专利名称:一种可重组生产线产品质量预测方法
技术领域:
本发明涉及一种工序质量预测的方法,特别是针对发动机缸体、缸盖生产线的工序质量预测控制方法。
背景技术:
汽车工业是对装备制造业整体科技进步作用显著的国民经济支柱产业,汽车零部件制造对其装备提出加工精度、效率、综合自动化程度和工艺集成度高;加工对象品种、规格、范围适应性广;系统可靠性和利用率高等要求。因此,掌握先进的汽车关键零部件成套加工自动化生产线技术,对提升我国汽车零部件制造能力,促进国民经济发展具有重要的意义。而针对缸盖、缸体这样复杂的机械零件加工的可重组生产线的质量预测技术及专利国内外均未见报道。
由于现代高度自动化制造过程具有自动化程度高、加工速度快的特点,在产品加工过程中必然会产生大量的数据,如每道工序的质量特性检验结果,产品合格率状况、产品加工的设备号、工艺参数和工作环境资料等。这些庞杂无序的数据资料能够客观地反映制造过程的状态,但是由于数据量大,变量多,因此分析起来十分困难。如何利用这些数据,通过数据的分析提高过程监控能力成为学术界和工业界共同关注的问题。
发明内容
本发明的目的是针对现有技术的状况,提供一种可重组生产线的生产质量预测方法,使其能够对可重组生产线产品质量进行预测。
为达到上述目的,本发明的解决方案是 (1)选择关键工序质量控制点,在线检测,记录零件质量信息,分析加工中的误差因素。包括以下五种信息。
①零件信息获取零件尺寸、加工特征、精度要求等; ②检测信息获取由三坐标测量机及其他测量装置测量的数据和历史记录; ③加工工艺信息获取加工顺序、加工动作、加工参数和加工参考面。
将以上信息保存到主服务器中的质量信息数据库。
(2)设定质量预测控制的初始参数,采取预防为主的原则,用贝叶斯统计对关键质量特性进行预测,对检测获得的误差序列进行实时建模,求得产品生产的预测数值,具体步骤参见图3。
①把预测分布看成是条件概率分布,预测程序根据先验信息θt|Dt-1求出预测分布p(yt|Dt-1); ②运用贝叶斯公式(包括如下三条公式) i、θt=θt-1+ωt,ωt~N[mt-1,Rt],(1) 其中,Rt=Ct-1+Wt,θt为t时刻序列的水平即加工质量特性的均值,ωt为生产线的状态误差项,Wt为状态误差项方差,这是生产线加工过程的状态方程。
ii、yt=θt+vt,vt~N[ft,Qt],(2) 其中,ft=mt-1,Qt=Rt+Vt,yt为t时刻加工质量特性的测量值,vt为t时刻的质量特性测量误差项或噪声项,Vt为测量系统误差项方差,这是质量特性的观测方程。
iii、(θt|Dt)~N[mt,Ct],(3) 其中,mt=mt-1+Atet,Ct=Atvt,At=Rt/Qt,et=yt-ft。At为先验回归系数,et为一步超前预测误差。
求得后验信息θt|Dt,并不断对先验信息进行修正,从而求得所需要的预测数值。
③根据得到的产品预测数值预测产品质量的发展趋势,建立对工序质量情况的动态反映,以保证加工质量。
(3)根据误差的趋势信息,综合工位上的传感器信息,当预测数据超出上下控制线的时候,就说明产品生产过程将会出现质量问题,需各生产工位装备进行检查、调整或补偿,制定改善措施。
图1本发明实施例的工序质量控制系统的网络结构图。
图2本发明实施例的系统实现流程图。
图3本发明实施例的贝叶斯统计流程图。
具体实施例方式 本发明是通过以下技术方案实现的,生产线硬件系统如图1所示,主要包括生产线控制系统以及传感器数据采集系统。
(1)生产线控制系统采用分布式网络控制系统,这种系统结构总体上可以划分为现场执行层、分析控制层和计划决策层三个层次,有如下特点 由于工序的物理位置的分布是离散的,所以分布式控制网络使他们有机地组成了一个整体,以便共享数据,交互信息。
为了有效组织大量质量数据,建立标准的数据交换接口,应采用数据库进行存储和管理。
工序质量数据的采集是实时的,多个工序质量控制点表现为多个用户,用户之间能够互通信息,在工序与工序之间或工序与管理者之间及时对质量问题进行交流和反馈。
(2)传感器数据采集系统在生产线各个部位的传感器实时接收来自生产过程和工作状态的质量信息,经传感器接口将信息送入信号放大器,对信号进行放大和滤波,经过模/数转换器转换为计算机能够识别的数字信号,送入控制计算机,控制计算机对输入信号进行预测处理,并与生产线正常运行状态或产品质量标准进行比较,生成控制信号,经过数/模转换器转换成模拟信号后送入控制器,控制器再去控制驱动器改变生产过程参数,使生产过程恢复到正常状态,或者使产品的质量达到标准的要求。
质量预测控制软件系统分为三个部分 (1)监控模块监控模块利用上述生产线控制系统构建的现场总线以及底层传感器数据采集系统,采集来自人员、设备和控制器关于过程、材料和运行的数据,并接收质量诊断模块反馈的完工信息、资源计划跟踪信息以及生产过程中所产生的各种信息。数据采集的目的是为分析和了解产品的质量特性,数据处理的结果为解决质量问题提供了理论依据。
(2)质量预测与诊断模块采用贝叶斯统计对产品加工质量的时间序列进行描述和预测,并结合质量诊断知识库来增强对加工过程的监控能力,误差预报,及时预警,排除故障。并将计算结果通过现场总线反馈给生产线各工位。
(3)用户操作模块主要将数据采集、质量预测与诊断及控制反馈模块集成,便于用户的操作。质量控制系统具有柔性的组织结构,随着关键零件特性或工艺步骤的不同而进行动态的配置。
实现可重组生产线的这种产品质量预测方法的具体实施步骤如下 参见图2所示,系统实现分为三步 (1)选择关键工序质量控制点,在线检测,记录零件质量信息,分析加工中的误差因素。包括以下五种信息。
①零件信息获取零件尺寸、加工特征、精度要求等; ②检测信息获取由三坐标测量机及其他测量装置测量的数据和历史记录; ③加工工艺信息获取加工顺序、加工动作、加工参数和加工参考面。
将以上信息保存到主服务器中的质量信息数据库。
(2)设定质量预测控制的初始参数,采取预防为主的原则,用贝叶斯统计对关键质量特性进行预测,对检测获得的误差序列进行实时建模,求得产品生产的预测数值,具体步骤参见图3。
①把预测分布看成是条件概率分布,预测程序根据先验信息θt|Dt-1求出预测分布p(yt|Dt-1); ②运用贝叶斯公式(包括如下三条公式) i、θt=θt-1+ωt,ωt~N[mt-1,Rt],(1) 其中,Rt=Ct-1+Wt,θt为t时刻序列的水平即加工质量特性的均值,ωt为生产线的状态误差项,Wt为状态误差项方差,这是生产线加工过程的状态方程。
ii、yt=θt+vt,vt~N[ft,Qt],(2) 其中,ft=mt-1,Qt=Rt+Vt,yt为t时刻加工质量特性的测量值,vt为t时刻的质量特性测量误差项或噪声项,Vt为测量系统误差项方差,这是质量特性的观测方程。
iii、(θt|Dt)~N[mt,Ct],(3) 其中,mt=mt-1+Atet,Ct=Atvt,At=Rt/Qt,et=yt-ft。At为先验回归系数,et为一步超前预测误差。
求得后验信息θt|Dt,并不断对先验信息进行修正,从而求得所需要的预测数值。
③根据得到的产品预测数值预测产品质量的发展趋势,建立对工序质量情况的动态反映,以保证加工质量。
(3)根据误差的趋势信息,综合工位上的传感器信息,当预测数据超出上下控制线的时候,就说明产品生产过程将会出现质量问题,需各生产工位装备进行检查、调整或补偿,制定改善措施。
本发明具有实质性特点,解决了背景技术中存在的问题,提供一种用于可重组生产线生产质量预测的方法。改方法对在线质量检测数据进行预测,通过对工件质量特征的分析,预测工件的未来质量状态,防止工件超差和实施补偿控制,减少乃至避免废品的出现。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和应用本发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于这里的实施例,本领域技术人员根据本发明的揭示,对于本发明做出的改进和修改都应该在本发明的保护范围之内。
权利要求
1、一种可重组生产线产品质量预测方法,其特征在于包括(1)选择关键工序质量控制点,在线检测,记录零件质量信息,分析加工中的误差因素,将相关信息保存到主服务器中的质量信息数据库;
(2)设定质量预测控制的初始参数,采取预防为主的原则,对关键质量特性进行预测,对检测获得的误差序列进行实时建模,求得产品生产的预测数值;
(3)根据误差的趋势信息,综合工位上的传感器信息,当预测数据超出上下控制线的时候,就说明产品生产过程将会出现质量问题,需各生产工位装备进行检查、调整或补偿,制定改善措施。
2、根据权利要求1所述的可重组生产线产品质量预测方法,其特征在于步骤(1)中所述“相关信息”包括以下信息
①零件信息获取零件尺寸、加工特征、精度要求等;
②检测信息获取由三坐标测量机及其他测量装置测量的数据和历史记录;
③加工工艺信息获取加工顺序、加工动作、加工参数和加工参考面。
3、根据权利要求1所述的可重组生产线产品质量预测方法,其特征在于步骤(2)中是用贝叶斯统计对关键质量特性进行预测,包括
①把预测分布看成是条件概率分布,预测程序根据先验信息θt|Dt-1求出预测分布p(yt|Dt-1);
②运用贝叶斯公式(包括如下三条公式)
i、θt=θt-1+ωt,ωt~N[mt-1,Rt],(1)
其中,Rt=Ct-1+Wt,θt为t时刻序列的水平即加工质量特性的均值,ωt为生产线的状态误差项,Wt为状态误差项方差,这是生产线加工过程的状态方程;
ii、yt=θt+vt,vt~N[ft,Qt],(2)
其中,ft=mt-1,Qt=Rt+Vt,yt为t时刻加工质量特性的测量值,vt为t时刻的质量特性测量误差项或噪声项,Vt为测量系统误差项方差,这是质量特性的观测方程;
iii、(θt|Dt)~N[mt,Ct],(3)
其中,mt=mt-1+Atet,Ct=Atvt,At=Rt/Qt,et=yt-ft;At为先验回归系数,et为一步超前预测误差;
求得后验信息θt|Dt,并不断对先验信息进行修正,从而求得所需要的预测数值;
③根据得到的产品预测数值预测产品质量的发展趋势,建立对工序质量情况的动态反映,以保证加工质量。
全文摘要
一种可重组生产线产品质量预测方法,包括(1)选择关键工序质量控制点,在线检测,记录零件质量信息,分析加工中的误差因素,将相关信息保存到主服务器中的质量信息数据库;(2)设定质量预测控制的初始参数,采取预防为主的原则,对关键质量特性进行预测,对检测获得的误差序列进行实时建模,求得产品生产的预测数值;(3)根据误差的趋势信息,综合工位上的传感器信息,当预测数据超出上下控制线的时候,就说明产品生产过程将会出现质量问题,需各生产工位装备进行检查、调整或补偿,制定改善措施。依据本发明所提供的方法能够对可重组生产线产品质量进行预测。
文档编号G05B19/418GK101403915SQ20081020240
公开日2009年4月8日 申请日期2008年11月7日 优先权日2008年11月7日
发明者李爱平, 楠 谢, 徐立云, 刘雪梅, 代东升 申请人:同济大学