基于双核两轮微电脑鼠及其超快速探索控制器的制造方法

文档序号:6300317阅读:138来源:国知局
基于双核两轮微电脑鼠及其超快速探索控制器的制造方法
【专利摘要】本实用新型公开了一种基于双核两轮微电脑鼠及其超快速探索控制器,所述探索控制器包括ARM处理器、FPGA处理器、蔽障传感器、两个运动驱动单元和两个电机,所述ARM处理器与每一个蔽障传感器电性连接以接收信号判断前方或两侧是否有障碍物,所述ARM处理器与所述FPGA处理器电性连接以控制所述FPGA处理器工作,所述FPGA处理器分别与每一个所述运动驱动单元电性连接以控制所述运动驱动单元工作,每一个所述运动驱动单元与一个所述电机电性连接以控制所述电机工作。本实用新型同时采用双核协同工作,每个控制芯片的工作量相对较小,有效地防止了程序跑飞,增强了抗干扰能力;避免产生大电流,运算精度较高,性能较稳定。
【专利说明】基于双核两轮微电脑鼠及其超快速探索控制器
【技术领域】
[0001]本实用新型涉及微型机器人领域,尤其涉及一种基于双核两轮微电脑鼠及其超快速探索控制器。
【背景技术】
[0002]微电脑鼠是使用嵌入式微控制器、传感器和机电运动部件构成的一种智能行走机器人,在国外已经竞赛了将近30年,由其原理可以转化为多种实际的工业机器人,近几年内才引进国内,并逐渐成为一个新兴的竞赛项目。微电脑鼠可以在不同“迷宫”中自动记忆和选择路径,采用相应的算法,快速地到达所设定的目的地。一只优秀的微电脑鼠必须具备良好的感知能力,有良好的行走能力,优秀的智能算法,一只完整的微电脑鼠在大体分为以下几个部分:
[0003]I)传感器:传感器是微电脑鼠的眼睛,是微电脑鼠准确获取外部环境信息的依据,然后把外界信息输送到微处理器进行各种条件判断。
[0004]2)电机:执行电机是微电脑鼠的动力源,它根据微处理器的指令来执行微电脑鼠在迷宫中行走时的相关动作。
[0005]3)算法:算法是微电脑鼠的灵魂。微电脑鼠必须采用一定的智能算法才能找到终点,才能找到一条最短的路径,在最短的时间内到达终点。
[0006]4)微处理器:微处理器是微电脑鼠的核心部分,是微电脑鼠的大脑。微电脑鼠所有的信息,包括墙壁信息,位置信息,角度信息和电机状态信息等都需要经过微处理器处理并做出相应的判断。
[0007]微电脑鼠结合了多学科知识,对于提升在校学生的动手能力、团队协作能力和创新能力,促进学生课堂知识的消化和扩展学生的知识面都非常有帮助。另外电脑鼠走迷宫极具趣味性,容易得到学生的认同及参与,并能很好的激发和引导学生这方面的兴趣和爱好。其开展必然提升参赛者在相关领域的技术水平和应用能力,为技术创新提供平台。可以培养大批相关领域的人才,进而促进相关领域的技术发展和产业化进程。由于国内研发此机器人的单位较少,对国际规则读取水平较低,相对研发水平比较落后,研发的微电脑鼠结构如图1,长时间运行发现存在着很多安全问题,即:
[0008](I)作为微电脑鼠的眼睛采用的是超声波或者是一般的红外传感器,使得微电脑鼠对周围迷宫的探索存在一定的误判。
[0009](2)作为微电脑鼠的执行机构采用的是步进电机,经常会遇到丢失脉冲的问题出现,导致对位置的记忆出现错误。
[0010](3)由于采用步进电机,使得机体发热比较严重,不利于在大型复杂迷宫中探索和冲刺。
[0011](4)由于采用比较低级的算法,在迷宫当中的探索一般都要花费4?5分钟的时间,这使得在真正的大赛中无法取胜。
[0012](5)由于微电脑鼠要频繁的刹车和启动,加重了单片机的工作量,单一的单片机无法满足微电脑鼠快速启动和停止的要求。
[0013](6)相对采用的都是一些体积比较大的插件元器件,使得微电脑鼠的体积比较庞大,无法满足快速探索的要求。
[0014](7)由于受周围环境不稳定因素干扰,单片机控制器经常会出现异常,引起微电脑鼠失控,抗干扰能力较差。
[0015](8)对于差速控制的微电脑鼠来说,一般要求其两个电机的控制信号要同步,但是对于单一单片机来说又很难办到,使得微电脑鼠在直道上行驶的时候要来回的补偿,而且有的时候在迷宫当中摇摆幅度较大,特别是对于快速探索时。
[0016](9)由于受单片机容量和算法影响,微电脑鼠对迷宫的信息没有存储,当遇到掉电情况时所有的信息将消失,这使得整个探索过程要重新开始。
[0017]因此,需要对现有的基于单片机控制的微电脑鼠控制器进行重新设计。
实用新型内容
[0018]本实用新型主要解决的技术问题是提供一种基于双核两轮微电脑鼠超快速探索控制器,本实用新型同时采用双核协同工作,每个控制芯片的工作量相对较小,有效地防止了程序跑飞,增强了抗干扰能力;避免产生大电流,运算精度较高,性能较稳定。
[0019]为解决上述技术问题,本实用新型采用的一个技术方案是:提供一种基于双核两轮微电脑鼠超快速探索控制器,应用于两轮微电脑鼠中,所述探索控制器包括ARM处理器、FPGA处理器、蔽障传感器、两个运动驱动单元和两个电机,所述ARM处理器与每一个所述蔽障传感器电性连接以接收信号判断前方或两侧是否有障碍物,所述ARM处理器与所述FPGA处理器电性连接以控制所述FPGA处理器工作并与FPGA处理器之间传输数据信息,所述FPGA处理器分别与每一个所述运动驱动单元电性连接以控制所述运动驱动单元工作,每一个所述运动驱动单元与一个所述电机电性连接以控制所述电机工作,所述电机为高速直流电机。
[0020]在本实用新型一个较佳实施例中,所述探索控制器进一步包括上位机控制单元,所述上位机控制单元与所述ARM处理器电性连接,所述上位机控制单元包括迷宫读取单元、坐标定位单元和在线输出单元。
[0021]在本实用新型一个较佳实施例中,所述蔽障传感器的数量大于等于6个。
[0022]在本实用新型一个较佳实施例中,所述蔽障传感器包括红外发射器和红外接收器。
[0023]在本实用新型一个较佳实施例中,所述红外发射器的型号为0PE5594A,所述红外接收器的型号为TSL262。
[0024]在本实用新型一个较佳实施例中,两个所述红外发射器的信号发射方向与所述两轮微电脑鼠的运动方向相同,两个所述红外发射器的信号发射方向相反且垂直于所述两轮微电脑鼠的运动方向,两个所述红外发射器的信号发射方向关于所述两轮微电脑鼠的运动方向对称且与所述两轮微电脑鼠的运动方向成45°夹角,其它所述红外发射器的信号发射方向与所述两轮微电脑鼠的运动方向的夹角为锐角。
[0025]本实用新型还提供一种两轮微电脑鼠,包括所述探索控制器,所述探索控制器包括ARM处理器、FPGA处理器、蔽障传感器、两个运动驱动单元和两个电机,所述ARM处理器与每一个所述蔽障传感器电性连接以接收信号判断前方或两侧是否有障碍物,所述ARM处理器与所述FPGA处理器电性连接以控制所述FPGA处理器工作并与FPGA处理器之间传输数据信息,所述FPGA处理器分别与每一个所述运动驱动单元电性连接以控制所述运动驱动单元工作,每一个所述运动驱动单元与一个所述电机电性连接以控制所述电机工作,所述电机为高速直流电机,所述两轮微电脑鼠进一步包括壳体和两个车轮,所述壳体两侧分别设置一个所述车轮,所述壳体内部设置所述探索控制器。
[0026]在本实用新型一个较佳实施例中,每一个所述车轮与一个所述电机连接,每一个电机的转轴上设置光电编码器。
[0027]在本实用新型一个较佳实施例中,所述两轮微电脑鼠进一步包括两个陀螺仪,每一个所述陀螺仪与一个所述车轮的转轴连接。
[0028]在本实用新型一个较佳实施例中,所述两轮微电脑鼠进一步包括电压传感器和光电补偿传感器,所述电压传感器和光电补偿传感器分别与所述ARM处理器电性连接。
[0029]本实用新型的有益效果是:
[0030]1:在运动过程中,充分考虑了电池在这个系统中的作用,基于ARM9+FPGA控制器时刻都在对小车的运行状态进行监测和运算,避免了大电流的产生,所以从根本上解决了大电流对锂离子电池的冲击,避免了由于大电流放电而引起的锂离子电池过度老化现象的发生。
[0031]2:由FPGA (A3P250)处理微电脑鼠的两只直流电机探索过程中的同步伺服控制,使得控制比较简单,大大提高了运算速度,解决了单片机软件运行较慢的瓶颈,缩短了开发周期短,并且程序可移植能力强。
[0032]3:本实用新型基本实现全贴片元器件材料,实现了单板控制,不仅节省了控制板占用空间,而且还实现了微电脑鼠的速度大小和方向的独立控制,有利于提高微电脑鼠的稳定性和动态性能。
[0033]4:为了提高运算速度和精度,本微电脑鼠采用了国际上使用最多的红外传感器0PE5594A,使得运算精度大大提高。
[0034]5:由于本控制器采用FPGA (A3P250)处理大量的数据与算法,并充分考虑了周围的干扰源,并把ARM9(S3C2440A)从繁重的工作量中解脱出来,有效地防止了程序的“跑飞”,抗干扰能力大大增强。
[0035]6:为了更好的保护电池,当系统在探索过程中遇到低压时,微电脑鼠上的低压报警传感器S7会自动开启,并限制放电电流,保证微电脑鼠可以完成整个探索,在探索完成回到起点时,会自动锁死在当前位置,并记录下迷宫信息,提示更换电池。
[0036]7:在微电脑鼠运行过程中,ARM9 (S3C2440A)会对直流电机的转矩进行在线辨识并利用直流电机力矩与电流的关系进行补偿,减少了电机转矩抖动对微电脑鼠快速探索迷宫信息的影响,保证了迷宫信息的争取。
[0037]8:由于微电脑鼠的速度和方向独立控制,使得微电脑鼠更容易实现前进、倒退、左转和右转各个方向的精确运动。
[0038]9:由于具有存储功能,这使得微电脑鼠掉电后可以轻易的调取已经探索好的迷宫信息,使二次探索的时间和路径大大降低。【专利附图】

【附图说明】
[0039]为了更清楚地说明本实用新型实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
[0040]图1是现有技术中的微电脑鼠的冲刺控制器的电路结构框图;
[0041]图2是本实用新型所述探索控制器的电路结构框图;
[0042]图3是本实用新型所述微电脑鼠运动时的迷宫坐标示意图;
[0043]图4是本实用新型所述微电脑鼠一较佳实施例的结构示意图;
[0044]图5是本实用新型所述微电脑鼠的前进示意图;
[0045]图6是本实用新型所述微电脑鼠的后退示意图;
[0046]图7是本实用新型所述微电脑鼠的右进示意图;
[0047]图8是本实用新型所述微电脑鼠的左退示意图。
[0048]附图中各部件的标记如下:1、壳体,2、车轮,S1、第一个蔽障传感器,S2、第二个蔽障传感器,S3、第三个蔽障传感器,S4、第四个蔽障传感器,S5、第五个蔽障传感器,S6、第六个蔽障传感器,S7、光电补偿传感器,S8、电压传感器。
【具体实施方式】
[0049]下面将对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本实用新型的一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本实用新型保护的范围。
[0050]请参阅图1至图8,本实用新型实施例包括:
[0051 ] 一种基于双核两轮微电脑鼠超快速探索控制器,应用于两轮微电脑鼠中,所述探索控制器包括ARM处理器、FPGA处理器、蔽障传感器、两个运动驱动单元和两个电机,所述ARM处理器与每一个所述蔽障传感器电性连接以接收信号判断前方或两侧是否有障碍物,所述ARM处理器与所述FPGA处理器电性连接以控制所述FPGA处理器工作并与FPGA处理器之间传输数据信息,所述FPGA处理器分别与每一个所述运动驱动单元电性连接以控制所述运动驱动单元工作,每一个所述运动驱动单元与一个所述电机电性连接以控制所述电机工作,所述电机为高速直流电机,两个电机编号为X、Y。
[0052]在本实用新型中,所述探索控制器进一步包括上位机控制单元,所述上位机控制单元与所述ARM9 (S3C2440A)处理器电性连接,所述上位机控制单元包括迷宫读取单元、坐标定位单元和在线输出单元。
[0053]本实用新型所述蔽障传感器的数量大于等于6个。所述蔽障传感器包括红外发射器和红外接收器。所述红外发射器的型号为0PE5594A,所述红外接收器的型号为TSL262。其中,两个所述红外发射器的信号发射方向与所述两轮微电脑鼠的运动方向相同,两个所述红外发射器的信号发射方向相反且垂直于所述两轮微电脑鼠的运动方向,两个所述红外发射器的信号发射方向关于所述两轮微电脑鼠的运动方向对称且与所述两轮微电脑鼠的运动方向成45°夹角,其它所述红外发射器的信号发射方向与所述两轮微电脑鼠的运动方向的夹角为锐角。
[0054]本实用新型还提供一种两轮微电脑鼠,包括所述探索控制器、壳体I和两个车轮2,所述壳体I两侧分别设置一个所述车轮2,所述壳体I内部设置所述探索控制器。每一个所述车轮2与一个所述电机连接,每一个电机的转轴上设置光电编码器,所述光电编码器为采用512线光码盘,每转一转输出512个脉冲。所述两轮微电脑鼠进一步包括两个陀螺仪,每一个所述陀螺仪与一个所述车轮2的转轴连接。所述两轮微电脑鼠进一步包括电压传感器S8和光电补偿传感器S7,所述电压传感器S8和光电补偿传感器S7分别与所述ARM处理器电性连接。
[0055]在具体应用时,本实用新型开发时采用S3C2440A和A3P250作为开发板核心,所述电脑鼠基本实现全贴片元器件材料,实现了单板控制,不仅节省了控制板占用空间,而且有利于体积和重量的减轻,有利于提高微电脑鼠伺服系统的稳定性和动态性能。
[0056]本实用新型所述微电脑鼠的工作原理为:
[0057]I)先把微电脑鼠放在迷宫起始点,在电源打开状态下,微电脑鼠先进入自锁状态,然后微电脑鼠依靠前方、左右侧面蔽障传感器S1、S2、S3、S4、S5、S6根据实际导航环境传输参数给双核控制器中的ARM9 (S3C2440A),ARM9 (S3C2440A)处理后与FPGA (A3P250)通讯,然后由FPGA (A3P250)结合光电编码器的反馈处理两个独立电机的同步伺服控制,并把处理数据通讯给ARM9 (S3C2440A),由ARM9 (S3C2440A)继续处理后续的运行状态。
[0058]2)在微电脑鼠未接到探索命令之前,它一般会在起点坐标(0,0)等待控制器发出的探索命令,一旦接到任务后,会沿着起点开始向终点(7,7)、(7,8)、(8,7)、(8,8)探索。
[0059]3)微电脑鼠放在起点坐标(0,0),接到任务后其前方的传感器S1、S6和会对前方的环境进行判断,确定有没有挡墙进入运动范围,如存在挡墙将向ARM9 (S3C2440A)发出中断请求,ARM9 (S3C2440A)会对中断做第一时间响应,如果ARM9 (S3C2440A)的中断响应没有来得及处理,微电脑鼠的X马达和Y马达将原地自锁,然后ARM9 (S3C2440A)二次判断迷宫确定前方信息,防止信息误判。
[0060]4)在微电脑鼠沿着Y轴向前运动如果没有挡墙进入前方的运动范围,微电脑鼠将存储其坐标(X,Y),ARM9 (S3C2440A)把向前一格的距离按照时间要求转化为微电脑鼠需要运动的加速度和速度指令值,然后与FPGA (A3P250)通讯,FPGA (A3P250)结合光电编码器的反馈把加速度和速度指令值转化为实际的速度和加速度,由FPGA (A3P250)生成驱动两轴直流电机的PWM波信号,经驱动桥后驱动微电脑鼠到达预定距离,微电脑鼠每经过一个方格,ARM9 (S3C2440A)将更新其坐标为(X,Y+1),在Y+l〈15的前提下,判断其坐标是不是(7,7)、(7,8)、(8,7)、(8,8)其中的一个,如果不是将继续更新其坐标,如果是的话通知控制器已经搜索到目标,然后置返航探索标志为1,微电脑鼠准备返程探索。
[0061]5)在微电脑鼠沿着Y轴向前运动过程中如果有挡墙进入前方的运动范围,并且此时左右的传感器S2、S3、S4、S5判断左右都有挡墙时,微电脑鼠将存储此时坐标(X,Y),ARM9(S3C2440A)把向前停车的距离按照时间要求转化为微电脑鼠需要运动的加速度和速度指令值,然后与FPGA (Α3Ρ250)通讯,FPGA (Α3Ρ250)结合光电编码器的反馈把加速度和速度指令值转化为实际的速度和加速度,由FPGA (Α3Ρ250)生成驱动两轴直流电机的PWM波信号,经驱动桥后驱动微电脑鼠到达预定距离停车,然后有FPGA (Α3Ρ250)生成方向相反的两路PWM波信号,驱动电机X和电机Y以相反的方向运动,使得微电脑鼠在陀螺仪控制下原地调转180度,然后沿着Y轴反向运动;在其Y轴反向运动过程中,ARM9 (S3C2440A)把向前一格的距离按照时间要求转化为微电脑鼠需要运动的加速度和速度指令值,然后与FPGA(A3P250)通讯,FPGA(A3P250)结合光电编码器的反馈把加速度和速度指令值转化为实际的速度和加速度,由FPGA (A3P250)生成驱动两轴直流电机的PWM波信号,经驱动桥后驱动微电脑鼠到达预定距离,每经过一个方格,将更新其坐标为(X,Y-1),在确定Y-1>0的前提下,判断其坐标是不是(7,7)、(7,8)、(8,7)、(8,8)其中的一个,如果不是将继续更新其坐标,如果是的话通知控制器已经搜索到目标,然后置返航探索标志为1,微电脑鼠准备返程探索。
[0062]6)在微电脑鼠沿着Y轴向前运动过程中如果有挡墙进入前方的运动范围,并且此时左右的传感器S2、S3、S4、S5判断左方有挡墙时,微电脑鼠将存储此时坐标(X,Y),ARM9(S3C2440A)把向前停车的距离按照时间要求转化为微电脑鼠需要运动的加速度和速度指令值,然后与FPGA (A3P250)通讯,FPGA (A3P250)结合光电编码器的反馈把加速度和速度指令值转化为实际的速度和加速度,由FPGA (A3P250)生成驱动两轴直流电机的PWM波信号,经驱动桥后驱动微电脑鼠到达预定距离停车,然后有FPGA (A3P250)生成方向相反的两路PWM波信号,驱动电机X和电机Y以相反的方向运动,使得微电脑鼠在陀螺仪控制下原地向右调转90度,然后沿着X轴正向运动,在其沿着X轴正向运动过程中,ARM9 (S3C2440A)把向前一格的距离按照时间要求转化为微电脑鼠需要运动的加速度和速度指令值,然后与FPGA (A3P250)通讯,FPGA (A3P250)结合光电编码器的反馈把加速度和速度指令值转化为实际的速度和加速度,由FPGA (A3P250)生成驱动两轴直流电机的PWM波信号,经驱动桥后驱动微电脑鼠到达预定距离,每经过一个方格,将更新其坐标为(X+1,Y),在X+l〈15的前提下,判断其坐标是不是(7,7)、(7,8)、(8,7)、(8,8)其中的一个,如果不是将继续更新其坐标,如果是的话通知控制器已经搜索到目标,然后置返航探索标志为1,微电脑鼠准备返程探索。
[0063]7)在微电脑鼠沿着Y轴向前运动过程中如果有挡墙进入前方的运动范围,并且此时左右的传感器S2、S3、S4、S5判断右方有挡墙时,微电脑鼠将存储此时坐标(X,Y),ARM9(S3C2440A)把向前停车的距离按照时间要求转化为微电脑鼠需要运动的加速度和速度指令值,然后与FPGA (A3P250)通讯,FPGA (A3P250)结合光电编码器的反馈把加速度和速度指令值转化为实际的速度和加速度,由FPGA (A3P250)生成驱动两轴直流电机的PWM波信号,经驱动桥后驱动微电脑鼠到达预定距离停车,然后有FPGA (A3P250)生成方向相反的两路PWM波信号,驱动电机X和电机Y以相反的方向运动,使得微电脑鼠在陀螺仪控制下原地向左调转90度,然后沿着X轴反向运动,在其沿着X轴反向运动过程中,ARM9 (S3C2440A)把向前一格的距离按照时间要求转化为微电脑鼠需要运动的加速度和速度指令值,然后与FPGA (A3P250)通讯,FPGA (A3P250)结合光电编码器的反馈把加速度和速度指令值转化为实际的速度和加速度,由FPGA (A3P250)生成驱动两轴直流电机的PWM波信号,经驱动桥后驱动微电脑鼠到达预定距离,每经过一个方格,将更新其坐标为(X-1,Y),在X-1>0的前提下,判断其坐标是不是(7,7)、(7,8)、(8,7)、(8,8)其中的一个,如果不是将继续更新其坐标,如果是的话通知控制器已经搜索到目标,然后置返航探索标志为1,微电脑鼠准备返程探索。
[0064]8)当微电脑鼠到达(7,7)、(7,8)、(8,7)、(8,8)准备返程探索时,控制器会调出其已经存储的迷宫,然后计算出可能存在的最佳路径,然后返程开始进入其中认为最优的一条。
[0065]9)在微电脑鼠进入迷宫正常返航运行时,并其导航的传感器S1、S2、S3、S4、S5、S6将工作,并把反射回来的光电信号送给ARM9 (S3C2440A),经ARM9 (S3C2440A)判断后送给FPGA (A3P250),由FPGA (A3P250)运算后与ARM9 (S3C2440A)进行通讯,然后由控制器送控制信号给导航的电机X和电机Y进行确定:如果进入已经搜索的区域将进行快速前进,如果是未知返回区域则采用正常速度搜索,并时刻更新其坐标(X,Y),并判断其坐标是不是(O, O),如果是的话置返航探索标志为O,微电脑鼠进入冲刺阶段,并置冲刺标志为I。
[0066]10)为了能够实现微电脑鼠准确的坐标计算功能,本实用新型在高速直流电机X轴和Y轴上加入了 512线的光码盘,时刻对微电脑鼠运行的距离进行计算并根据迷宫挡墙和柱子对传感器反馈信息不同的特点引入了补偿,使得微电脑鼠的坐标计算不会出现错误。
[0067]11)在微电脑鼠运行过程中,ARM9 (S3C2440A)会对电机X和电机Y的转矩进行在线辨识,当电机的转矩受到外界干扰出现较大抖动时,控制器会利用电机力矩与电流的关系进行时候补偿,减少了电机转矩抖动对微电脑鼠快速探索的影响,保证了探索时迷宫的准确性。
[0068]12)当微电脑完成整个探索过程回到起始点(0,0),ARM9 (S3C2440A)将控制FPGA(A3P250)使得微电脑中心点停车,然后重新调整FPGA (A3P250)的PWM波输出,使得电机X和电机以相反的方向运动,并在陀螺仪的控制下,原地旋转180度,然后停车I秒,调取迷宫信息,最后根据算法算出最优冲刺路径,然后置冲刺标志为I,系统进入快速冲刺阶段。
[0069]综上所述,本实用新型采用双处理器协同工作,ARM9 (S3C2440A)处理器和FPGA处理器时刻都在对微电脑鼠的运行状态进行监测和运算,有效防止程序的跑飞;采用的FPG处理器大大提高了运算速度,,解决了现有技术中的单片机软件运行较慢的瓶颈,缩短了开发周期短,并且程序可移植能力强;ARM9 (S3C2440A)处理器能够在微电脑鼠快速冲刺过程中对两个电机转矩进行在线辨识并利用直流电机力矩与电流的关系进行补偿,减少了电机转矩抖动对微电脑鼠快速冲刺的影响,稳定性和动态性能较好海一个电机独立控制,更容易改变运动轨迹。
[0070]以上所述仅为本实用新型的实施例,并非因此限制本实用新型的专利范围,凡是利用本实用新型说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的【技术领域】,均同理包括在本实用新型的专利保护范围内。
【权利要求】
1.一种基于双核两轮微电脑鼠超快速探索控制器,应用于两轮微电脑鼠中,其特征在于,所述探索控制器包括ARM处理器、FPGA处理器、蔽障传感器、两个运动驱动单元和两个电机,所述ARM处理器与每一个所述蔽障传感器电性连接以接收信号判断前方或两侧是否有障碍物,所述ARM处理器与所述FPGA处理器电性连接以控制所述FPGA处理器工作并与FPGA处理器之间传输数据信息,所述FPGA处理器分别与每一个所述运动驱动单元电性连接以控制所述运动驱动单元工作,每一个所述运动驱动单元与一个所述电机电性连接以控制所述电机工作,所述电机为高速直流电机。
2.根据权利要求1所述的基于双核两轮微电脑鼠超快速探索控制器,其特征在于,所述探索控制器进一步包括上位机控制单元,所述上位机控制单元与所述ARM处理器电性连接,所述上位机控制单元包括迷宫读取单元、坐标定位单元和在线输出单元。
3.根据权利要求1所述的基于双核两轮微电脑鼠超快速探索控制器,其特征在于,所述蔽障传感器的数量大于等于6个。
4.根据权利要求1所述的基于双核两轮微电脑鼠超快速探索控制器,其特征在于,所述蔽障传感器包括红外发射器和红外接收器。
5.根据权利要求4所述的基于双核两轮微电脑鼠超快速探索控制器,其特征在于,所述红外发射器的型号为0PE5594A,所述红外接收器的型号为TSL262。
6.根据权利要求4所述的基于双核两轮微电脑鼠超快速探索控制器,其特征在于,两个所述红外发射器的信号发射方向与所述两轮微电脑鼠的运动方向相同,两个所述红外发射器的信号发射方向相反且垂直于所述两轮微电脑鼠的运动方向,两个所述红外发射器的信号发射方向关于所述两轮微电脑鼠的运动方向对称且与所述两轮微电脑鼠的运动方向成45°夹角,其它所述红外发射器的信号发射方向与所述两轮微电脑鼠的运动方向的夹角为锐角。
7.—种两轮微电脑鼠,其特征在于,包括权利要求1至6任一所述的探索控制器,所述两轮微电脑鼠进一步包括壳体和两个车轮,所述壳体两侧分别设置一个所述车轮,所述壳体内部设置所述探索控制器。
8.根据权利要求7所述的两轮微电脑鼠,其特征在于,每一个所述车轮与一个所述电机连接,每一个电机的转轴上设置光电编码器。
9.根据权利要求7所述的两轮微电脑鼠,其特征在于,所述两轮微电脑鼠进一步包括两个陀螺仪,每一个所述陀螺仪与一个所述车轮的转轴连接。
10.根据权利要求7所述的两轮微电脑鼠,其特征在于,所述两轮微电脑鼠进一步包括电压传感器和光电补偿传感器,所述电压传感器和光电补偿传感器分别与所述ARM处理器电性连接。
【文档编号】G05B19/042GK203643835SQ201320569856
【公开日】2014年6月11日 申请日期:2013年9月16日 优先权日:2013年9月16日
【发明者】张好明, 王应海 申请人:苏州工业园区职业技术学院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1