力纷争试验方法

文档序号:6286817阅读:368来源:国知局
专利名称:力纷争试验方法
技术领域
本发明涉及试验环境的提供方法,具体涉及一种能克服力纷争减缓作用而在力综 合作动装置中可控地激起力纷争的试验方法。
背景技术
在对大尺寸大质量的运动部件进行操作时,往往需要通过多通道的操作部件同时 给运动部件施加操作力。例如在对飞机主舵面进行操作时,通常是由2-3个液压作动器同 时提供作动力。这样,由于各个操作部件自身动态响应能力的区别和制造组装时积累下的 误差,在各个操作部件之间可能存在微小的不同步。如果运动部件的刚度不高,那么这些不同步可以被部件自身的形变“吸收”,不会 对运动部件造成什么影响。但在运动部件刚度较高的情况下,由于运动部件自身不容易产 生形变,就会造成操作部件之间的“力纷争”现象。力纷争现象的反复出现,会引起金属疲 劳,长时间积累很容易导致运动部件的疲劳损坏。本文中,为了便于描述,将运动部件和多 个操作部件共同形成的装置称为力综合作动装置。为了减缓这种力纷争现象,就需要使用到力纷争减缓装置。如在授权公告号CN 1202360C的中国专利中,就公开了一种用于减缓或消除力纷争的“多通道同步液压伺服传 动装置”,其工作原理是,引入多个液压装置两腔压差(DP)之间的差值(DDP)作为闭环反馈 控制参数,然后通过比例积分环节形成对超前液压装置的负位移增量指令和对滞后液压装 置的正位移增量指令,从而通过减小液压装置之间的不同步来减缓力纷争。力纷争减缓装置可以通过减缓力纷争来保护整个系统的安全,但是在某些情况 下,人们却希望在系统中存在力纷争。例如在对力纷争减缓装置等的工作性能,或者力综合 作动装置的安全性进行测试时,就需要在系统中激励出所需的力纷争状况。此时,由于系统中的力纷争减缓装置也同时发挥作用,因此,激励起的力纷争会很 快被力纷争减缓装置减缓,这样试验环境就难以维持需要,使得试验无法继续进行。而这正 是本发明所要解决的技术问题。

发明内容
本发明的目的在于,提出一种新的提供力纷争试验环境的方法,其能够根据试验 要求在与力纷争减缓装置相连的力综合作动装置中反复激发出力纷争,使得即使在力纷争 减缓装置不断产生力纷争减缓作用的情况下,也能激励力综合作动装置维持试验所需的力 纷争状况。这样可以在不断开力纷争减缓装置的情况下进行试验,使得试验更加接近于真 实情况,并能对各种与力纷争相关的装置的性能做全方面的检测。为了实现上述发明目的,本发明提出了一种克服力纷争减缓装置的力纷争减缓作 用而可控地激起力综合作动装置力纷争的试验方法,其步骤包括a提供力纷争试验装置、力纷争减缓装置和与二者分别相连的力综合作动装置,所 述力纷争试验装置包括输入输出模块、接口电路模块和控制运算模块,其中输入输出模块与控制运算模块连接,用于输出试验状态和输入力纷争指令,接口电路模块包括分别与力 综合作动装置相连的输入端和输出端,控制运算模块连接与接口电路模块的输入端和输出 端之间,用于形成所需的力纷争控制信号;b通过输入输出模块输入试验所需的力纷争指令;C通过控制运算模块根据输入的力纷争指令来确定当前的调节目标值,并将调节 目标值和由接口电路模块输入的力纷争反馈结合,从而确定调节量;d将调节量由接口电路模块输出至力综合作动装置,并将其结合力纷争减缓装置 产生的另一调节量对力综合作动装置的力纷争进行调节;e将力综合作动装置的力纷争反馈经接口电路模块输送至控制运算模块,从而与 当前调节目标值再次综合后进行下一轮调节,形成力纷争的闭环伺服控制系统;f.重复上述步骤c-e,使得力综合作动装置的力纷争与所输入的力纷争指令一 致,直至试验结束。通过这一方法,可以在力综合作动装置中可控地激起力纷争,从而能够在所需的 试验环境下对与力纷争相关的装置的性能进行试验。进一步地,在所述步骤b,输入的力纷争指令可以是连续函数、脉冲函数或任意其 它函数形式。更进一步地,在步骤e中,在将力纷争反馈输送至控制运算模块之前,可以先用滤 波器滤去杂波之后再与调节目标值结合。更进一步地,在步骤c中,调节量的确定方式为,将当前的调节目标值与力纷争反 馈进行减法综合,从而形成力纷争的误差值,再将此误差值送入控制运算模块计算,得到各 液压作动器的调节量。其中优选地,减法综合通过力纷争试验装置的减法器实现,其用所述力纷争指令 减去所述力纷争反馈。再优选地,在步骤c中,控制运算模块将减法器输出的力纷争的误差值进行比 例_微分_积分运算,从而优化输出的控制指令。再进一步地,在步骤d中,在将调节量由接口电路模块输出至力综合作动装置之 前,可以先用力纷争试验装置的限幅器对输出信号的幅值进行限制,以免损坏设备。


现在将通过仅为举例的方式,参照附图对本发明的优选实施方式进行描述,其 中图1显示了实施本发明优选实施方式的装置系统原理图;图2显示了优选实施方式中待试验的力纷争监控装置的两种触发条件,其中曲线 A显示了力纷争监控装置的第一种触发条件,曲线B显示了力纷争监控装置的第二种触发 条件;图3显示了本发明优选实施方式的试验流程图。
具体实施例方式下面将对本发明优选实施方式的方法进行描述,以使本领域技术人员能够对本发明的优势有着更加清楚的了解。其中,为了更加容易理解相关内容,将以提供对力纷争监控 装置测试所需的力纷争函数为例进行描述。其中,力纷争监控装置是对力综合作动装置中的力纷争状况进行监控并对故障情 况做出应急响应的安全装置。当系统中的力纷争严重到一定程度时,仅仅通过力纷争减缓 装置将难以满足安全需要。这时就需要通过力纷争监控装置来对力纷争情况进行监控,以 检查系统的力纷争状况是否进入以下两种情况(如图2所示)一、DDP的值超过门限值 Pl (例如IOOOpsi)并保持Tl (例如IOs) ;二、DDP的值超过门限值P2(例如1500psi)的次 数达到N2 (例如一次)。一般来说,Pl < P2。当满足上述两种条件之一时,力纷争监控装置就会判断其为故障情况。此时,力 纷争监控装置会只保留一路通道的操作部件(作动器)为主动模式,而将其余的操作部件 (作动器)转入被动模式。从而通过减少主动工作的操作部件(作动器)的数量来消除力 纷争现象。在下面的例子中,将提供其中第一种故障条件,即克服力纷争减缓装置的作用,而 将系统中的DDP在Pl (IOOOpsi)和P2(1500psi)之间保持Tl (10s)。首先参照图1,其显示了该优选实施方式中完成试验的系统原理图。其中,右上方 的一组部件构成了实施此优选实施方式的力纷争试验装置;在其下方的一组部件构成了力 综合作动装置,在本实施方式中其包括两个液压作动器A、B和它们共同施加作动力的飞机 舵面;在左侧上方的一组部件构成了需要克服其作用的力纷争减缓装置;而在左侧下方的 一组部件构成了待试验的装置,即力纷争监控装置。其中,如上文所述,在力综合作动装置中,由两个液压作动器A、B并联操纵同一个 舵面,其总输出力为各个作动器输出力之和。作动力的大小通过由作动器电子控制装置ACE 调节作动器的输出位移来间接进行调节。在两个作动器A、B上分别具有位置传感器(图中 未显示),以将作动器的位置参数反馈给电子控制装置ACE。两个作动器A、B上还分别连接 压差传感器(图中未显示),其可以测量每个作动器的两液压缸之间的压差DPa* DPb,然后 通过数据线将压差值输送到相关部件,例如力纷争试验装置的DDP反馈电路接口,以及力 纷争减缓和力纷争监控装置的输入口。力纷争减缓装置可在接收到压差传感器的后求出它们的平均值,进而 求出不同液压作动器之间两腔压差的差(DDP),然后通过P/I补偿器计算出消除力纷争所 需的作动器位置变化指令,最后传递给力综合作动装置的ACE部件。力纷争监控装置可在接收到压差传感器的DPa和DPb之后求出它们的差值DDP,再 将此DDP值与两门限值IOOOpsi和1500psi做比较,当高于IOOOpsi达到IOs时间或高于 1500psi达到一次之后,由力纷争监控装置的输出部分输出故障触发信号,控制ACE切断其 中一个液压作动器A或B,使其转入被动模式,从而消除了力纷争。本次试验希望实现的是 DDP高于IOOOpsi并维持IOs之后切断一个液压作动器,因此需要将DDP维持在IOOOpsi和 1500psi之间,以免触发第二种情况而造成试验失败。除此以外的最后一个装置即力纷争试验装置是本发明所涉及到的核心部分,其作 用在于根据试验人员的输入指令,激发出试验所需的力纷争DDP值,并在力纷争减缓装置 存在的情况下使DDP值与所需的值相吻合。如图1所示,本实施方式中涉及的力纷争试验装置主要包括以下组成部分
数据监控和分析模块,用于监控和记录力综合作动装置DDP值、DDP控制指令以及 ACE总线数据等。试验人员可以通过该模块实时监控试验中的数据,以便在发现可能造成系 统损害的异常情况时及时切断力纷争试验装置与力综合作动装置的连接。此外,也可以在 试验结束后通过该模块调取试验数据用于事后处理分析。DDP指令生成模块,用于生成DDP的控制波形信号并控制信号的输出时间和输出 周期数等。试验人员可以根据试验要求通过人机交互界面来方便地设置各种DDP的控制波 形信号,例如像本例中将DDP稳定在1000psi-1500psi的范围内,或者连续激发脉冲信号, 当然也可以生成方波、正弦波或任意波形的DDP信号,从而满足各种现有的或将来可能遇 到的试验需要。本实施方式中的控制运算模块包括减法器和PID控制器,用于将力纷争反馈和调 节目标值进行综合,以最终形成调节量。具体的综合过程为,由减法器把收集到的DDP反馈 值和调节目标值进行比较,然后把比较结果传送至PID控制器,通过计算,形成关于位置增 量的调节量,以激励起力综合作动装置不同作动器通道间的力纷争,以使力综合作动装置 的DDP值达到或者保持在参考值。其中,PID控制器由比例单元P、积分单元I和微分单元D组成,通过调节PID参数 可优化力纷争试验装置的性能,从而使其更加迅速、准确、稳定地使力综合作动装置的DDP 达到指令目标值。接口电路模块,用于实现力纷争试验装置与其它设备之间的数据输入和输出,包 括DDP接口电路和RVDT信号仿真电路。前者用于解调并采集力纷争减缓装置中的压差传 感器的输出电信号,并经过减法运算获得DDP数据,从而将两作动器的当前工作状况反馈 给力纷争试验装置,以便形成下一轮的调控。后者用于将PID控制器的输出调制成可被ACE 识别的RVDT高频信号。上述四个主要模块既可以集成在一个完整的电脑系统中,也可以形成单独的装置 后再组合在一起。这两种方案均不影响本发明的目的和效果。例如在本实施方式中,是将 前三个模块集成在一套电脑设备中,而将接口电路模块形成一台单独的设备。此外,系统中还可包括一些辅助性的部件,例如用于消除杂波输入的滤波器,用于 限制输出信号幅值以免损坏待试验力综合作动装置的限幅器,以及各种A/D、D/A转换器。下面将结合附图3,通过已经详细描述的图1中所示的装置,对本例中的试验流程 进行详细描述。其中,图3是显示了该试验的流程图。在试验开始前的准备阶段,首先启动力综合作动装置、力纷争减缓装置和力纷争 监控装置。此时,整个系统处于正常使用状况。如图1所示,两液压作动器A、B共同对舵面施 加控制力。而由于两作动器A、B自身动态响应能力的区别和制造安装时积累的误差,它们 之间存在微小的不同步。但这一微小不同步在力纷争减缓装置的作用下迅速减小,并保持 几乎为零。并且,由于整个系统中不存在异常状况,力纷争监控装置虽然处于监视状态中, 但并不产生效果。试验开始时,首先启动力纷争试验装置,并将根据试验需要(将力纷争维持在 IOOOpsi和1500psi之间)而确定的1300psi的恒定DDP通过DDP指令生成模块输入系统 中。当然,这里的DDP函数也可以是其它任意类型的函数,例如脉冲函数、方波函数、三角波函数或者各种连续或离散的不规则函数。这样,通过同样的试验方法就可以实现各种目的的试验,只需要根据试验目的修改软件中的判定条件,而无需再对装置进行修改。由于DDP指令函数恒为1300psi,因此整个过程中的调节目标值均为1300psi。如 果采用的是变函数,那么每轮的调节目标值将随着指令函数值的变化而变化。控制运算模块生成了 DDP调节目标值1300psi,并与送入这里的反映当前工作状 况下力纷争状况的力纷争反馈进行减法综合,形成力纷争的误差值。由于此时力纷争试验 装置刚刚启动,尚未能对DDP反馈造成影响,再加上力纷争减缓装置的削弱效果,此时的力 纷争反馈几乎是零。调节目标值和反馈信号经过减法运算后得出当前的调节量1300psi,并 送入后续的PID控制器中。PID控制器接受到这一轮的调节量1300psi后,根据内置的运算规则将其分配到 两路单独的输出电路中,以分别用于各个液压作动器的控制。其中,分配误差值时可以以任 意的比例进行,也可以在分配后再乘以系数以进行调整。当然还可以简单地采用平均分配 的运算规则,即将两路输出电路的误差值设置为大小相等方向相反,这也恰好就是本实施 方式中所采用的分配方式,即两个误差值分别为士650psi,这两个误差值经过PID运算后, 分别形成对作动器A、B的关于位置的调节量。接下来,再通过RVDT仿真电路将PID控制器输出的两路调节量转换成ACE能识别 的高频交流信号,并送至ACE中以供调节使用。在ACE处,还有另外两路调节量输入信号, 即由力纷争减缓装置根据当前DDP值而生成的用于消除力纷争的调节信号。在同一个ACE 处的两路调节信号叠加后作为总的调节信号输出给两液压作动器A、B。此时,从RVDT仿真 电路输入的调节量远大于从力纷争减缓装置输入的调节量,因此可以在很短的时间内实现 设定的目标值。ACE输出的总的调节信号传输给两液压作动器A、B,并由两液压作动器分别给舵 面施加作动力,从而人为地形成力纷争。通常来说系统不可能仅通过一次调节即得到试验所需的力纷争状况,需要经过多 次调节而反复进行修正。因此,如上文中已经提到的,力纷争试验装置也会将力综合作动装 置中的力纷争反馈采入,经滤波器滤去高频杂波信号后输入到控制运算模块中,从而形成 闭合的反馈回路,以确保所产生的DDP满足试验的需要。经过若干轮反复调节后,力综合作动装置中的力纷争值DDP接近并达到了所设定 的目标值1300psi,但是此时并不能将力纷争试验装置的作用停止,因为力纷争减缓装置的 调节作用会使得力综合作动装置内的力纷争不断偏离目标值而趋向于零。因此也需要力纷 争试验装置反复输出调节量以对其值进行修正,直到完成试验为止。需要理解的是,本发明的内容并不局限于实施方式中的内容,而是可以采用任何 可选的方案。本领域技术人员可以方便地想到各种修改方案,这些方案均应作为本发明的 内容而受到保护。
权利要求
一种克服力纷争减缓装置的力纷争减缓作用而在力综合作动装置中可控地激起力纷争的试验方法,其包括以下步骤a提供力纷争试验装置、力纷争减缓装置和与二者分别相连的力综合作动装置,所述力纷争试验装置包括输入输出模块、接口电路模块和控制运算模块,其中输入输出模块与控制运算模块连接,用于输出试验状态和输入力纷争指令,接口电路模块包括分别与力综合作动装置相连的输入端和输出端,控制运算模块连接于所述接口电路模块的输入端和输出端之间,用于形成所需的力纷争控制信号;b通过输入输出模块输入试验所需的力纷争指令;c通过控制运算模块根据输入的力纷争指令来确定当前的调节目标值,并将调节目标值和由接口电路模块输入的力纷争反馈结合,从而确定调节量;d将调节量由接口电路模块输出至力综合作动装置,并将其结合力纷争减缓装置产生的另一调节量对力综合作动装置的力纷争进行调节;e将力综合作动装置的力纷争反馈经接口电路模块输送至控制运算模块,从而与当前调节目标值再次综合后进行下一轮调节,形成力纷争的闭环伺服控制系统;f.重复上述步骤c e,使得力综合作动装置的力纷争与所输入的力纷争指令一致,直至试验结束。
2.如权利要求1所述的力纷争试验方法,其特征在于,在所述步骤b,所述力纷争指令 为连续函数或脉冲函数。
3.如权利要求1或2所述的力纷争试验方法,其特征在于,在步骤e中,在将力纷争反 馈输送至控制运算模块之前,先用滤波器滤去杂波之后再与调节目标值结合。
4.如权利要求1或2所述的力纷争试验方法,其特征在于,在步骤c中,所述调节量的 确定方式为,将当前的调节目标值与力纷争反馈进行减法综合,从而形成力纷争的误差值, 再将此误差值送入控制运算模块计算,得到各液压作动器的调节量;
5.如权利要求4所述的力纷争试验方法,其特征在于,所述减法综合通过所述力纷争 试验装置的减法器实现。
6.如权利要求5所述的力纷争试验方法,其特征在于,所述控制运算模块将所述减法 器输出的力纷争的误差值进行比例-微分-积分运算,从而优化输出的控制指令。
7.如权利要求1或2所述的力纷争试验方法,其特征在于,在步骤d中,在将调节量由 接口电路模块输出至力综合作动装置之前,先用所述力纷争试验装置的限幅器对输出信号 的幅值进行限制,以免损坏设备。
全文摘要
本发明提出了一种克服力纷争减缓装置的力纷争减缓作用而在力综合作动装置中可控地激起力纷争的试验方法,其包括以下步骤a提供力纷争试验装置、力纷争减缓装置和力综合作动装置;b通过输入输出模块输入力纷争指令;c通过控制运算模块根据输入的力纷争指令来确定当前的调节目标值,再进一步确定调节量;d将调节量由接口电路模块输出至力综合作动装置,并将其结合力纷争减缓装置产生的另一调节量对力综合作动装置的力纷争进行调节;e将力纷争反馈经接口电路模块输送至控制运算模块;f.重复上述步骤c-e直至试验结束。通过这一试验方法可以在不断开力纷争减缓装置的情况下进行试验,使得试验更加接近于真实情况。
文档编号G05B19/04GK101989069SQ20091005571
公开日2011年3月23日 申请日期2009年7月30日 优先权日2009年7月30日
发明者廖军辉, 王伟达, 王兴波, 王旻, 赵京洲, 郭巍, 马显超 申请人:中国商用飞机有限责任公司;中国商用飞机有限责任公司上海飞机设计研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1