一种基于深度学习模型的过热汽温预测控制方法与流程

文档序号:34612704发布日期:2023-06-29 08:33阅读:104来源:国知局
一种基于深度学习模型的过热汽温预测控制方法与流程

本发明涉及热工智能控制及保护领域,尤其是涉及一种基于深度学习模型的过热汽温预测控制方法。


背景技术:

1、随着我国经济结构调整和转型升级深入推进,以及电力体制改革大力实施,智慧电厂在节能、降耗、减排等政策驱动下,综合互联网、大数据及人工智能等技术,通过推进智慧运行管理、智慧检修安全、智能控制等举措,已经成为电厂发展的主要趋势,且智慧电厂的投运可有效的提升电厂核心竞争力,推动电厂的持续发展。

2、传统过热汽温控制通常采用串级pid、smith、状态观测器、多模型预测控制等控制方法。由于过热汽温对象延迟惯性较大、扰动因数较多且不同负荷工况下对象特性存在较大差异,因此上述控制方法通常仅能够解决特定扰动或特定工况下的过热汽温控制问题,无法解决针对全负荷工况和全面扰动因数的控制问题。随着智能控制技术和数据挖掘技术的快速发展,将深度学习技术应用于火电机组复杂对象建模和预测成为重要研究和应用领域。

3、深度学习模型由于具备低层特征组合成更抽象的高层特征,能够较好的适用于火电机组复杂高维、非线性、时变性、海量数据的应用场景。但由于深度学习模型维度较高,为非线性数学模型,无法直接将深度学习模型作为预测模型进行最优控制求解,通常采用智能寻优算法,但由于深度学习模型计算和寻优算法计算复杂,无法满足工程应用需求。目前深度学习模型在火电机组复杂对象的实际工程控制中主要采用预警或者智能前馈的控制方式,无法方便地将深度学习模型嵌入控制求解中,充分发挥深度学习模型的预测控制功能。


技术实现思路

1、本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种基于深度学习模型的过热汽温预测控制方法。

2、本发明的目的可以通过以下技术方案来实现:

3、根据本发明的一个方面,提供了一种基于深度学习模型的过热汽温预测控制方法,该方法通过建立锅炉过热汽温系统的深度学习模型,基于该模型分别计算不同控制量下的未来时刻过热汽温的变化情况,并从中挑选最优控制结果对应的控制量作为控制器输出,进行过热汽温控制,从而提升机组过热汽温运行稳定性。

4、作为优选的技术方案,该方法具体包括以下步骤:

5、步骤s1,将锅炉制粉系统、燃烧系统和风烟系统的相关参数作为特征输入参数,选取历史运行数据采用循环神经网络训练预测锅炉过热汽温未来变化的深度学习模型;

6、步骤s2,从dcs系统实时读取特征变量的参数值,建立动态数据存储矩阵队列;

7、步骤s3,从动态数据存储矩阵队列中按照深度学习模型训练数据的采样周期和模型时间补偿,提取模型当期时刻的输入数据矩阵;

8、步骤s4,将步骤s3中的数据矩阵输入深度学习模型分别计算锅炉过热汽温未来30s、60s、90s、120s、150s和180s的变化情况;

9、步骤s5,获取过热汽温设定值未来设定值时间序列与步骤s4中预测的6个未来过热汽温变化数据进行比较,进行预测控制;

10、步骤s6,确定减温水流量p2在一个控制周期内的变化量限值[-δpa,δpb],过热汽温预测控制中,以新设定的减温水流量代替当前时刻的减温水实际流量p2(k),重新进行模型预测计算,获取未来时刻的过热汽温变化值

11、步骤s7,计算不同输入下的过热汽温预测控制性能指标ji;

12、步骤s8,选取最小ji对应的作为下一时刻的给水流量指令,进行过热汽温控制。

13、作为优选的技术方案,所述步骤s1中,共建立预测锅炉过热汽温未来30s、60s、90s、120s、150s和180s变化的6个模型。

14、作为优选的技术方案,所述步骤s2中的动态数据存储矩阵队列具体为:

15、

16、其中k代表当前时刻,pj(k)为第j个特征变量在k时刻的参数,j=1,2,…,n,数据t为采样周期,d为时间步长。

17、作为优选的技术方案,所述步骤s2中,读取特征变量实时数据后,对动态数据存储矩阵进行移位操作,并将实时数据赋值给当前时刻对应的参数。

18、作为优选的技术方案,所述步骤s3中,模型当期时刻的输入数据矩阵具体为:

19、

20、其中k代表当前时刻,pj(k)为第j个特征变量在k时刻的参数,j=1,2,…,n,数据t为采样周期,d为时间步长。

21、作为优选的技术方案,所述步骤s6中,新设定的减温水流量具体计算如下:

22、

23、δpi=min(-δpa+i·δp,δpb),i=0,1,…,m

24、

25、其中δp为减温水流量控制区间、i为计算次数、ceiling为向上取整运算。

26、作为优选的技术方案,所述步骤s7中,过热汽温预测控制性能指标ji具体计算如下:

27、

28、其中ω为减温水流量变化量的计算系数;为作用下的未来l时刻的壁温预测值;为未来l时刻的过热汽温设定值。

29、作为优选的技术方案,所述步骤s1中的预测模型可根据实际控制需求进行调整。

30、作为优选的技术方案,所述步骤s1中的相关参数包括机组功率、给水流量、a-f磨煤量及总煤量、总风量、磨a-f一次风量、一次风压力、各层燃烧器二次风挡板开度、给水焓值、各角燃烧器摆动阀位、主汽压力、中间点温度、炉膛区域吹灰信号、二级a侧减温水流量、二级a侧减温器出口汽温和二级a侧入口过热汽温。

31、与现有技术相比,本发明针对过热汽温控制对象延迟惯性较大、扰动因数较多和非线性特性等控制难题,提出一种方便实际工程应用的深度学习预测控制方法,通过建立锅炉过热汽温系统的深度学习模型,基于该模型分别计算不同控制量下的未来时刻过热汽温的变化情况,并从中挑选最优控制结果对应的控制量作为控制器输出,进行过热汽温控制,提升了机组过热汽温运行稳定性,从而进一步提升了机组安全稳定运行水平。



技术特征:

1.一种基于深度学习模型的过热汽温预测控制方法,其特征在于,该方法通过建立锅炉过热汽温系统的深度学习模型,基于该模型分别计算不同控制量下的未来时刻过热汽温的变化情况,并从中挑选最优控制结果对应的控制量作为控制器输出,进行过热汽温控制,从而提升机组过热汽温运行稳定性。

2.根据权利要求1所述的一种基于深度学习模型的过热汽温预测控制方法,其特征在于,该方法具体包括以下步骤:

3.根据权利要求2所述的一种基于深度学习模型的过热汽温预测控制方法,其特征在于,所述步骤s1中,共建立预测锅炉过热汽温未来30s、60s、90s、120s、150s和180s变化的6个模型。

4.根据权利要求2所述的一种基于深度学习模型的过热汽温预测控制方法,其特征在于,所述步骤s2中的动态数据存储矩阵队列具体为:

5.根据权利要求2所述的一种基于深度学习模型的过热汽温预测控制方法,其特征在于,所述步骤s2中,读取特征变量实时数据后,对动态数据存储矩阵进行移位操作,并将实时数据赋值给当前时刻对应的参数。

6.根据权利要求2所述的一种基于深度学习模型的过热汽温预测控制方法,其特征在于,所述步骤s3中,模型当期时刻的输入数据矩阵具体为:

7.根据权利要求2所述的一种基于深度学习模型的过热汽温预测控制方法,其特征在于,所述步骤s6中,新设定的减温水流量具体计算如下:

8.根据权利要求2所述的一种基于深度学习模型的过热汽温预测控制方法,其特征在于,所述步骤s7中,过热汽温预测控制性能指标ji具体计算如下:

9.根据权利要求2所述的一种基于深度学习模型的过热汽温预测控制方法,其特征在于,所述步骤s1中的预测模型可根据实际控制需求进行调整。


技术总结
本发明涉及一种基于深度学习模型的过热汽温预测控制方法,该方法通过建立锅炉过热汽温系统的深度学习模型,基于该模型分别计算不同控制量下的未来时刻过热汽温的变化情况,并从中挑选最优控制结果对应的控制量作为控制器输出,进行过热汽温控制,从而提升机组过热汽温运行稳定性。与现有技术相比,本发明具有工程应用计算简单、进一步提升了过热汽温控制性能等优点。

技术研发人员:石轲,陈欢乐,沈建峰,刘志成,吴周晶,杨康,姚洋阳
受保护的技术使用者:上海明华电力科技有限公司
技术研发日:
技术公布日:2024/1/13
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1