含有直达波信 息的记录D(t,n),如式(2)所示: D(t,n) =M(t,n)gather(t,n) (2); 然后假设18为震源的激发时刻,W为震源子波,假设不重合的任意两个检波器A和B接收 到的直达波信息为分别为ζ和%,则5和1;分别如式⑶和⑷所示:此式中ω代表震源的主频,G(A,s,ω )和G(B,s,ω )分别代表震源s到检波器A和B的格 林函数; 12) 、基于上述^和.!;,得到基于互相关偏移的微地震震源成像表达式:上述式(5)、式(6)中Ιιη(Χ,Ζ)为定位结果,X和Z代表定位结果Ιιη(Χ,Ζ)的横坐标和纵 坐标,TsA为震源s到检波点Α的旅行时,TSB为震源s到检波点Β的旅行时,该旅行时根据测井 资料建立的速度模型计算得到,其中,定位结果mmmU,Z )任意一点的振幅代表该点为震源 点的可能性,该点振幅越大,代表其越有可能是真实的震源位置。3. 如权利要求2所述的基于互相关偏移与最小二乘思想的微地震定位方法, 其特征在于:所述步骤1)中确定微地震震源的激发时刻具体如下所述: 13) 、根据震源定位结果ι?(Χ,ζ)进行反偏移得到反偏移的微地震直达波信息Dde; 反偏移如式(7)所示:其中,L为反偏移算子,i表示观测系统中的检波点; 14) 、根据反偏移获得的微地震直达波信息D&和实际采集微地震直达波信息D(t,n)的 互相关值,确定微地震震源的激发时刻t s ;其中(3〇^(0(丨,11),0(^(丨,11))代表的是获取互相关值: 代表的是当互相关值最 大时ts的值。4. 如权利要求3所述的基于互相关偏移与最小二乘思想的微地震定位方法,其特征在 于:所述的步骤2)具体为: 基于确定的激发时刻,构造最小二乘框架进行反演求解: f(miSm)= | |L(Ts)mism(x,z)-D(t,n) | 丨2 (9) 其中,f (mism)是构造的最小二乘目标函数,mism为最小二乘Kirchhoff方法进行迭代更 新后的精确定位结果,m 1 s m (X,z)的大小和m。。m (X,z) -致,横坐标和纵坐标分别为X和z。L (ts)为已知激发时刻的正演算子;经过迭代,得到最终的精确定位结果mlsm(x,z)。5. 如权利要求4所述的基于互相关偏移与最小二乘思想的微地震定位方法,其特征在 于:所述最小二乘Kirchhoff方法的迭代过程为: 假设初始模型为:mism1=m。?; 贝lj,在第k+1次迭代的流程为: A m=LT(Lmismk-D); mismk+1=rnismk-a Am; 其中,k为迭代的次数,mlsmk代表第k次迭代的定位结果,Am代表在第k次迭代过程中求 取的对定位结果的更新误差,a为对第k+Ι次定位结果mlsmk+1进行更新时的计算步长。
【文档编号】G01V1/28GK105929444SQ201610217953
【公开日】2016年9月7日
【申请日】2016年4月8日
【发明人】王博, 王一博, 武绍江, 常旭
【申请人】中国科学院地质与地球物理研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1