活组织模式检测方法、活组织模式检测设备、生物统计学认证方法和生物统计学认证设备的制作方法

文档序号:6411469阅读:228来源:国知局
专利名称:活组织模式检测方法、活组织模式检测设备、生物统计学认证方法和生物统计学认证设备的制作方法
技术领域
本发明涉及用于获得例如真皮等等的深皮肤层的模式的新生物统计学(biometric)模式检测方法和生物统计学模式检测设备,尤其涉及生物统计学认证方法和生物统计学认证设备。
背景技术
指纹,掌纹等等被广泛地用于人员认证。这些模式是其中一部分表皮组织被嵌入真皮的凹凸结构中的皮肤嵴模式(skin ridge pattern),因此能够直接从外部观察到这些模式。也就是说,上述模式基本上对应于例如真皮等等的皮肤的深层结构。例如手掌,脚掌等等的部分的皮肤具有不同于其它部分的皮肤的特殊结构,其中表皮结构对应于表皮组织下面的真皮的结构,导致若干生理学优势,例如其末端位于皮肤深层的触觉神经对外部刺激的高灵敏度,对于磨擦的较大韧度,等等。通常,指纹已经用于人员认证,因为其下的深层结构的高稳定性使得指纹基本上表现出足够的稳定性。
然而,上述使用指纹的生物统计学认证对于所谓的″欺骗″等等手段不具备足够的安全性。也就是说,指纹容易被留在各种物体上,并且物体上留下的指纹能够轻易被观察到,从而导致其它人员伪造指纹的风险。
另一方面,期望使用其它部分的表皮组织的生物统计学认证能够避免上述例如伪造的风险。然而,表皮组织会因其在28天周期内的新陈代谢而发生改变。此外,表皮组织容易因粗糙皮肤,干燥皮肤等等而表现出各种状态。因此,其它部分的表皮组织不具有足够的稳定性。此外,已根据测量得知,手指,掌区等等的基部的表皮组织的模式根本不对应于其下的模式,而是在某些情况下,其表皮组织的模式被形成为与其下的模式正交(orthogonal),除了例如指纹的特例之外,这导致在生物统计学认证中难以使用这样的部分。
也就是说,人体较大部分的表皮组织(包含例如掌区等等的掌部,手指根部,手背皮肤等等)的模式不同于其下深层结构的模式,除了例如作为指头印的指纹、其中表皮组织直接对应于深层结构、从而允许对其进行外部观察的特例之外。此外,由于基细胞等等中的黑色素对来自6层上皮结构的可见光的散射与吸收,难以对其下的深层结构进行外部观察。这导致难以开发戒指型认证设备,在该认证设备中,在用户佩带戒指时使用与戒指内面接触的皮肤的模式执行人员认证。
另一方面,象指纹等等的公知例子那样,表皮组织下面的深层结构对于个体基本上是唯一的,并且随时时间推移表现出足够的稳定性。注意,色素被注入深层结构而导致的刺纹,和怀孕导致的拉痕也由于上皮细胞组织下面的深层结构的性质而具有相同的稳定性。因此,期望将上皮细胞组织下面的模式,即上皮细胞组织的深层结构适当地用于生物统计学认证。然而,上述模式不能直接观察,不能通过与物体接触而留在物体上,因此尚未开发出使用深层结构模式的认证设备,尽管深层结构的模式与指纹具有相同的生物统计学认证性能。
为解决上述问题,提出了本发明,因此本发明的一个目的是提供一种生物统计学模式检测方法和生物统计学模式检测设备,用于获得不能直接观察的上皮细胞组织下面的深层结构的凹凸结构(roughnessstructure)分布(上皮细胞组织下面的模式),或上皮细胞组织下面的血管模式。此外,本发明的一个目的是提供一种生物统计学认证方法和生物统计学认证设备,其允许进行稳定的生物统计学认证,同时防止例如伪造或等等的″欺骗″风险。

发明内容
本发明人进行了各种研究以实现上述目的。结果发现能够使用表皮组织和皮肤深层组织之间的性质(光学性质,电气性质和温度差)的差别来鉴别表皮组织和皮肤深层组织,并且清楚地检测其中因表皮的屏蔽而难以进行视觉观察的皮肤深层组织的凹凸分布模式。因此,发现能够检测用户整个身体的皮肤和皮下组织的任何期望部分,以及其中表皮模式对应于真皮模式、例如指纹等等的特殊部分的模式,并且如此检测的模式能够被应用于生物统计学认证(人员认证)。
根据如此获得的信息提出了本发明。也就是说,对于根据本发明的活组织模式检测方法,使用皮肤深层组织和表皮组织之间的性质(光学性质,电气性质和温度差)差异检测被表皮组织覆盖的皮肤深层组织的凹凸分布模式,从而提取活组织的唯一模式。此外,根据本发明的活组织模式检测设备包含用于检测被表皮组织覆盖的皮肤深层组织的凹凸分布模式的装置。此外,对于根据本发明的生物统计学认证方法,检测被表皮组织覆盖的皮肤深层组织的凹凸分布模式以便将其与事先注册的模式相比较,从而执行生物统计学认证。此外,根据本发明的生物统计学认证设备包含用于检测被表皮组织覆盖的皮肤深层组织的凹凸分布模式的装置,并且将如此检测的模式与事先注册的模式相比较,从而执行生物统计学认证。
本发明的提出基于以下基本构思不使用表皮模式,而是使用例如真皮模式的皮肤深层组织的模式来执行认证。深层组织的凹凸分布模式(模式)象指纹,掌纹,脚纹等等那样对于个体活组织是唯一的,并且随时间推移变化很小,即表现出高稳定性。此外,较大部分的皮肤的深层组织具有不同于表皮层的模式,除了例如具有能够从外部观察的指纹的指尖等等的特殊部分之外。此外,深层组织的模式被表皮组织覆盖,导致难以从外部进行视觉观察。此外,即使组织与任何物体进行接触,也不会在该物体上留下印迹。因此,其它人员几乎不可能伪造这样的模式。
此外,对于本发明,系统不检测没有细胞核的死组织,例如皮肤角化层的具体为指纹等等的结构,而是检测作为活组织的皮肤深层组织,如上所述。如果深层组织从活的人体切除,皮肤深层组织不保持其模式。例如,皮肤深层组织其中具有毛细血管,并且毛细血管内的血流组成的模式对活组织是唯一的。此外,如果从活的人体切除组织,则由于血管收缩,血液滞留,血液损失等等,上述模式立即失去。这影响了整个皮肤深层组织的模式。如此,对于本发明,集成了生物统计学认证和活组织鉴别,从而将使用用户组织进行″欺骗″的风险降低到意想不到的水平,并且实现真正的″生物统计学认证″。
利用简单细胞或其死细胞所组成的表皮组织与作为密集连结组织的真皮组织之间的结构差异导致其散射性质和折射性质的差异这一事实,能够光学检测上述皮肤深层组织,例如真皮层的凹凸分布模式,并且这导致入射光和回光的极化或频率差异。
具体地,首先将偏振光投射到组织,并且通过其偏振面与上述偏振光的偏振面正交的偏振滤镜检测反射光,从而检测上述凹凸分布模式。在这种情况下,偏振光被投射在组织表面上,并且用其偏振面与上述偏振光正交的偏振滤镜对反射光进行滤波,因此只检测因活组织中的散射而导致的去极化光,例如反向散射光,因双折射而分割的光,等等,从而提取出其性质导致光线散射的组织,例如表皮等等下面的真皮层的模式。尤其是,进行这样的安排,使得例如近红外光等等、具有容易通过表皮组织的性质并且容易在真皮组织中散射的长波长光被用作上述偏振光,从而减少因活组织中偏振光的吸收而导致的不利影响,并且有效检测由于表皮下面的皮下组织的期望光学性质(散射性质,双折射性质等等)而导致的表皮下面的皮下组织的模式。
接着,进行这样的安排,使得照明光被投射到组织上,并且导致一部分照明光和反射光之间的干涉,以便通过干涉图的形式检测反射光的波长分量的改变,从而提取活组织的唯一模式。在这种情况下,系统导致皮肤的反射或散射光与半反射镜等等分割的充当参考光的入射光之间的干涉,从而通过拍频波形图(beat pattern)(干涉图(interference pattern))的形式检测皮肤内部结构中的双折射或散射所导致的波长分量改变。这样的拍频波形图具有对于个体活组织唯一的性质,从而允许利用拍频波形图进行认证。
此外,对于根据本发明的生物统计学认证方法和生物统计学认证设备,进行这样的安排,使得利用表皮组织和皮肤深层组织之间的电气性质差异对表皮组织所覆盖的皮下组织结构进行电气检测,并且将如此检测的皮下组织结构与事先注册的模式相比较,从而允许进行生物统计学认证。此外,进行这样的安排,使得利用表皮组织和皮肤深层组织之间的温度差异对表皮组织所覆盖的皮下组织结构进行检测,并且将如此检测的皮下组织结构与事先注册的模式相比较,从而允许进行生物统计学认证。


图1是示出皮肤组织的示意图。
图2的示意图示出了用于利用光的反向散射所导致的极化来获得真皮组织图像的检测设备(认证设备)的例子。
图3的示意图示出了用于从皮肤的期望深度得到散射光图像的检测设备(认证设备)的例子。
图4的示意图描述了利用光学外差干涉测量(opticl heterodyneinterferometry)的双折射测量机构。
图5的示意图示出了一种检测设备(认证设备)的例子,该检测设备利用由于从皮肤返回的光的干涉而获得的散射性质模式检测表皮下面的组织模式。
图6的示意图示出了具有其中排列多个拍频(beat)检测设备的结构的检测设备(认证设备)的例子。
图7的示意图示出了一种检测设备(认证设备)的例子,该检测设备具有其中为照明单元提供活动反射镜以将光线投射到皮肤的结构。
图8的示意图示出了具有根据静脉血管模式确定要认证的部分的功能的检测设备(认证设备)的例子。
图9的特性图示出了氧化血红蛋白和还原血红蛋白的吸收频谱。
图10的特性图示出了活组织中血红蛋白和水的透射系数差异。
图11的示意图示出了通过利用近红外光的微分干涉法执行模式检测的检测设备(认证设备)的例子。
图12的示意图示出了皮肤表面电位检测设备的例子。
图13是示出皮肤表面电位检测设备的例子的另一个示意图。
图14的示意图示出了一种皮下组织模式检测设备,该皮下组织模式检测设备具有其中二维排列多个皮肤表面电位检测设备的结构。
图15的波形图示出了当行走时观察的电位波形。
具体实施例方式
下面参照附图详细描述本发明的生物统计学模式检测方法,生物统计学模式检测设备,生物统计学认证方法和生物统计学认证设备。
例如,由于印迹(指纹)容易留在另一个物体上并且能够被轻易地观察到,利用指纹的生物统计学认证具有被其它人员伪造的风险。作为一个对策,需要执行用于确定所检测的指纹的获得是否没有经由未经授权的手段的活组织鉴别。其原因在于,利用指纹的生物统计学认证基本上是对没有细胞核的死组织,例如皮肤角化层的组织结构进行光学或电气检测的测量。
利用上述指纹,虹膜等等的生物统计学认证的安全性能不仅取决于检测精度,而且取决于上述活组织鉴别。例如,其它人员能够在利用指纹进行生物统计学认证时破坏活组织鉴别,并且已经获得用于生物统计学认证的组织。这允许其它人员轻易地进行″欺骗″,从而导致系统安全性退化为零。此外,上述利用组织的″欺骗″导致对用户身体和生命产生严重危险的新的额外风险,以及在常规信用卡的安全性被破坏的情况下的财务风险。上述对用户身体和生命的严重危险此后被称作″外科危险″。
生物统计学认证不仅需要提供在常规认证技术中已经提出的足够限制的安全性能,而且需要提供对外科危险的足够安全性能(传统方法中几乎未提出过),以保证用户的安全。
也就是说,生物统计学认证的安全性能包括两种安全性能。一种安全性能取决于用于识别要认证的组织是否与用户的组织匹配的″认证″的精确。另一种安全性能取决于用于确定进行认证的组织是否为活组织,即确认组织不是从用户身体切除的死组织的″活组织鉴别″的精确。常规生物统计学认证技术只提供了前一种安全性能的精确和可靠。在这种情况下,这里使用的″生物统计学认证″基本上是指没有″活组织鉴别″的认证,因此并不是指真正的生物统计学认证。因此,从实际的角度看,具有这样的问题的常规安全系统会导致额外的危险,即外科危险。
对于没有使用任何特定技术和设备的最简单的欺骗方法,利用从用户身体切除的例如手指,手臂,眼球等等的组织来进行欺骗。这种破坏生物统计学认证安全性的最简单方法导致对用户生命和身体的新的额外和严重的危险,而用户生命和身体是金钱所不能替代的,即使是在财务损失较小的情况下。因此,利用指纹,眼球内的虹膜等等的常规生物统计学认证方法保留为用于其它主认证手段的附属手段,或保留为有限形式的用于非重要事务等等的附属手段。这导致难以广泛使用常规生物统计学认证。
另一方面,能够相对轻易地伪造指纹等等。作为应对指纹伪造的对策,测量手指和电极之间的静电容量或静电感应以检测皮肤表面和电极之间的距离,从而检测指纹的模式,其中利用这一事实由于来自活组织所分泌的汗液等等、包含盐分的水份(水),皮肤表面充当导电材料。这是一种具有″活组织鉴别″的生物统计学认证的例子。原因在于,如果没有作为来自活组织所分泌的汗液等等、包含盐分的电解液的水份,则不可能进行上述测量。
然而,虽然上述检测方法需要在要认证的物体表面上充当电解液的水份,然而上述物体不必是活的。也就是说,对于上述检测方法,不执行″活组织鉴别″以确认例如所要认证的物体尚未从用户身体切除。因此,对于上述检测方法,难以拒绝未经授权的手段,例如伪造由具有水保持力的凝胶材料组成的指纹,或已经从用户身体切除并且经过生理盐溶液的喷射或浸透的手指。
此外,对于利用DNA等等的生物统计学认证,虽然难以伪造DNA,然而基本上不可能区别要认证的DNA样本是否属于用户活体,还是由通过用PCR(聚合链反应)复制从用户死体或头发获得的DNA而产生的DNA块所组成。因此,利用DNA的生物统计学认证不包含″活组织鉴别″。因此,利用DNA的生物统计学认证需要某种对策,例如一种新型分立传感器,用于通过适当方法,例如使用红外线等等检测手指中的血流,以及″生物统计学认证″,鉴别样本是否属于用户活体。
在这种情况下,通过2个手段执行″生物统计学认证″。一个是″认证″,另一个是″活组织鉴别″。也就是说,常规″生物统计学认证″不仅取决于实际充当″前门″的″认证″,而且取决于实际充当″后门″的″活组织鉴别″,其中使用不同的物理原理在分立的检测装置中执行″活组织鉴别″。因此,常规″生物统计学认证″的问题在于,如果其它人员破坏充当后门的″活组织鉴别″的安全性,则生物统计学认证安全的安全性被破坏,从而导致″欺骗″的风险,并且导致外科危险的风险。对于″活组织鉴别″,系统鉴别要认证的组织是活的还是死的。然而,活组织具有极大的多样性,因此必须以足够宽的阈值范围对单个组织样本执行″活组织鉴别″,这可由关于生命是什么的标准理论(standingtheory)(中心法则(central dogma))得知。这导致常规″生物统计学认证″面对″欺骗″的安全性不佳的根本问题。也就是说,对于具有由″认证″手段和″活组织鉴别″手段组成的分立手段的常规″生物统计学认证″,其它人员能够轻易找到和分析用于鉴别组织死活的鉴别机制。因此,需要一种集成″认证″手段和″活组织鉴别″手段的″真正″生物统计学认证,即没有上述″后门″的生物统计学认证。
对于本发明,根据上皮深结构组织,例如真皮层的凹凸分布模式,而不是表皮组织的例如上述指纹的模式,执行生物统计学认证。
图1的示意图示出了被粗略分类为表皮1和真皮2的皮肤组织。
表皮1是由角化层11,透明层12,颗粒层13,棘细胞层14,基层15和基底膜16组成的角质化层叠扁平上皮细胞。注意,由颗粒层13,棘细胞层14,基层15组成的层被称作″马尔皮基氏层(Malpighian layer)″。
角化层11具有由双分子层膜组成的层状(lamellar)液晶结构,双分子层膜由角质层细胞间油脂组成。透明层12具有胆固醇型(cholesteric)液晶结构,并且颗粒层13由细胞组成,所述细胞的细胞质包含被称作″透明角质颗粒″、其光学性质导致光线的反射和散射的基本结构(类似珠子)。另一方面,基层15具有黑色素颗粒。如上所述,皮肤组织具有多层结构,该多层结构具有每个层所导致的各种光学散射/吸收性质,从而导致防止活组织暴露于紫外线等等的优点。尤其是,表皮1具有一种因薄膜组成的多层结构而导致的针对紫外线的分光(dichroic)性质,所述薄膜的每个均具有不同的折射系数。然而,表皮1是在可见光范围内具有相对较高散射性质的半透明组织,除了因黑色素造成的光线吸收之外。注意,在比红可见光或近红外光更长的波长范围内,表皮1具有高透明度。因此,表皮1下面的真皮2内的毛细血管的血流所反射的光线被散射。散射的光线被观察为肤色或皮肤颜色。注意,皮肤颜色基本上取决于黑色素和真皮2中毛细血管的血流的分布。表皮1中不存在例如血液或淋巴液的电解液流体的流动,因此表皮1基本上充当如角化层11所示例的电介质。
另一方面,真皮2与表皮1相比较具有基本上不同的结构。不同于由没有毛细血管的简单细胞组成的表皮1,真皮2基本上包括由胶原蛋白或弹性蛋白组成的密集纤维连结组织,和毛细血管模式。
真皮2被分类为乳头层和网状层。真皮乳头层通过充当表皮组织的最下层的基底膜与表皮组织接触,由连结组织和毛细血管模式组成,并且具有感觉神经的末端。网状层由具有阵列结构的胶原蛋白,用于彼此连接胶原蛋白结构的弹性蛋白,和填充其间的空间的填充物组成。真皮2包含因大量毛细血管和淋巴液等等的流动而导致的大量电解液流体,从而导致与表皮1相比较非常高的导电性。
虽然形成真皮2的连接组织的胶原蛋白和弹性纤维组织表现出高的光学双折射性质,然而表皮组织没有表现出双折射性质。另一方面,表皮1具有导致光线散射的光学性质,以及因其散射而导致光线极化的极化性质。在基本机构方面,组织表现出独特的垂直/水平极化比,该垂直/水平极化比取决于其内的散射微粒的尺寸和形状。
在电磁波的波长远大于微粒尺寸的情况下,发生瑞利散射。
在电磁波的波长通常与微粒尺寸匹配的情况下,发生米氏散射。(该散射使得云粒,悬浮微粒和积雨云的颜色看上去为白色)
在电磁波的波长远小于微粒尺寸的情况下,电磁波在几何学上(geometrically)穿过物体。(例如,由雨粒组成的虹,冰晶)其厚度大于某个厚度的真皮2看上去为白色,就象奶琼脂那样。此外,真皮2具有光线波长越长,则越容易穿过真皮2的光学性质。另一方面,光线波长越短,则越容易散射。我们考虑真皮2包含大量吸收色素。在这种情况下,浅部分散射的短波长光以更高的概率返回到观察者的眼睛。然而,由于色素对光的吸收,长波长光以较低的概率返回到观察者。因此,皮肤的浅部分的毛细血管从外部观察看上去为鲜红,而位于相对深部分的静脉血管和血管瘤看上去相对地蓝。注意,虽然黑素细胞导致的、位于真皮和表皮边界处的痣(胎记)从外部观察看上去相对地褐色,然而位于真皮中的蓝痣从外部观察看上去相对地蓝色,其中名称与颜色一致。此外,真皮黑素细胞导致的太田痣和胎斑从临床观察看上去相对地蓝。
对于本发明,系统利用真皮组织和表皮组织之间的光学性质或电气性质差异检测皮肤的深结构(例如真皮组织)的凹凸分布模式等等,从而执行生物统计学认证。例如,对来自组织样本的反射光进行过滤,以利用真皮组织和表皮组织之间对入射白光的反射光的散射/极化性质差异,鉴别较深部分中连接组织,胶原蛋白纤维组织等等组成的真皮层与表皮组织。这允许用户清楚地鉴别真皮组织(其中由于表皮组织的遮蔽,难以观察到真皮组织)与表皮组织。尤其是,本发明的优点在于,允许人员认证通过利用用户身体的任何部分,以及例如指纹等等的特殊部分(其中真皮组织模式匹配于表皮组织模式)的皮肤或皮下组织,检测真皮组织的模式。
图2示出了一种检测设备的结构例子,该检测设备用于获得如上所述具有非常丰富的散射机制的表皮下面的真皮2的光学图像。检测设备具有这样的结构,其中允许因散射和双折射而返回的光穿过检测设备的接收器,同时通过在具有彼此正交的极化平面的发光单元和光接收单元处包含偏振片的偏振装置,防止从表皮层反射的光被接收到。
下面针对特定结构进行描述。首先,照明光学系统包含光源21,光学透镜22和照明单元偏振片23。任何适当的例如LED等等的光源均能够被用作光源21。注意,用于发射例如近红外光等等的长波长光的光源最好被用作光源21,因为这种长波长光具有容易穿过表皮组织,以及被真皮组织反射的性质。这种结构允许利用例如散射性质,双折射性质等等的光学性质获取组织的模式。
另一方面,成像光学系统包含充当光接收器件的成像器件(固态图像传感器,例如CCD)24,成像透镜组25和接收单元偏振片26。此外,半反射镜27被布置在上述照明光学系统和成像光学系统之间的光路上。注意,上述照明光学系统和成像光学系统被布置成具有彼此正交的偏振面。
对于上述检测设备,以照明单元偏振片23确定的单个偏振面,将照明光从光源21投射到皮肤。另一方面,成像光学系统包含其偏振面与照明单元偏振片23的偏振面正交的接收单元偏振片26。因此,通过简单反射而来自表皮组织的反射光以与接收单元偏振片26的偏振面正交的偏振面穿过,因而这种反射光被接收单元偏振片26拦截。
从照明光学系统投射到皮肤的照明光到达皮肤深层组织(例如真皮组织),从而因各种组织而导致光的散射或双折射,因此产生其极化。例如反向散射光的反射光穿过半反射镜27,并且导入上述成像光学系统。在这种情况下,对反射光发生了极化,从而允许反射光穿过接收单元偏振片26,因而反向散射光到达成像器件24。
由于包含连接组织,胶原蛋白等等、具有导致光双折射的性质的真皮组织中的反射或散射所造成的双折射,上述散射或反射光表现出相对入射光的相位偏移。注意,表皮组织不包含上述具有导致光的双折射的性质的材料。对于本实施例,通过检测表皮组织和真皮组织之间的光的相位差,系统鉴别来自表皮组织和来自真皮组织(导致光的双折射)的散射/反射光。
此外,可以进行这样的安排,其中系统仅允许在预定波长范围内由于真皮组织中的双折射而具有相位偏移的反射光通过例如分色滤光器等等的带通滤波器,并且只检测如此选择的光,从而有选择地只检测导致光的双折射的组织,并且允许以非侵害方式对真皮组织进行外部观察。
另一方面,作为利用偏振光进行皮肤测量的例子,已知有美容行业中的方法,其中利用偏振滤镜在可见光范围的光学性质通过偏振光观察皮肤。例如,已知有用于估测皮肤表面的测量方法,其中测量例如皮肤光泽,皮肤亮度等等的美容因素(参见日本审查专利申请公开说明书3,194,152,或日本审查实用新型注册申请7-22655)。
然而,这种常规测量方法不是为观察表皮下面的组织,例如真皮组织等等而构造的,而是为从美容和外观方面出发利用可见光估测皮肤表面而构造的。也就是说,所公开的方案仅仅是一种这样的方法,其利用可见光由皮肤的散射光获得皮肤的图像,同时利用因散射而发生光的去极化的公知性质来防止表皮等等的角化层直接反射的过亮反射光导致图象质量退化,从而获得稳定的皮肤图像。
虽然这种利用可见光的常规方法具有检测表皮的散射光的功能,然而可见光的使用导致由于包含黑色素的棘细胞或基细胞对可见光的吸收或拦截,而难以精确检测真皮层的状态。此外,这导致难以通过提取由于真皮组织而发生双折射的光来形成图像。尚未提出这样一种方法,其中利用以下特性来观察真皮组织的结构包含连结组织,胶原蛋白组织等等的真皮层与表皮相比较表现出导致光的双折射的强各向异性光学性质,并且表皮组织表现出不同于可见光的近红外光的高透射系数,即利用形成真皮组织的密集连结组织的散射性质和双折射性质观察真皮组织的结构;这是本申请中新提出的。
如上所述,上述检测设备具有利用形成真皮层的密集连结组织的散射性质或双折射性质检测真皮层结构(例如凹凸分布模式)的功能。注意,具有如图2所示结构的检测设备的缺点是,由于表皮层的散射光,和要检测的真皮层表面下面的真皮组织,皮下组织等等的散射光所导致的增加的噪声,使得SN比下降。图3示出了用于解决上述问题的检测设备的有效结构例子,其中以浅角度将照明光投射到皮肤,并且限制成像光学系统的孔径。
图3示出的检测设备还包含活动反射镜28,并且具有沿着倾斜方向从照明光学系统将照明光投射到皮肤的结构。此外,检测设备包含布置成刚好高于要测量的组织的成像光学系统,从而允许不经半反射镜27而直接检测反向散射光和侧散射光。此外,检测设备包含用于限制孔径的遮光板29,从而只允许从刚好在孔径下面的部分返回的光到达成像器件24。
对于具有这种结构的检测设备,从照明光学系统投射的照明光沿倾斜方向从表皮层穿过组织到达皮肤的深层结构(真皮层)。在这种情况下,在附图中示出的右边的区域中存在由于非常浅的部分,即表皮组织导致的光的散射,从而防止来自非常浅的部分的散射光通过遮光板29所限制的孔径到达成像光学系统。以相同方式,在附图中示出的左边的区域中存在由于非常深的部分导致的光的散射,从而防止来自非常深的部分的散射光通过遮光板29所限制的孔径到达成像光学系统。另一方面,对于其中调节上述活动反射镜28的角度,使得入射光投射到的真皮组织的位置刚好位于上述成像光学系统下面的检测设备,只有来自这个区域(真皮组织)的散射光到达成像光学系统。
下面描述利用真皮组织的双折射的检测方法。首先,可以进行这样的安排,其中利用用于检测双折射的公知方法,例如,利用将照明光和反射光或透射光之间的相位差转换为拍频信号(beat signal)的相位差的光学外差干涉测量,而不是如上所述利用带通滤波器的方法。
图4的图例示出了这种方案的机构。检测设备具有这样的结构,其中振荡光通过半反射镜32从例如稳定横向Zeeman激光器(STZL)31的光源投射到样本33,并且通过光电检测器35检测穿过偏振片34的透射光(信号光)。同时,半反射镜32反射从稳定横向Zeeman激光器31发射的一部分振荡光,之后反射光(参考光)穿过偏振片35,从而通过光电检测器37检测参考光。接着,用电子相位计38测量上述光电检测器35和37检测的光的相位差。
这里,线性偏振器(偏振片34和36)被用于导致2个光波之间的干涉。注意,这个机构允许以决定于电子相位计38的精度测量光的双折射。通常,电子相位计38表现出0.1度(或更大)的测量精度,从而允许以近似为光波长的1/4000的高精度测量光的双折射。
下面描述光学外差干涉测量的机构。首先,参考光的电场分量Er和信号光的电场分量Es被表示如下。
Er=arcos(2nfrt+φr)(1)Es=ascos(2nfst+φs)(2)这里,ar和as分别表示参考光的幅度和信号光的幅度。以相同方式,fr和fs分别表示参考光的频率和信号光的频率,Φr和Φs分别表示参考光的相位和信号光的相位。
通常,光强度I被表示成电场分量的平方,因此通过叠加2个光波而获得的光强度I被表示如下。
I=<|Es+Er|2>]]>=as2+ar22+2asarcos(2π(fs-fr)·t+(φs-φr))----(3)]]>=as2+ar22+2asarcos(2πfbt+Δ)]]>注意,在上述表达式中,符号″<>″表示时间上的平均值。另一方面,fb(=fs-fr)表示光学拍频(optical-beat frequency),符号″Δ″(=Φs-Φr)表示2个光分量之间的相位差。
光电检测器检测的光电电流被划分成表达式(3)的第一项和第二项表示的DC分量,和由表达式(3)的第三项表示的、按照具有频率fb的正弦波的形状变化的AC分量。AC信号被称作″光学拍频信号″。对于光学外差干涉测量,电测量光学拍频信号的幅度(2as·ar),频率(fb)或相位(Δ),并且根据光信号的幅度(as),频率(fs)或相位(Φs)获得信息。
具体地,对于真皮组织的测量,令导致光的双折射的皮肤组织的折射系数为nx和ny,并且光穿过的组织的厚度为d,则通过以下表达式(4)和(5)表示相位延迟Φx和Φy。
φx=2πnxdλ----(4)]]>φy=2πnydλ----(5)]]>
对于本实施例,具有彼此略微不同的频率分量的光,例如STZL(稳定横向Zeeman激光器)振荡光等等被投射到样本。在这种情况下,光电检测器检测的光强度信号I被表示如下。
I=<|Ex+Ey|2>]]>=ax2+ay22+2axaycos(2π(fx-fy)·t+(φx-φy))]]>=ax2+ay22+2axaycos(2πfbt+Δ)---(6)]]>=ax2+ay22+2axaycos(2πfbt+2n(nx-ny)·dλ)]]>=ax2+ay22+2axaycos(2π(fbt+δndλ))]]>注意,符号″Δ″表示光的2个分量之间的相位差,符号″δn″表示折射系数差(=双折射的量值)。如表达式(6)所示,2个光分量之间的相位差通过拍频信号的相位差来表示。这允许通过用电子相位计38等等测量光学拍频信号的相位来测量双折射的量值。
注意,对于上述测量,需要事先检测主轴的方向,并且调节STZL振荡光的偏振面以精确匹配主轴的方向。因此,需要进行这样的测量,其中在围绕光轴旋转STZL振荡光的偏振面的同时检测相位差,从而检测双折射的量值和主轴的方向。然而,这种测量方法导致认证设备结构非常复杂,用户操作复杂和检测时间非常长的问题。此外,在这种情况下,需要在用户配合(fit)时严格固定认证设备的位置和方向。此外,认证设备需要没有松动地与用户身体紧密配合,以便即使在用户活动的情况下也不偏离配合位置。
对于本实施例,包含皮下血管的分叉结构的皮肤被用作要认证的皮肤。利用分叉结构能够轻易地获得上述主轴的方向。例如,可以进行这样的安排,其中在用户注册时事先确定和存储主轴的方向和分叉结构之间的位置关系,从而允许在用户认证时以简单方式根据血管分叉结构的位置和方向调节主轴。
另一方面,可以进行这样的安排,其中利用光的干涉检测皮肤的深层结构,从而解决上述问题。也就是说,本发明的目的不是提供双折射的量值的测量,而是提供一种通过利用光的双折射或散射测量皮肤的内部结构,从而检测用户的独特性质的检测方法。对于本方案,系统在没有任何偏振器的情况下导致来自皮肤的入射光和散射光之间的干涉,并且通过检测光的干涉以拍频信号的形式获得入射光和散射光之间的频率变化,其中利用了以下特性当投射光到皮肤时,由于在例如真皮层等等的皮肤内部结构中发生的光的反向散射或双折射,光的频率发生变化。
图5示出了这种检测设备的结构例子。检测设备具有与图2示出的检测设备相同的结构,其中由照明光源41和光学透镜42组成的照明光学系统,和由例如CCD等等的成像器件43和成像透镜44组成的成像光学系统通过半反射镜45彼此正交地布置。注意,对于当前方案,照明光学系统和成像光学系统均不包含偏振片。在不包含偏振片的情况下,当前检测设备包含参考反射镜46,用于将从照明光学系统的光源41投射的一部分照明光导入成像光学系统的成像器件43。
从例如白LED等等的光源41发射的一部分光通过半反射镜45被投射在皮肤表面上。当上述部分的照明光被投射到皮肤时,在皮肤的内部结构中出现光的各种散射和双折射,并且散射光返回到半反射镜45。在照明的同时,系统导致回光和从半反射镜45反射到参考反射镜46,并且被参考反射镜46反射的光之间的拍频现象(beat phenomenon)(干涉),从而在成像器件43上形成干涉图。
此外,可以进行这样的安排,其中针对皮肤的检测范围中的每个区域检测上述拍频,从而根据如此获得的拍频波形图获得表皮下面的内部结构的连续模式。用于获得上述连续模式的具体方案例子包含如图6所示排列多个拍频检测设备的方案;和如图7所示,其中照明单元包含用于将光线投射到皮肤的每个区域的活动反射镜的方案。前一种方案具有这样的结构,其中按照所谓的″阵列″形状排列多个拍频检测设备50,每个拍频检测设备50包括由上述照明光源41和光学透镜42组成的照明光学系统,和由例如CCD等等的成像器件43和光学透镜44组成的成像光学系统(照明光学系统和成像光学系统通过半反射镜45彼此正交地布置),从而根据每个拍频检测设备50检测的信号获得表皮下面的内部结构的连续模式。
另一方面,对于后一种方案,利用上述活动反射镜51进行每个拍频检测设备50的光线照明和回光检测。后一种方案具有这样的结构,其中反射镜控制单元52根据来自角度/干涉图调节单元53的控制信息控制活动反射镜51的角度。上述角度/干涉图调节单元53从上述拍频检测设备50接收干涉图信息。接着,在皮肤干涉图存储/比较单元55中将接收的干涉图与皮肤干涉图存储单元54中事先存储和注册的干涉图相比较,从而允许进行生物统计学认证。
上述方法不需要对于相位差等等的检测而言不可缺少的偏振器,从而具有允许在没有精确调节光轴的情况下进行认证的优点。这允许进行稳定的认证,即使用户佩带的手表型认证设备等等的方向因例如用户佩带时的故障,用户佩带时的松动等等而发生变化。
在实际使用中,需要调节认证设备,以便在用户佩带的认证设备有一些松动等等情况下面对要认证的组织。
另一方面,可以进行这样的安排,其中针对包含目标区域的宽皮肤区域注册干涉图。然而,这种方案需要用于在上述宽区域中搜索匹配模式的模式匹配处理,从而导致较大的处理负载。就功耗等等而言,这种较大的负载对于移动认证设备是不期望的。
例如,考虑利用例如指纹等等的皮肤模式进行生物统计学认证的特例。在这种情况下,能够轻易检测旋涡形模式,马蹄铁形模式等等的中心,此外,具有这种结构的手指的表面的区域较窄,从而利于搜索要认证的位置。然而,除了有限的特殊部分之外,其它普通部分与指尖相比具有相对较大的面积,并且具有不同于指纹的旋涡形模式、没有利于搜索要认证的位置的几何结构的精细皮肤模式,从而导致非常难以搜索要认证的区域。
为了解决上述问题,可以进行这样的安排,其中如上所述事先针对宽区域注册皮肤模式,并且系统确定在认证时检测的模式是否被包含在上述注册的模式中。然而这种方案导致针对非常大的面积的注册(很麻烦),并且导致认证时的处理负载过多,认证设备的处理时间过长的问题。对于理想的方案,最好针对整个身体注册皮肤模式。然而如上所述,这种方案实际上是不期望的。此外,在这种情况下,难以确定″宽区域″。在实际情况中,认证设备会因人体的柔韧性,或每次认证时认证设备所佩带到的位置的差异而偏离认证时的区域。
下面描述用于在目标区域中搜索要认证的皮肤的有效方法。对于本方法,近红外光而不是白光被用作入射光,其具有允许光线以高透射系数穿过组织,并且导致静脉血液等等中包含的还原血红蛋白对光线的异常吸收的波长范围。认证设备利用从皮下组织检测的反向散射光检测静脉血管模式,并且根据如此获得的静脉血管模式搜索要认证的目标区域。对于当前方案,要认证的目标区域是包含有别于其它的模式或静脉血管分叉结构的区域。这允许以确定方式搜索要认证的相同皮肤区域,即使用户以带有一定位移,或认证设备和用户皮肤之间的接触面有松动的方式佩带手表型人员认证设备。
图8示出了具有根据静脉血管模式搜索要认证的目标区域的功能的检测设备的例子。图8示出的检测设备与图7具有相同的结构,除了其中近红外光源被用作拍频检测设备50的光源41,并且还包含皮下静脉位置检测单元61,皮下静脉位置比较单元62和用于存储静脉血管数据的静脉数据存储单元63的结构之外。这种结构允许获得沿着真皮层延伸、作为位于皮肤最浅部分的静脉血管的皮下静脉60的毛细血管的图像。
组织对700到1200nm的波长范围中的红外线表现出明显低的吸光率,即组织具有允许该光线轻易穿过其中的性质,因此该波长范围被称作″光谱分析窗口″。注意,虽然表皮组织具有导致可见光和紫外线的反射和散射的性质,然而上述波长范围中的光线的几乎80%穿过组织。另一方面,在这种波长范围的具有这种性质的近红外光中,血液中包含的血红蛋白有选择地吸收特定波长的近红外光。具体地,如图9所示,氧化血红蛋白(HbO2)在805nm波长处表现出与还原血红蛋白(Hb)相同的吸光率。另一方面,还原血红蛋白(Hb)在660nm波长处表现出比氧化血红蛋白(HbO2)更高的吸光率,并且氧化血红蛋白(HbO2)在940nm波长处表现出比还原血红蛋白(Hb)更高的吸光率。此外,血红蛋白与组织中的水具有不同的光谱性质。
因此,通过利用上述性质检测组织内的血红蛋白和水之间的差异,能够获得血管图像。此外,利用动脉血管和静脉血管在适当选择的波长处的吸光率差异,能够检测动脉血管和静脉血管之间的差异。为了检测静脉血管模式,可以进行这样的安排,其中光源包含用于照射波长为805nm的近红外光的照明装置,并且近红外光通过例如偏振片被投射到组织上。入射光导致3种现象光线的反射,散射和双折射,并且检测上述类型的现象导致的回光。在这种情况下,来自皮肤表面的反射光使皮肤表面下面的内部结构的图像质量退化。因此,对于当前的方案,通过以其偏振面与偏振片23的偏振面正交的方式布置的偏振片26,用CCD照相机等等得到内部结构的图像。这允许仅利用例如散射光的去极化光和双折射所分割的光线得到图像,同时用与入射光相同的偏振面过滤经过形成表皮组织的角化层,透明层,颗粒层等等的反射的反射光。
虽然针对图2和图3示出的检测设备(通过排除除了来自要检测的组织的散射光之外的回光来检测真皮层)进行了描述,然而对于当前方案,在真皮层内的毛细血管中有选择地吸收具有适当选择的波长的入射光,因为不同于利用白光源的情况,皮肤组织内的血管中除了血红蛋白之外的材料在该波长处表现出低吸光率,即具有高透射系数,从而通过作为背景的较深部分处的光线的反向散射获得真皮层内的毛细血管模式的清晰图像。
由毛细血管中的血流组成的模式对于个体组织是唯一的。此外,在组织被从用户身体切除的情况下,由于血管收缩,血液滞留,血液损失等等,上述模式立即失去。此外,可以进行这样的安排,其中系统利用940nm波长处氧化血红蛋白的吸光率检测对应于心搏的吸光率变化,从而允许进行活组织鉴别,以及获得皮下毛细血管的模式的图像。此外,当前方案可以包含附加方法,其中通过检测肺循环失败引起的组织内氧浓度极端降低所导致的940nm波长处氧化血红蛋白的吸光率的降低或损失,确定组织是否属于正常活组织或从用户切除的死组织,该检测利用了以下事实不同类型的血红蛋白表现出不同的吸光率,例如脱氧血红蛋白在660nm波长处表现出比氧化血红蛋白更高的吸光率,氧化血红蛋白在940nm波长处表现出比脱氧血红蛋白更高的吸光率,等等。
上述方法集成了生物统计学认证和活组织鉴别。也就是说,即使通过浸透在生理盐溶液中使得组织为活的,系统也能够通过检测血流的不存在来鉴别和拒绝从用户身体切除的组织。在这种情况下,要认证的组织需要表现出正常的肺循环,正常的心搏,正常的血流,和血液中正常的血红蛋白比。因此,如果其它人员用外科方法切除用户手臂以进行″欺骗″,则需要将手臂的血管连接到心肺机,并且精确还原心跳波。因此,在移动心肺机不可用的当前情况下,难以进行″欺骗″。即使将来移动心肺机变得可用,这种″欺骗″仍然需要先进外科技术和外科设备以用于执行从身体切除手臂;将手臂血管连接到心肺机;精细血管和神经处理;预防因手臂切除导致的生机反应在组织中产生的变化;血流恢复之后组织的稳定性;等等,这是非常不实际的。另一方面,与从用户身体切除的组织相比,伪造具有完全相同的精细毛细血管三维结构(导致相同的光线散射)会更加困难。
下面描述利用微分干涉法检测表皮下面的模式的检测方法。微分干涉法是利用显微镜的观察方法之一,其中将取决于样本厚度和折射系数差异的照明光和回光之间的相位差转换成对比度或色彩对比度,从而允许进行提供可靠印象的观察。通常,难以通过明视场光学系统或视觉观察来检测真皮层。本方案利用了这样的事实,即微分干涉光学系统允许用户观察到细胞核,这是利用没有污点的普通显微镜难以观察到的。注意,虽然上述微分干涉光学系统允许在真皮层表现为顶层的情况下检测真皮层,然而难以检测正常情况下的真皮层。也就是说,在真皮层覆盖有表皮层的正常情况下,虽然能够用这种方法观察表皮层的表面,然而由于光线的反射,散射和屏蔽,如果没有某种特定方法,则难以检测表皮层。
虽然对普通微分干涉光学系统使用白光源,然而对于本发明,利用表皮层在红光到近红外光的波长范围表现出高透射系数的事实,近红外光源和近红外CCD也被用作微分干涉光学系统。这允许以非侵害方式检测表皮下面的真皮层的凹凸模式。
图11示出了具体的方案例子。检测设备包括照明光学系统和成像光学系统,其中照明光学系统包含近红外光源71和偏振棱镜72,成像光学系统包含例如CCD等等的成像器件73和偏振棱镜74。用通过半反射镜75彼此正交的光路布置照明光学系统和成像光学系统。通过半反射镜75的反射从照明光学系统向皮肤投射照明光,并且回光(反射光)穿过半反射镜75,因而光线到达成像光学系统。注意,Wollaston棱镜76和物镜77被布置在上述半反射镜75和皮肤之间的光路上。
从近红外光源71投射的照明光被偏振棱镜72转换成具有相同偏振面的光,并且被半反射镜75反射到Wollaston棱镜76。投射到Wollaston棱镜76的照明光被分割成具有彼此正交的偏振面的2个光束(光束A和光束B),之后2个光束被投射到物体(组织)上。注意,光束A和光束B之间的距离等于或小于物镜的分辨率。随后,物体反射的2个光束被Wollaston棱镜76重组成单个光束。如此重组的单个光束穿过半反射镜75,并且被偏振棱镜74转换成具有相同偏振面的光。对于这种结构,2个光束A和B在带台阶部分(stepped portion)的反射导致其间的光路差,从而导致光束穿过偏振棱镜74时光束的干涉。注意,在光路差与光束A和B的波长的一半匹配的情况下,由于产生干涉,光看上去最亮。能够通过使用白光源的普通微分干涉光学系统观察到干涉图,从而允许用户以可靠的印象对透明物体进行视觉观察。然而,对于利用近红外光的本方案,难以进行视觉观察。因此,本方案包含例如CCD、用于得到近红外图像的成像器件73。
下面描述本发明的另一个方法,其中利用电气性质差异得到表皮下面的深层结构(例如真皮组织)的凹凸模式等等,从而执行生物统计学认证。
图12示出了一种检测设备的方案例子,其中利用静电感应检测皮肤的电位,并且根据检测的电位检测真皮组织所处的深度,从而获得表皮下面的内部模式。对于本检测设备,检测电极和真皮层之间的静电电容利用以下事实被检测出来,即表皮层相对表现出接近电介质的性质,而真皮层表现出高导电性。
为了检测静电电容,图12示出的检测设备包含多个精细电极121,这些精细电极121通过显微机械加工技术进行二维排列,以形成与皮肤表面接触的检测电极平面。在测量时,在检测电极平面上的每个精细电极121和真皮层之间形成静电电容。接着,根据静电电容计算有关每个精细电极121下面的皮下导电层的距离分布,以获得皮下组织结构,其中静电电容取决于电极和导电层之间的距离。也就是说,对于本检测设备,在形成与皮肤平行定位的检测电极平面的每个精细电极121和皮肤之间形成静电电容,并且测量每个电容的端电压,从而获得真皮层结构。
圆柱金属壳122存储通过绝缘支持构件123固定的上述精细电极121。精细电极121通过具有高电阻的电阻器124电连接到壳122。精细电极121和壳122之间存在间隙。在壳122与皮肤接触时,上述精细电极121面对皮肤,其中在壳122的开口122a处精细电极121和皮肤之间有预定间隙。
注意,本检测设备具有输出信号非常不稳定的问题,因为具有接近电介质的性质的皮肤表面容易受到外部交流电源或荧光灯的噪声等等产生的静电感应的影响,并且皮肤的表面结构由于角化层等等的分离而容易表现出各种状态。为了解决上述问题,已知有一种用于检测指纹等等的方法,其中在向人体施加高频电信号的同时检测输出信号。这种方法可以应用于其中表皮模式对应于例如指纹等等的真皮模式的组织结构的检测。然而,上述方法不能应用于其中表皮模式不对应于真皮模式的其它皮肤组织的真皮模式的检测。原因在于,在这种情况下,检测设备检测的是表皮模式。不同于指纹,不对应于真皮模式的表皮模式没有表现出足够的稳定性,因此,上述方法不能用于利用这种组织的检测的生物统计学认证。
因此,为了解决上述问题,根据本方案的检测设备例如包含布置在金属壳122的开口处的电介质薄膜125,如图13所示。在测量时,电介质薄膜125被定位在金属壳122和检测设备被下压接触到的皮肤之间。同时,电介质薄膜125与存储精细电极121并且连接到地的金属壳122接触,从而也在壳122和皮肤之间形成静电电容。此外,这种结构具有抑制皮肤角质组织的表面结构的不稳定状态所导致的不利影响的优点。
此外,检测设备包含在形成检测电极平面的每个精细电极121的表面上的驻极体薄膜126。驻极体薄膜126由四氟乙烯薄膜等等组成,并且半永久地保持电荷。对于本方案,在没有外部施加高频偏置电压的情况下以驻极体薄膜126的固定极化所导致的偏置电压在精细电极121和真皮组织之间形成静电电容,从而允许检测精细电极121之间的静电电容的差值分布,并且允许以非侵害方式检测覆盖有皮肤的表皮组织、例如真皮层等等的皮肤深层结构。
对于具有图13示出的结构的检测设备,具有驻极体薄膜126的精细电极121被布置在上述壳122的开口122a处。在测量时,定位检测设备,使得开口122a面对组织,从而通过电介质薄膜125在精细电极121和皮肤之间形成静电电容。另一方面,壳122充当关于皮肤的反电极,并且被接地。另一方面,开口122a内的电极充当检测电极。因此,表皮组织导致的电位变化对于两个电极是共同的,因此,其分量在两个电极之间表现出相反的极性,导致彼此抵消。
另一方面,皮肤深部分的电位变化导致具有导电性的真皮层和充当检测电极的精细电极121之间的静电电容,从而允许检测皮肤深部分处的电位变化。另一方面,没有由驻极体薄膜等等导致的偏置电压被施加到壳122所形成的电容,因此,测量壳122形成的、由皮肤表面上的电荷导致的电容并没有检测出皮肤深层的电位变化。于是,本方案允许检测设备单独地精确检测皮肤深层的电位变化,同时抵消皮肤表面的静电感应,其上的电荷等等导致的不利影响。
对于通过提取组织上的每个点处的静电电容变化来测量电位变化的方案,针对每个点检测由于取决于表皮厚度的静电电容的变化而导致的不同幅度。图14示出了一个方案,该方案具有这样的结构,其中以矩阵形式二维排列上述检测电极(精细电极121),并且该方案具有这样的功能,其中利用由于行走等等而与整个人体同步改变的电位的幅度,获得表皮下面的导电层结构。
如图15所示,在行走时,由于脚和地面之间的接地和电气浮动,与整个人体同步并且单相地发生电荷变化。下面描述由于行走而导致的人体上的电荷变化。也就是说,根据如下2个机制形成由于行走而在皮肤上形成、并且由静电电容传感器检测的波形。
第一个机制基本上与电容话筒相同。电容话筒具有这样一种机构,其中振动膜和驻极体电极之间的间隙因振动膜的振动而改变,间隙的静电电容(C)因振动而改变,并且通过FET的栅极对静电电容变化导致的信号进行阻抗转换,从而检测振动膜的振动。根据本发明的检测设备具有与电容话筒相同的结构,除了其中包含电介质薄膜而不是振动膜的结构之外,其中在测量时下压电介质薄膜以与人体组织接触,从而通过电介质薄膜在检测设备和人体组织之间发生电荷耦合。同时,由驻极体电极和电介质薄膜之间的间隙形成电容(静电电容),此外,由于电荷耦合而合并人体的静电电容和间隙的静电电容。在这种状态下,类似于电容话筒,检测设备以波形信号的形式直接检测由于人体和外部环境(例如接地物体)之间的相互作用,例如行走等等而导致的静电电容变化。
这里,人体的静电电容(C)以和地与脚在空间中的位置之间的距离相对应的方式改变。也就是说,在脚与地接触的情况下,人体的电容较大。另一方面,在脚离开地的情况下,由于在(鞋的)掌与地之间的空气层具有低介电常数,人体的静电电容非常小。另一方面,脚与地之间的接触面积越大,则静电电容也越大。注意,静电电容C由以下表达式表示。
C=ε·S/d[F](ε表示填充电极之间的间隙的介质的介电常数,S表示电极的面积,d表示电极之间的距离)根据上述表达式能够明白,脚和地之间的接触面积越大,即电极(S)的面积越大,则静电电容也越大。
第二个机制是电极本身起到电荷传感器的作用。也就是说,检测设备的金属壳中存储的通过电介质薄膜面对组织的电极以波形的形式检测由于人体电荷而在电介质薄膜上感应的电位变化。
假定根据如上所述的2个机制形成人体上检测的波形,即假定基本上根据电荷而不是电位来形成波形。也就是说,假定发生通过以下表达式表示的现象。注意,通过借助利用等价电路方法的模拟来还原观察的波形,证实了该假设Q(电荷)=C(静电电容)·V(电极的电压)虽然上述电荷变化在整个人体上通常表现出相同的波形,然而该波形表现出对应于皮肤组织的精细结构,尤其是对应于表皮和真皮层之间的关系的不同幅度。由于电荷变化而导致的波形在整个人体上同步改变。因此,对于本方案,对通过以二维矩阵的形式排列的每个精细检测电极所检测的波形的幅度进行比较,从而针对每个电极测量电极和真皮层之间的距离,并且获得表皮下面的结构。
如上所述,对于本方案,在没有例如用于施加电荷等等的电极的主动电荷产生装置的情况下,通过每个精细电极121检测由于行走或其它运动而出现的电荷变化,其中利用了以下事实,即在人体上,由于在行走等等时脚离开地和接触地的运动在脚和地之间所产生的相互作用,电荷发生变化。接着,由于用户运动在整个人体上导致的同步电荷变化而出现的波形之间的幅度差异,被转换成皮肤表面和表皮下面的组织之间的距离,从而检测表皮下面的深层结构,例如检测电极下面的真皮层等等。
通常,假定常规静电电容方法已经应用于接地的固定认证设备。因此,在用户佩带使用这种常规方法的可佩带认证设备以执行用户认证时,在用户在冬天的低湿度环境中行走在地毯上的情况下,检测电极和接地部分均会大大地充电,从而导致难以精确检测。其原因在于,对于可佩带认证设备,接地部分位于人体上。
为了解决上述问题,已经提出了一种方法等等,其中除了检测电极之外还提供例如电极,转换器等等的附加发送装置与人体接触,通过发送装置主动提供预定超声波或高频信号以在人体上传播,通过皮肤上的精细电极检测人体上信号的传播,并且确定每个精细电极的面是否与皮肤接触,从而获得用户的指纹模式。然而,这种方法导致结构复杂,并且导致要认证的组织被限于例如指纹,一部分手掌皮肤等等的特殊部分。例如,考虑利用包含内置认证设备的指环下面的皮肤执行认证的认证方法。在这种情况下,例如皱纹等等的部分处的表皮层的模式往往被形成为不同于真皮层的模式,并且在某些情况下与其正交。也就是说,对于这种方法,检测到具有不良稳定性的表皮模式,从而导致认证不精确的问题。
另一方面,对于根据本发明的方案,不是检测表皮模式,而是通过测量如上所述的静电电容来检测表皮下面的组织的结构(例如真皮层的凹凸模式),从而解决所有上述问题。
也就是说,对于本发明,通过检测表皮下面的组织的结构来执行生物统计学认证,因此,集成了″生物统计学认证″和″活组织鉴别″。因此,即使通过浸透在生理盐溶液中使得组织为活的,系统也能够通过检测血流的不存在来鉴别和拒绝从用户身体切除的组织。此外,要认证的组织需要表现出正常的肺循环,正常的心搏,正常的血流,和血液中正常的血红蛋白比。因此,如果其它人员用外科方法切除用户手臂以进行″欺骗″,则需要将手臂的血管连接到心肺机,并且精确还原心跳波。因此,在移动心肺机不可用的当前情况下,难以进行″欺骗″。即使将来移动心肺机变得可用,这种″欺骗″仍然需要先进外科技术和外科设备以用于执行从身体切除手臂;将手臂血管连接到心肺机;精细血管和神经处理;预防因手臂切除导致的生机反应在组织中产生的变化;血流恢复之后组织的稳定性;等等,这是非常不实际的。另一方面,与从用户身体切除的组织相比,伪造具有完全相同的精细毛细血管三维结构(导致相同的光线散射)会更加困难。
此外,本发明可以应用于可佩带结构。例如,可以进行这样的安排,其中可佩带信息设备或移动信息设备包含用于检测表皮下面的组织,血管等等的模式的检测装置,其中在用户持有或佩带信息设备时,在检测装置的与用户皮肤接触的表面上,难以在自然光下进行视觉观察,在用户持有或佩带信息设备时,在用户身体和信息设备之间的接触面上检测表皮下面的皮肤组织模式,将检测的模式与信息设备或通过网络连接到信息设备的服务器计算机中已经注册的模式相比较,从而允许系统根据检测结果许可或限制从信息设备或网络系统提供的至少一部分服务,即允许所谓的″访问控制″。
考虑将本发明应用于例如手表型认证设备等等的可佩带认证设备的情况。此外,在这种情况下,需要在用户安装时严格固定认证设备的位置和方向。此外,认证设备需要没有松动地与用户身体紧密配合,以便即使在用户活动的情况下也不偏离佩带位置。具体地,系统需要确定要认证的皮肤的部分。另一方面,可以进行这样的安排,其中针对包含目标区域的宽皮肤区域注册干涉图。然而,这种方案需要用于在上述宽区域中搜索匹配模式的模式匹配处理,从而导致较大的处理负载。就功耗等等而言,这种较大的负载对于移动认证设备是不期望的。
例如,考虑利用例如指纹等等的皮肤模式进行生物统计学认证的特例。在这种情况下,能够轻易检测旋涡形模式,马蹄铁形模式等等的中心,此外,具有这种结构的手指的表面的区域较窄,从而利于搜索要认证的位置。然而,除了有限的特殊部分之外,其它普通部分与指尖相比具有相对较大的面积,并且具有不同于指纹的旋涡形模式、没有利于搜索要认证的位置的几何结构的精细皮肤模式,从而导致非常难以搜索要认证的区域。
为了解决上述问题,可以进行这样的安排,其中如上所述事先针对宽区域注册皮肤模式,并且系统确定在认证时检测的模式是否被包含在上述登记模式中。然而这种方案导致针对非常大的面积的注册(很麻烦),并且导致认证时的处理负载过多,认证设备的处理时间过长的问题。对于理想的方案,最好针对整个身体注册皮肤模式。然而如上所述,这种方案实际上是不期望的。此外,在这种情况下,难以确定″宽区域″。在实际情况中,认证设备会因人体的柔韧性,或每次认证时认证设备所佩带到的位置的差异而偏离认证时的区域。
为了解决上述问题,包含皮下血管的分叉结构的皮肤最好被用作要认证的皮肤。利用分叉结构能够轻易地获得上述主轴的方向。例如,可以进行这样的安排,其中在用户注册时事先确定和存储有关分叉结构的位置关系,从而允许在用户认证时以简单方式根据血管分叉结构的位置调节要认证的皮肤的部分。
下面描述利用温度差的组织模式检测和认证。皮肤结构包括没有血管并且对身体温度被动的表皮组织,和具有血管并且通过血流主动影响温度的真皮组织。这导致真皮组织的温度相对高于表皮组织的温度,除了外部供热,例如直接照射日光到身体表面的特殊情况之外。根据本实施例的检测设备利用上述机制检测表皮下面的组织的结构。
例如,根据本实施例的检测设备具有这样的结构,其中二维排列用于检测温度,例如热敏电阻辐射热测量计、热电元件等等的精细设备,而不是上述精细电极,并且在每个点处测量温度。在这种情况下,检测对应于每个精细设备下面的表皮层等等的厚度的精细设备之间的温度差。根据本实施例的检测设备利用上述机制检测表皮下面的真皮层的凹凸结构。尤其是,具有对应于从人体发射的红外线的敏感范围的热电元件最好被用作检测温度的精细设备,从而允许在防止例如日光等等的外部热源导致的不利影响的同时进行检测。
此外,可以进行这样的安排,其中以矩阵形式布置作为温度检测装置的红外光检测装置,并且使如此形成的检测面接近皮肤的表面,从而检测表皮组织下面的真皮层模式,其中利用了活组织由于身体温度而发射唯一波长(例如10μm左右的波长)的红外线的特性。对于本方案,在形成矩阵形状的红外检测装置的红外检测传感器单元之间检测对应于表皮厚度或传感器单元和充当红外源的真皮之间的距离的红外量值差。根据本方案的检测设备根据红外量值分布检测皮下组织的结构,例如真皮层的凹凸模式。
此外,可以进行这样的安排,其中利用包含皮下血管的部分与其它部分相比表现出相对较高的温度的特性检测血管的位置,从而允许进行生物统计学认证。此外,可以进行这样的安排,其中根据毛细血管的检测图像确定要认证的部分的位置或方向。此外,也可以根据毛细血管的检测图像执行活组织鉴别。
工业实用性根据前面的描述能够清楚地理解,本发明允许不仅利用例如指尖等等的特殊部分,而且利用用户皮肤的任何期望部分进行普遍的生物统计学认证。此外,不同于指纹,这种要认证的部分不能从外部观察,因此,其它人员难以识别被用于认证的用户身体部分。于是,本发明具有隐私安全性高,防伪造安全性高的优点。
此外,本发明提供一种利用具有活动血流或活动身体流体循环的部分,例如真皮组织的认证方法。这种部分的性质表现出对血流或身体流体循环的变化的高灵敏度,从而提供生物统计学认证手段和活组织鉴别的必要和完整的集成。于是,本发明在抑制外科危险的风险,即改进用户安全的同时提供了生物统计学认证。
此外,本发明可以应用于可佩带检测设备,和具有与人体皮肤接触的检测部分的可佩带认证设备,从而允许利用用户的日常动作,无需任何特殊用户操作的生物统计学认证。此外,即使在出现检测差错或认证差错的情况下,也可以无需任何特定用户操作地执行重试处理,因此并不麻烦。
权利要求
1.一种活组织模式检测方法,其中检测被表皮组织覆盖的皮肤深层组织的凹凸分布模式,以提取活组织的唯一模式。
2.如权利要求1所述的活组织模式检测方法,其中所述皮肤深层组织是真皮组织。
3.如权利要求1所述的活组织模式检测方法,其中利用所述表皮组织和所述皮肤深层组织之间的光学性质差别来光学检测所述凹凸分布模式。
4.如权利要求3所述的活组织模式检测方法,其中将偏振光投射到所述组织,并且通过其偏振面与所述偏振光的偏振面正交的偏振滤镜检测反射光,以检测所述凹凸分布模式。
5.如权利要求4所述的活组织模式检测方法,其中长波长光被用作所述偏振光。
6.如权利要求5所述的活组织模式检测方法,其中近红外光被用作所述长波长光。
7.如权利要求4所述的活组织模式检测方法,其中通过允许具有预定频率的光通过的装置,或反射具有预定频率的光的装置,选择因反射而改变的波长分量。
8.如权利要求4所述的活组织模式检测方法,其中控制所述偏振光的入射角,以调节用于检测所要检测的对象的深度。
9.如权利要求3所述的活组织模式检测方法,其中照明光被投射到所述组织上,以导致一部分所述照明光和反射光之间的干涉,以便通过干涉图的形式检测反射光的波长分量的改变,从而提取活组织的唯一模式。
10.如权利要求1所述的活组织模式检测方法,其中利用所述表皮组织和所述皮肤深层组织之间的电气性质差别来电检测所述凹凸分布模式。
11.如权利要求10所述的活组织模式检测方法,其中利用静电感应测量皮肤的电位,以检测表皮下面的真皮组织所处的深度,从而检测表皮下面的组织结构。
12.如权利要求11所述的活组织模式检测方法,其中以预定间距并行排列多个精细电极,以配合要检测的皮肤。
13.如权利要求12所述的活组织模式检测方法,其中在每个精细电极和真皮组织之间形成电容耦合,并且根据如此在每个精细电极下面形成的静电电容计算有关表皮下面的导电层的距离分布,从而检测表皮下面的所述组织结构。
14.如权利要求13所述的活组织模式检测方法,其中均通过绝缘构件存储在金属壳中的所述精细电极以预定间距布置,并且所述金属壳包含与皮肤配合以便引入到所述金属壳和皮肤之间的电介质薄膜。
15.如权利要求13所述的活组织模式检测方法,其中在所述精细电极的表面提供驻极体薄膜,并且通过所述驻极体薄膜的固定极化所导致的偏置电压,在所述精细电极和真皮组织之间形成静电电容。
16.如权利要求12所述的活组织模式检测方法,其中通过所述精细电极检测运动导致的活组织上的电荷变化,并且将所述精细电极之间因电荷变化导致的波形幅度差转换成皮肤表面与真皮下面的组织之间的距离。
17.一种活组织模式检测设备,包括用于检测被表皮组织覆盖的皮肤深层组织的凹凸分布模式的装置。
18.如权利要求17所述的活组织模式检测设备,其中所述用于检测所述凹凸分布模式的装置具有光学检测所述凹凸分布模式的功能。
19.如权利要求18所述的活组织模式检测设备,包括照明光学系统,包含用于将光投射到要检测的部分的光源,和用于对准照明光的偏振面的偏振滤镜;以及成像光学系统,包含用于接收所述要检测的部分的反射光的光接收单元,和其偏振面与所述偏振滤镜的偏振面正交的偏振滤镜。
20.如权利要求19所述的活组织模式检测设备,其中所述光源包括近红外光源。
21.如权利要求19所述的活组织模式检测设备,还包括用于选择所述反射光中因反射而改变的波长分量的装置。
22.如权利要求19所述的活组织模式检测设备,还包括移动反射镜,用于控制从所述光源投射的光的入射角。
23.如权利要求18所述的活组织模式检测设备,包括照明光学系统,包含用于将光投射到要检测的部分的光源;参考光学系统,用于产生用来检测反射光波长分量变化的干涉图;以及成像光学系统,用于检测所述干涉图。
24.如权利要求23所述的活组织模式检测设备,其中所述光源是白光源。
25.如权利要求23所述的活组织模式检测设备,其中排列多个检测单元,每个检测单元均包括所述照明光学系统,所述参考光学系统和所述成像光学系统。
26.如权利要求23所述的活组织模式检测设备,还包括移动反射镜,用于控制从所述光源投射的光所处的入射位置。
27.如权利要求17所述的活组织模式检测设备,其中所述用于检测所述凹凸分布模式的装置具有电检测所述凹凸分布模式的功能。
28.如权利要求27所述的活组织模式检测设备,其中利用静电感应测量皮肤的电位,以检测表皮下面的真皮组织所处的深度,从而检测表皮下面的组织结构。
29.如权利要求28所述的活组织模式检测设备,还包括在要检测的皮肤上以预定间距并行排列的多个精细电极,其中根据每个精细电极下面的静电电容计算有关表皮下面的导电层的距离分布,从而检测表皮下面的组织结构。
30.如权利要求29所述的活组织模式检测设备,其中均通过绝缘构件存储在金属壳中的所述精细电极以预定间距排列,并且所述金属壳包含要引入到所述金属壳和皮肤之间的电介质薄膜。
31.如权利要求29所述的活组织模式检测设备,其中每个所述精细电极均在其表面包含驻极体薄膜。
32.一种生物统计学认证方法,其中检测被表皮组织覆盖的皮肤深层组织的凹凸分布模式,并且将如此检测的凹凸分布模式与事先注册的模式相比较,从而进行生物统计学认证。
33.如权利要求32所述的生物统计学认证方法,其中所述皮肤深层组织是真皮组织。
34.如权利要求32所述的生物统计学认证方法,其中利用所述表皮组织和所述组织深层结构之间的光学性质差别来光学检测所述凹凸分布模式。
35.如权利要求34所述的生物统计学认证方法,其中将偏振光投射到所述组织,并且通过其偏振面与所述偏振光的偏振面正交的偏振滤镜检测反射光,以检测所述凹凸分布模式。
36.如权利要求34所述的生物统计学认证方法,其中照明光被投射到所述组织上,以导致一部分所述照明光和反射光之间的干涉,以便通过干涉图的形式检测反射光的波长分量的改变,从而提取活组织的唯一模式。
37.如权利要求32所述的生物统计学认证方法,其中皮下血管的分叉结构被用作要检测的部分,并且在认证时利用事先注册的主轴和所述分叉结构之间的关系,根据所述分叉结构确定所述要检测的部分和所述主轴的方向。
38.如权利要求37所述的生物统计学认证方法,其中利用所述皮下血管进行活组织鉴别。
39.如权利要求38所述的生物统计学认证方法,其中利用所述皮下血管中血流的变化所导致的吸光率变化进行活组织鉴别。
40.如权利要求32所述的生物统计学认证方法,其中利用所述表皮组织和所述皮肤深层组织之间的电气性质差别来电检测所述凹凸分布模式。
41.如权利要求40所述的生物统计学认证方法,其中利用静电感应测量皮肤的电位,以检测表皮下面的真皮组织所处的深度,从而检测表皮下面的组织结构。
42.如权利要求32所述的生物统计学认证方法,其中利用表皮组织和皮肤深层组织之间的温度差来检测覆盖有表皮组织的表面下面的真皮组织。
43.如权利要求42所述的生物统计学认证方法,其中排列精细温度检测器件,并且根据所述温度检测器件之间的温度差检测所述表面下面的组织结构。
44.如权利要求43所述的生物统计学认证方法,其中以红外光的量级差的形式检测所述温度差。
45.一种生物统计学认证设备,包括用于检测被表皮组织覆盖的皮肤深层组织的凹凸分布模式的装置,其中将如此检测的凹凸分布模式与事先注册的模式相比较,从而进行生物统计学认证。
46.如权利要求45所述的生物统计学认证设备,其中所述用于检测所述凹凸分布模式的装置具有光学检测所述凹凸分布模式的功能。
47.如权利要求46所述的生物统计学认证设备,包括照明光学系统,包含用于将光投射到要检测的部分的光源,和用于对准从所述光源投射的照明光的偏振面的偏振滤镜;以及成像光学系统,包含用于接收所述要检测的部分的反射光的光接收单元,和其偏振面与所述偏振滤镜的偏振面正交的偏振滤镜。
48.如权利要求46所述的生物统计学认证设备,包括照明光学系统,包含用于将光投射到要检测的部分的光源;参考光学系统,用于产生用来检测反射光波长分量变化的干涉图;以及成像光学系统,用于检测所述干涉图。
49.如权利要求45所述的生物统计学认证设备,包含用于根据皮下血管的结构确定所述要检测的部分和主轴的方向的装置。
50.如权利要求49所述的生物统计学认证设备,包括干涉光检测单元,用于检测被表皮组织覆盖的皮肤深层组织的凹凸分布模式;移动反射镜,用于控制从所述干涉光检测单元投射的照明光的入射角;血管位置检测单元,用于根据来自所述干涉光检测单元的信息检测皮下血管的位置;血管位置比较单元,用于比较检测的血管的位置和事先存储的血管数据;反射镜控制单元,用于根据来自所述血管位置检测单元和血管位置比较单元的控制信息控制所述移动反射镜的角度;干涉图存储单元,用于存储皮肤深层组织导致的干涉图;匹配单元,用于执行血管位置和所述干涉图的匹配;和干涉图比较单元,用于比较从所述干涉光检测单元接收的干涉图信息和所述干涉图存储单元中存储的干涉图。
51.如权利要求45所述的生物统计学认证设备,其中所述用于检测所述凹凸分布模式的装置具有电检测所述凹凸分布模式的功能。
52.如权利要求51所述的生物统计学认证设备,其中利用静电感应测量皮肤的电位,以检测表皮下面的真皮组织所处的深度,从而检测表皮下面的组织结构。
53.如权利要求52所述的生物统计学认证设备,还包括在要检测的皮肤上以预定间距并行排列的多个精细电极,其中根据每个精细电极下面的静电电容计算有关表皮下面的导电层的距离分布,从而检测表皮下面的组织结构。
54.如权利要求45所述的生物统计学认证设备,其中所述用于检测所述凹凸分布模式的装置具有利用所述表皮组织和所述皮肤深层组织之间的温度差来检测覆盖有表皮组织的表皮下面的组织结构的功能。
55.如权利要求54所述的生物统计学认证设备,包括在要检测的皮肤上排列的多个温度检测器件,其中根据所述温度检测器件之间的温度差检测有关表皮下面的组织的凹凸分布,从而检测表皮下面的组织结构。
56.如权利要求54所述的生物统计学认证设备,包括在要检测的皮肤上排列的多个红外检测器件,其中根据所述红外检测器件之间的红外光量级差检测有关表皮下面的组织的凹凸分布,从而检测表皮下面的组织结构。
57.一种生物统计学认证方法,其中通过偏振滤镜向组织投射近红外光,并且通过其偏振面与所述偏振滤镜的偏振面正交的偏振滤镜检测返回光,以检测下面的毛细血管的图像,或其三维分布模式,其中在如此检测的所述表皮下面的毛细血管图像或其三维分布模式与事先注册的模式之间进行比较,从而进行生物统计学认证。
58.一种生物统计学认证设备,包括照明光学系统,包含用于将近红外光投射到要检测的部分的光源,和用于对准从所述光源投射的照明光的偏振面的偏振滤镜;以及成像光学系统,包含用于得到所述要检测部分的反射光的图像的光接收单元,和其偏振面与所述偏振滤镜的偏振面正交的偏振滤镜;其中在所获得的表皮下面的毛细血管的图像或其三维分布模式与事先注册的模式之间进行比较,从而进行生物统计学认证。
全文摘要
本发明允许进行没有伪造等等的风险的可靠生物统计学认证。本发明允许进行活组织鉴别和生物统计学认证。检测被表皮组织覆盖的皮肤深层组织的凹凸分布模式,以提取活组织的唯一模式。根据检测的模式执行生物统计学认证。利用表皮组织和皮肤深层组织间的光学性质差别来光学检测所述凹凸分布模式。在这种情况下,例如近红外光的长波长光被用作投射到皮肤组织的照明光。皮下血管的分叉部分被用作要检测的部分。根据分叉结构的结构确定要检测的部分,在这种情况下,可利用皮下血管进行活组织鉴别。
文档编号G06K9/00GK1662931SQ0381396
公开日2005年8月31日 申请日期2003年5月7日 优先权日2002年5月9日
发明者泷口清昭 申请人:索尼株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1