光刻设备和器件制造方法

文档序号:6649634阅读:153来源:国知局
专利名称:光刻设备和器件制造方法
技术领域
本发明涉及一种光刻设备和一种器件制造方法。
背景技术
光刻设备是一种施加所需图案到衬底目标部分上的机器。例如,光刻设备可用于制作集成电路(IC)、平板显示器、及其它涉及精细结构的器件。在常规的光刻设备中,图案化装置,或者称作掩模或光刻版,可用于产生对应于IC(或其它器件)的单个层的电路图案,且该图案能成像在衬底(例如,硅晶片或玻璃基板)的目标部分上(例如,包含一个或几个芯片的部分),该衬底具有辐射敏感材料(例如抗蚀剂)层。代替掩模,构图装置可以包括产生电路图案的单独可控元件的阵列。
通常,单个衬底包含连续被曝光的相邻目标部分的网络。已知的光刻设备包含步进机,其中通过一次曝光整个图案到目标部分上辐射各个目标部分;和扫描仪,其中通过沿给定的方向(“扫描”方向)通过射束扫描图案来辐射各个目标部分,同时在平行或反平行该方向上同步扫描衬底。
在曝光处理之前,衬底可以经过各种处理。例如,在曝光前,衬底通常可以用抗蚀剂处理。同样,在曝光前,衬底可以经过清洗、蚀刻、离子注入法(如掺杂)、金属化、氧化、化学机械抛光、涂底料(priming)、涂抗蚀剂、软烘烤处理、和/或测量处理。衬底也可以经过各种曝光后处理,例如,曝光后烘烤(PEB)、显影,硬烘烤、蚀刻、离子注入法(如掺杂)、金属化、氧化、化学机械抛光、清洗、和/或测量处理。此外,通常需要几层。因此,对于每一层重复整个处理程序或其变体。
利用为它们各自目的设计的工作站或模块进行这些曝光前和曝光后处理。衬底按预定的顺序经过这些处理模块以及光刻曝光设备。为了使在衬底上形成的器件准确发挥作用,需要那些在衬底上形成的器件的特征在特定尺寸的给定容差内。因此,为了表征特征和图案轮廓并创建质量和均匀性的基准水平,规定关键属性是标准的,所述关键属性统称为曝光图案的临界尺寸(CD)。CD的尺度可以包含如特征间的间隙、孔和/或柱的X和/或Y直径、孔和/或柱的椭圆率、特征面积、特征侧壁角、特征的顶部宽度、特征的中部宽度、特征的底部宽度、线路边缘粗糙度等等。
在衬底上形成的特征尺寸通常由在曝光过程中接收辐射阈值剂量的衬底上的抗蚀剂面积决定。该阈值剂量受使用的抗蚀剂类型、在曝光前的处理条件、在曝光后的处理条件影响。因此,曝光前和曝光后条件的变化影响特征的尺寸,并因此影响临界尺寸的均匀性(CDU),从而可能损害曝光图案的质量。如果CDU不足,衬底可能不合格,这样就降低产率。
因此,所需要的是能以改善的CDU在衬底上曝光图案的光刻设备和方法。

发明内容
本发明的实施例提供这样一种光刻设备,包括用于供应辐射束的照明系统、用于向射束的横截面传递图案的单独可控元件的阵列、用于支撑衬底的衬底台、用于将图案化的射束投影到衬底的目标部分的投影系统、和一控制器,该控制器基于与要曝光在衬底上的图案相对应的预定图案数据和对应于衬底处理条件中至少一个的处理条件数据,设定单独可控元件阵列上的图案。
在一个实施例中,可补偿由于曝光前和/或曝光后处理的变化导致在衬底上形成的图案产生的变化。因此,可以改进给定衬底的CDU。
在一个实例中,使用光刻设备不但允许改进衬底的不同区域的CDU,而且允许改进衬底之间的CDU。
在一个实例中,控制器使用处理条件数据,以按需要调整单独可控元件阵列上设定的图案内产生的图案特征的尺寸。例如,如果处理条件数据表明,在不使用校正的情况下,一旦完成衬底的处理,在衬底上形成的特征将稍微过大,控制器将在单独可控元件阵列上设定的图案调整成略小于不进行校正时的图案。从而,在衬底上实际产生的图案更接近预定尺寸,因此改进了CDU。
在一个实例中,对应于单独可控元件之一的图案化射束的每一部分能被设定为至少三个辐射强度等级之一(例如提供图案化辐射束的灰阶控制)。控制器响应于处理条件数据调整图案亮度等级。例如,如果处理条件表明,不使用校正时在衬底上形成稍微过大特征,则通过调整单独可控元件阵列的设置而来减小图案化射束的相应部分的亮度级。因此,特征的较小区域达到必要的阈值剂量,并且与不作校正相比在衬底上产生的特征尺寸减小。
在一个实例中,可以考虑与处理条件有关的各种数据,其包括(1)施加到衬底的抗蚀剂(例如,不同类型的抗蚀剂对其它曝光前和曝光后条件将有不同的结果响应);(2)在涂敷抗蚀剂到衬底的过程的处理条件(例如,抗蚀剂层厚度、在包含软烘烤处理的应用处理过程中的热分布等);(3)在涂敷到衬底的任何其它层的涂敷过程中对应的处理条件(例如,在抗蚀剂前涂敷的BARC(底部抗反射涂层),以减小在抗蚀剂中的驻波的产生来改进成像条件和CDU的性能);(4)由于利用使用单独可控元件阵列的光刻设备来曝光衬底花费相对长时间,将抗蚀剂涂敷到衬底和曝光之间经过的时间,对抗蚀剂的阈值剂量有明显的影响;这样从衬底上首先曝光的部分到衬底上最后曝光的部分有明显变化;(5)将抗蚀剂涂敷到衬底和曝光后处理步骤开始之间经过的时间(例如,当其显影时这将影响曝光的抗蚀剂的响应);(6)在任何其它两个过程之间经过的或预期经过的时间;(7)曝光后烘烤的处理条件,包含热分布;这同样会在其显影时影响曝光的抗蚀剂的响应;(8)在曝光后烘烤之后,冷却衬底的处理条件,同样包含当其显影时影响曝光衬底响应的热分布;(9)衬底显影期间的处理条件;(10)在各种处理设备之间转移衬底期间的条件;和/或(11)随后的蚀刻、离子注入、金属化、氧化、化学—机械抛光和清洁处理中期望的处理条件。
在一个实例中,至少一些处理条件数据对于衬底的每个区域是特定的。这允许衬底的一部分的每次曝光的曝光条件对于那个区域最佳化。因此,转移操作数据可以包含在转移期间关于衬底方向的任何变化的数据,使得可能确定每个衬底的每个部分的完整的处理历史。
在一个实例中,例如通过在处理衬底时测量相关设备的条件,在处理每个衬底时可以记录处理条件数据,。例如,由于每个衬底被涂覆抗蚀剂,在曝光处理过程中可以纪录和考虑精确的处理条件。
在一个实例中,一些处理设备可以提供随时间相对稳定的处理条件。在该情况下,控制器可以存储一组与设备相关的数据而不是接收测量的数据。例如,曝光单元可以从两个或多个抗蚀剂涂布单元接收衬底。假如每个抗蚀剂涂布单元中的处理条件随时间是稳定的,那么,仅仅需要曝光单元中的控制器接收与每个衬底相关的数据,其识别哪个抗蚀剂涂层单元处理该衬底。然后,基于相关抗蚀剂涂层单元的处理条件数据可以最佳化图案。如果在抗蚀剂涂布单元内的衬底上处理条件改变,其也可以接收对应于该衬底定向的数据。这种安排对于补偿曝光后处理的影响特别有益,因为实际的曝光后处理条件在曝光的时候不是已知的。
在一个实例中,可以更新与每个这种处理设备相关的数据。可以当一个或多个衬底被处理时,通过监测实际的处理条件来更新该数据。
在一个实例中,从用每个处理设备处理的衬底上产生的特征的随后检查中,与该设备相关的数据所需的校正可以被推断出来。更新与每个设备相关的数据保证了如果处理条件在相对短时间范围是稳定的,则既使处理条件在相对长时间范围不稳定,也可以提供,例如,曝光后处理条件的足够准确的估计。
在一个实例中,在开始对衬底的任何曝光(或者,至少产生要形成的器件的特定层所需的曝光)之前,可以确定在单独可控元件的阵列上设定图案之前所需的预定图案数据的修正。
在一个实例中,在曝光给定层的图案的过程中可以确定必要的修正。例如,可以确定对给定衬底上一曝光的修正,同时另一个曝光继续进行。后面的设置允许对图案数据的修正考虑实际测得的处理条件修正图案数据,以及例如,在衬底上涂敷抗蚀剂和进行曝光之间实际的时间。因为,在曝光步骤之前而不是匆忙地实施必要的数据处理,对于所需的数据处理时间没有限制,因此可以使用更简单的控制器。然而,因为有必要预先知道用于特定衬底的处理设备,所以这种系统可能受到限制。因此,如果需要重安排衬底的处理,也就是说它需要在不同的曝光前和曝光后设备中处理,则有必要重新计算修改。匆忙的计算避免这个问题。
在一个实例中,控制器可以包含用于存储转换数据的存储器,对于不同处理条件,在图案设定在单独可控元件阵列上之前,必须对要在衬底上产生的图案进行的修改。
在一个实例中,存储器可以存储整套处理条件所需的图案修改(例如,考虑所有处理条件和它们之间的相互作用)。
在一实例中,在第二配置中,存储器可包含与系统中每个元件的图案修改相关的数据。此情况中,可能通过将与每个元件中处理条件相关的单个修改联系在一起来确定所需的整个图案修改。
第一实例设置起来更简单,且可以更精确,因为它考虑系统的不同部分内处理条件的相互作用。然而,如果要考虑大量的处理参数,第二实施例需要存储较少数据并且是更可行的。
在一个实例中,考虑一个系统,其中要考虑处理参数中的10个,并且每个参数有10个不同值。在第一种设置下需要存储的完整的图案修改数据的可能组合的总数是1010,也就是说10,000,000,000。相反,如果使用第二设置,100组图案修改数据(也就是对于10个被监测处理参数的每一个而言有10组)需要被存储,然后它们以多种不同方式结合。
尽管理论上第一实例更精确,但是只要由每个参数改变引起的偏离较小并且这些参数的改变不相互作用,那么第二实施例就可以提供足够精确的控制。通过排除一些可替换的处理选择,可以减少在第一配置中储存的数据数量。例如,可以限定系统,使得如果最初用第一设备处理衬底,则可以仅通过其它设备的有限集合(除其它设备外)实施随后的处理操作。
在一个实例中,基于意图在衬底上形成的图案特征的比较和利用现有的图案修改数据对衬底上随后产生的实际图案特征的检查,可以更新存储器里存储的图案修改数据。
在一个实例中,在衬底曝光期间,存储器中图案修改数据的相对小变化用于在衬底上不同位置处的曝光。随后,通过随后检查随后在这些位置的每一个处形成的实际图案特征并将产生的实际特征与预定特征相比较,能够确定存储器中的图案修改数据是否是最佳的,并且如果图案修改数据的被测试的变化之一证明是更好的时则将其变成这种变化。如果由图案修改数据中的这些小变化引起的CD的变化足够小,则在衬底的制造曝光过程中可继续使用该过程,不断地精确化图案修改数据。
在一个实例中,在测试衬底的曝光期间,可以使用图案修改数据的较大测试变化来设置设备和产生图案修改数据的初始集合。
通常,可以理解,需要在不同的处理条件下曝光多个衬底上的图案并检查随后产生的图案,来最初产生存储器中的图案修改数据。
在一个实例中,光刻设备包含探测器,其用于检查在衬底上产生的特征,以提供自动反馈到控制器以能够更新图案修改数据。
本发明的另一个实施例提供了一种器件制造方法,包括以下步骤提供衬底、利用照明系统提供辐射束、利用单独可控元件向射束的横截面提供图案、以及将图案化的辐射束投影到衬底的目标部分上。在单独可控元件阵列上设定图案基于与要曝光在衬底上的图案相对应的预定图案数据和与至少一个衬底处理条件相对应的处理条件数据,。
下面参照附图,详细描述本发明另外的实施例、特征、和优点,以及本发明各种实施例的结构和操作。


在此结合并形成说明书的一部分的附图解释了本发明,并与说明书一起用于解释发明的原理和使本领域的技术人员能实施和利用该发明。
图1描述根据本发明的一个实施例的光刻设备。
图2描述根据本发明的一个实施例用于在衬底上产生图案的处理单元的图示。
图3描述根据本发明的一个实施例的显示临界尺寸轮廓的衬底。
图4描述根据本发明的一个实施例的一个过程。
现在将参见附图描述本发明。在附图中,相同的附图标记表示相同的或功能相似的元件。
具体实施例方式
概述和术语虽然在本文中具体涉及光刻设备在制造集成电路(IC)中的使用,应该理解在此描述的光刻设备可以有其它的应用,诸如集成光学系统的制造、用于磁畴存储器的导向和定位图案、平板显示器、薄膜磁头等。本领域的技术人员应该理解,在本文中的其它应用中,在此可选择施加上下文中熟练的技术人员可以理解,在此的使用任何术语“晶片”或“芯片”可以被认为分别与更常用的术语“衬底”或“目标部分”同义。在此所指的衬底可以在曝光前或后例如在轨道(track)(例如,一般涂敷抗蚀剂层到衬底上并且显影曝光的抗蚀剂的工具)或计量或检测工具中处理。在可应用的地方,在此的公开可应用到这种或其它衬底处理工具。此外,例如为了形成多层IC,可以多次处理衬底,以至于在此使用的术语衬底也可以指已经包含多层处理层的衬底。
在此采用的术语“单独可控元件的阵列”应该广义地解释为能够为辐射束提供图案化截面,以便能在衬底的目标部分形成所需的图案的任何装置。在上下文中也可以使用术语“光阀”和“空间光调制器”(SLM)。以下描述这种图案化装置的实施例。
可编程反光镜阵列可包含具有粘弹性控制层的矩阵寻址表面和反射表面。这种设备的基本原理是,例如,反射表面的被寻址区将入射光反射为衍射光,而未被寻址区将入射光反射为非衍射光。利用适当空间的滤光片,从反射束中滤出非衍射光,仅留下衍射束到达衬底。以该方式,射束依据矩阵可寻址表面的寻址图案而被图案化。
可以理解到,作为替代,滤光片可滤掉衍射光,留下非衍射光到达衬底。还可以以相应的方式使用衍射光学微电子机械系统(MEMS)器件阵列。每个衍射光学MEMS器件可包含多个反射带,这些反射带可相对彼此变形而形成将入射光反射成衍射光的光栅。
另外的可替换实施例可以包含采用微镜面的矩阵排列的可编程镜面阵列,其中通过施加适当的局部电场,或者通过采用压电致动装置,每一个镜面能够单独地关于一轴倾斜。再者,这些镜面也是矩阵可寻址的,从而被寻址镜面将以不同方向入射的辐射束反射到未被寻址镜面上;以这种方式,反射束根据矩阵可寻址镜面的寻址图案被图案化。所需的寻址矩阵可以利用合适的电装置实施。
在上述两种情况中,单独可控元件阵列可以包含一个或者多个可编程镜面阵列。关于这里涉及镜面阵列的更多信息可以从例如美国专利US5,296,891和美国专利US5,523,193、和PCT专利申请WO98/38597和WO98/33096中得知,它们在这里引入作为参照。
可使用可编程LCD阵列。美国专利申请US5,229,872给出了这种结构的一个例子,在此引入作为参照。
应该理解到,当例如使用了特征预偏置、光学邻近校正特征、相位变化技术和多次曝光技术时,在单独可控元件阵列上“显示”的图案可能大大不同于最后传递至衬底的或衬底上的层的图案。类似的,最后在衬底上产生的图案可不对应于任何一瞬间形成于单独可控元件阵列上的图案。在如下的设置中可能出现这样的情况形成在衬底的每一部分上的最后图案是经过给定时间段或给定曝光次数而形成的,在此期间,在单独可控元件阵列上的图案和/或该衬底的相对位置改变。
虽然在本文中具体涉及制造IC时的光刻设备的使用,应该理解的是本文描述的光刻设备可具有其它用途,诸如DNA芯片、MEMS、MOEMS、集成光学系统、磁畴存储器的导向及检测图案、平板显示器、薄膜磁头等的制造。本领域的技术人员将会理解在在本文的这种可替换应用中,这里使用的术语“晶片”或“芯片”可以认为分别与更通用的术语“衬底”或“目标部分”是同义的。本文所指的衬底在曝光前或后在例如轨道(一般涂布感光胶层到衬底并显影曝光的感光胶的工具)或计量工具或检查工具中处理。在可应用的地方,本文的公开可应用于这种和其它的衬底处理工具。此外,例如为了生成多层IC,衬底可进行一次以上处理,所以本文所使用的术语“衬底”也是指已经含有多层处理过的层的衬底。
本文使用的术语“辐射”和“射束”包含所有形式的电磁辐射,包含紫外线(UV)辐射(例如,波长365、248、193、157或126nm)和极紫外线(EUV)辐射(例如,波长5-20nm),以及如离子束或电子束的粒子束。
适当地,例如对于所使用的曝光辐射,或其它因素,诸如使用浸没液体或使用真空,在此使用的术语“投影系统”应广义地理解为包含多种形式的投影系统,包含折射光学系统、反射光学系统和反射折射光学系统。此处使用的术语“透镜”可以认为与更常用的术语“投影系统”是同义的。
照明系统也可以包含各种形式的光学部件,这些光学部件包括折射、反射和反射折射光学部件,用于引导、整形或控制辐射束,而这些部件在下面也可总体的或单独的称为“透镜”。
该光刻设备可能是具有两个(双级)或更多个衬底台(和/或两个或多个掩膜台)的类型。在这种“多级”机器中,可并列使用另外的台,或者在一个或多个台上实施预备步骤的同时,一个或多个其它台被用于曝光。
该光刻设备也可以是这种类型的设备其中衬底被浸没在(例如水的)具有相对高折射率的液体中,以便填充投射系统的最后元件与衬底之间的空间。浸液也可以应用于该光刻设备中的其它空间,例如,单独可控元件阵列与该投影系统的第一元件之间的空间。用于增大投影系统的数值孔径的浸没技术在本领域是公知的。
此外,该设备可以设有允许液体和衬底的被辐射部分之间的相互作用(例如选择性的将化学物质帖附于衬底或选择性改变衬底的表面结构)的液体处理单元。
光刻投影设备图1示意性描述根据本发明实施例的光刻投影设备100。设备100包含至少一个辐射系统102、单独可控元件104阵列、载物台106(如衬底台)、以及投影系统(“透镜”)108。
辐射系统102可用于提供辐射束110(如UV辐射),其在该特殊情况下也包含辐射源112。
单独可控元件阵列104(如可编程镜面阵列)可用于施加图案到射束110。通常,可相对投影系统108固定单独可控元件104阵列的位置。然而,在可选择的排列方式中,单独可控元件104阵列可以连接到用于相对投影系统108对其准确定位的定位装置(未示出)。如此处所述,单独可控元件104是反射型的(例如有单独可控元件的反射阵列)。
载物台106可具有用于支持衬底114(例如涂布了抗蚀剂的硅晶片或玻璃衬底)的衬底支持器(没有具体示出),并且衬底台106可以连接到用于相对投影系统108准确定位衬底114的定位装置116。
投影系统108(例如,石英和/或CaF2透镜系统或包含由这种材料制成的透镜元件的反射折射系统、或镜面系统)可以将从分束器118接收的图案化的射束投影到衬底114的目标部分120(例如一个或多个芯片)上。投影系统108可以将单独可控元件104阵列的图像投影到衬底114上。或者,投影系统108可以投影次级光源的图像,对于该光源单独可控元件104阵列的元件作为光闸。投影系统108也可以包含微透镜阵列(MLA)以形成次级光源并将微光点投影到衬底114上。
光源112(例如,受激准分子激光器)能产生辐射束112。射束112直接或通过(如扩束器126的)调节装置126之后,馈入到照明系统(照明器)124中。照明器124可以包含用于设定射束122中亮度分布的外部和/或内部径向长度(通常分别称为б-外部和б-内部)的调整装置128。此外,照明器124通常包含各种其它部件,例如积分器130和聚光器132。以这种方式,照射到单独可控元件104的阵列上的射束110在其横截面有所需的均匀性和强度分布。
应该注意到,关于图1,光源112可以在光刻设备100的外壳内(例如当光源112是汞灯时经常是这种情况)。在可选择的实施例中,光源112也可以是远离光刻装置100。在这种情况中,辐射束122照射到设备100中(例如借助合适的定向反射镜)。后者的方案常是光源112是受基准分子激光器的情况。可以理解这两个方案都被认为是在本发明的范围内。
在利用分束器118定向后,射束110随后与单独可控元件104的阵列交叉。由单独可控元件104阵列反射后,射束110通过投影系统108,其将射束110聚焦到衬底114的目标部分120上。
借助定位装置116(以及可选的基板136上的干涉测量装置134,其通过分束器140接收干涉射束138),衬底台106可以被准确地移动,以便于在射束110路径中定位不同的目标部分120。在使用时,例如在扫描期间,可使用单独可控元件104阵列的定位装置,来准确校正单独可控元件104阵列相对射束110的路径的位置。通常,借助于长冲程模块(粗定位)和短冲程模块(精细定位)实现载物台106的移动,其在图1中没有详细描述。相似的系统也可以被用于定位单独可控元件104的阵列。可以理解,或者/另外射束110是可移动的,同时衬底台106和/或单独可控元件104阵列可以有固定位置,以提供所需的相对移动。
在实施例的可选择结构中,可以固定衬底台106,衬底114可在衬底台106的上方移动。这样做的话,衬底台106在平坦的最上表面设有多个开口,气体直通该开口以提供能支撑衬底114的气体缓冲器。这常称为气体支承装置。衬底114在衬底台106上方利用一个或多个驱动器(未示出)移动,其能相对射束110路径准确定位衬底114。或者,可以通过选择性地起动和停止气体穿过开口使衬底114在衬底台116上移动。
尽管在此描述的根据本发明的光刻设备100用于曝光衬底上的抗蚀剂,可以理解到本发明并不限于这种使用,且设备100可用于无抗蚀剂(resistless)光刻中投影图案化的射束110。
设备100可以用于以下四种优选模式1、步进模式在单独可控元件104阵列上的整个图案被一次性(即,单“闪”)投影到一个目标部分120上。然后沿x和/或y方向将衬底台106移动到不同位置,以通过图案化的射束110辐射不同的目标部分。
2、扫描模式除了给定目标部分120不是单“闪”曝光外,与步进式模式基本相同。相反地是,单独可控元件104阵列在给定方向(所谓“扫描方向”,例如,y方向)是可以速度v移动,从而导致图案化的射束110在单独可控元件104阵列上扫描。同时,衬底台106是以速度V=Mv沿相同或相反方向同时移动,在其中M是投影系统108的放大倍数。以这种方式,可以曝光相对大的目标部分120,而不必牺牲分辨率。
3、脉冲模式单独可控元件104阵列基本保持静止,整个图案利用脉冲辐射系统102投影到衬底114的目标部分120上。衬底台106基本恒速移动,使图案化的射束110在衬底106扫描一行。在辐射系统102的脉冲之间按需要更新单独可控元件104阵列上的图案,并且对脉冲定时使得在衬底114上所需位置曝光连续的目标部分120。因此,图案化的射束110能在整个衬底114上扫描以曝光衬底114的一条的完整图案。重复此过程直到完整衬底114被一行一行地曝光。
4、连续扫描模式与脉冲模式基本相同,只是使用基本恒定辐射系统102,并且当图案化的射束110在衬底114上扫描并对其曝光时,更新单独可控元件104阵列上的图案。
也可以利用上述描述模式的结合和/或变化或完全不同的模式。
在图1所示的实施例中,单独可控元件104阵列是可编程镜面阵列。可编程镜面阵列104包含微小镜面的矩阵排列,其每一个可以关于一轴独立倾斜。倾斜度限定每个镜面的状态。当元件没有缺陷时,通过来自于控制器的适当控制信号可制控这些镜面。每个无缺陷元件可控制成采用一系列状态的任何一个,以便于调节投影辐射图案中它对应象素的亮度。
在一个实施例中,一系列状态包含(a)黑状态,由镜面反射的辐射最小,或甚至对它相应象素的亮度分布的贡献为零;(b)最白状态,其中反射辐射作出最大贡献;以及(c)其间的多个状态,这些状态中反射辐射作出中间贡献。这些状态被分成用于普通射束图案化/印刷的普通设置,以及补偿缺陷元件影响的补偿设置。普通设置包含黑状态和第一组中间状态。该第一组将描述为灰状态,且它们可选择从最小黑值到某一普通最大值逐步提供对相应象素亮度增加的贡献。该补偿设置包含剩余的第二组中间状态和最白状态,该第二组中间状态将被描述为白状态,且他们可选择提供比普通的最大值更大的贡献,逐步增加到对应于最白状态的真实最大值。尽管第二组中间状态被描述为白状态,可以理解这仅仅是为了便于区别普通和补偿曝光步骤。或者,所有这多个状态可描述为黑和百之间的灰状态序列,可选择使得能够进行灰度印刷。
图2描述根据本发明的一个实施例用于在衬底上产生图案的处理单元的示意图。在处理单元11中,用抗蚀剂涂布衬底。在处理单元12中,用图案化的辐射束曝光抗蚀剂。在处理单元13中,在曝光后烘烤(PEB)装置中烘烤衬底和其曝光的抗蚀剂。在处理单元14中,冷却衬底。在处理单元15中,显影衬底。
可以理解,还可以进行额外的处理。在一个实施例中,上面的额外处理可以在专用的设备中进行。在另一实施例中,两个或多处理可以在相同的设备中进行。例如,曝光后烘烤步骤和冷却步骤可在组合的设备中实施。此外,衬底必须在不同处理设备之间和/或在每个设备内被转移,例如,如果一设备在该设备的不同部分实施处理步骤。
抗蚀剂对曝光的响应将受每一阶段的处理条件影响。其效果是曝光辐射的阈值剂量将改变。因此,没有补偿的情况下,在衬底上产生的特征也许不是预定的精确特征。例如,如果阈值辐射剂量减小,则大部分抗蚀剂将接收阈值辐射剂量,并且在衬底上产生的图案化特征将相应地比预定的大。
在生产设施中,可以有用于进行处理的多台设备。例如,可以有两台或更多台抗蚀剂涂布设备,用于将涂布了抗蚀剂的衬底提供给每台曝光设备,或者,可以有多台抗蚀剂涂布设备,其中任何一台将涂布了抗蚀剂的衬底提供给多台曝光设备的任何一台。相同的设备可能有不同的处理条件。此外,在特定的处理设备中的处理条件在一个衬底上也可能有变化。例如,在曝光后烘烤设备中对于衬底的一部分的热分布(例如温度随时间的变化)可以不同于同一衬底的另一部分。处理条件也可以在每个设备内随时间变化。
因为每个衬底或衬底的每一部分可以经过不同的处理条件,对于每个衬底(或部分衬底),抗蚀剂对曝光辐射的响应将是不同的。如果在衬底的两个不同部分或两个不同衬底上曝光相同的辐射图案,实际产生的两个图案将稍微不同。例如,由图案的CD测量的在一个上的图案特征的尺寸可能比预定图案特征大一些,而在另一个上的那些可能稍微小些。因此,人们通常发现CD从衬底到衬底并且在每一衬底上变化。
图3描述了根据本发明的一个实施例示出临界尺寸轮廓的衬底。有许多区域,每个由不同CD表征。在一个实例中,第一区域21的CD可以是100nm,第二区域22的CD可以是105nm,第三区域23的CD可以是110nm,第四区域24的CD可以是105nm,第五区域25的CD可以是100nm。在这个实例中,在不同区域里形成的器件的性能是不同的。如果变化太大,形成在衬底的一些区域里的器件不合格。因此,为了保证制造过程的产氯充足,将有必要保证每个衬底上以及衬底之间的CD变化最小化。这是称为CD均匀性(CDU)。
再参见图2,该过程的每个部分都将对CDU有影响。例如,在抗蚀剂涂布单元11里的处理条件在涂布设备之间可能变化,在一个涂布设备内可能随时间而变化,且对于给定的涂布衬底的不同部分可能变化。此外,例如由在衬底上事先形成的其它图案层导致的衬底上的变化也对CDU有贡献。因此,有必要最小化每一步骤对CDU的减的贡献和/或补偿那些贡献的每一个。
图4描述根据本发明的示例性处理系统。控制器30在曝光步骤期间控制曝光设备31。为了在单独可控元件阵列上设定所需的图案,控制器30访问预定的图案数据32,该图案数据32表示每个曝光期间意图在衬底上产生的图案。控制器30也访问处理条件数据33,该数据表示衬底已经和/或将要受到的并且可能影响CDU的处理条件。在图4示的示例性系统中,控制器30也可以访问转换数据34,例如,该数据存储在控制器30内的存储器中,并且对应于必须应用到预定图案数据32的变化以补偿由处理数据33表示的处理条件。修改的图案数据被用于设定用于曝光的单独可控元件的阵列。因此,在衬底上形成的最终图案比不进行校正的情况更相似于预定图案。
对于图案的修改可以在单独可控元件阵列的任何控制阶段中实现。在一个实例中,基本的图案数据本身可以被修改。在另一个实例中,在图案数据已经转换成对应于每个象素的数据(即,位图数据)之后,可以进行修改。在另外的实例里,一将数据转换为用于设定单独可控元件阵列的控制信号就可以进行修改。
可以理解,可以结合使用这些实例。例如,对CDU的一些影响的补偿可以在基础图案数据中最容易实现。然而,对CDU的影响的其它补偿可能更容易在独立可控元件阵列的控制信号上实现。因此,对每一个可使用单独调节。
在一个实施例中,处理条件数据33可以包含表示多个不同处理条件的数据。然而,它也可以仅与单个处理条件有关,例如,如果单个处理条件对CDU的影响比其它任何处理条件大得多。通常,被用于调整单独可控元件阵列上的设定图案的处理条件数据33是对CDU影响最大和/或能够充分测量以被有效补偿的那些处理条件。处理条件数据33可以包含与衬底先前处理历史相关的衬底历史数据35、与在曝光前发生的处理步骤有关的曝光前处理数据36、与在曝光步骤后发生的处理步骤相关的期望曝光后处理数据37。
示例性处理条件数据33可以是但不限于以下任何一种(1)先前在衬底上产生的至少一层图案层的CD历史;(2)涂敷到衬底的抗蚀剂的类型;(3)在衬底上施加抗蚀剂期间的工艺条件;(4)将抗蚀剂施加到衬底和曝光衬底之间的时间;(5)将抗蚀剂施加到衬底和曝光后的衬底处理之间的期望时间;(6)曝光后发生的衬底的烘烤期间的工艺条件;(7)在随后冷却衬底期间的工艺条件;和/或(8)在显影衬底期间的工艺条件。
此外,处理条件数据可以包含处理中使用的不同设备之间的衬底的转移期间和/或各处理之间衬底的任何存储期间的条件的细节。应该理解,可能影响CDU并因此被包含在处理条件数据33中的其它处理条件,对本领域普通技术人员是显而易见的。
处理条件可以在每个衬底上变化。例如,在曝光后烘烤期间,热分布(例如,温度随时间的变化)对于衬底的不同部分是不同的。在一个实例中,记录处理条件数据并且对于衬底的每一部分控制器30可使用这些数据。因此,对于衬底的每一部分的图案修改对于其已经经受的处理条件是适当的,这允许衬底上的CDU得到改进。在该实例中,处理条件数据也可以包含与每个设备内衬底的定向相关的数据和/或与在运送操作期间衬底方向的任何改变相关的数据,这样使得在设备内的不同位置处的处理条件对于衬底的每一部分能被相应地记录。
在一个实例中,处理条件数据33可以包含对于要被曝光衬底已经测量的数据。例如,可以测量在衬底曝光之前发生的处理步骤的处理条件。然而,处理条件数据不必与每个衬底的测量相对应。例如,处理条件数据可以是与一台或多台设备(例如,在给定设备存在的已知的处理条件)相关的数据。如果在设备内的处理条件不随时间明显变化,这将是所理想的。因此,对于要在给定设备内实施的给定处理步骤,对于衬底或衬底的一部分的处理条件是预先知道的。如果在设备内的处理条件随时间逐步变化,那么在设备内的实际处理条件将被监测,且按需要更新为该设备记录的数据。考虑在曝光后发生的处理的处理条件是理想的,因为不可能基于没有发生的处理步骤的处理条件修改曝光条件。在这种情况中,有必要基于随后的处理步骤里期望的处理条件的任何修改,也就是说,与衬底按计划要在其中处理的设备相关的处理条件数据33。如果多台设备可用于随后的处理步骤,那么可以决定在哪台设备中处理衬底,以便专用于那台设备的数据可以决定必要的图案调整。
在一个实例中,在衬底曝光之前可获得处理条件数据33。那么,能在曝光前决定图案调整。因此,可以不用特别考虑计算速度进行计算。或者,可以稍微在曝光前或在衬底上实施曝光时决定图案数据的修改。因为需要更快地进行任何必要的计算,这需要更复杂的控制器。然而,可以考虑在曝光之前刚刚记录的和/或在曝光时(例如,在将抗蚀剂施加到衬底上和发生曝光之间的时间)记录的处理条件数据33。此外,如果在曝光前匆忙或很短时间决定所述调整,那么不必预先知道每个衬底的时间表。因此,如果时间表改变,图案调整不必重新计算。例如,在处理设施中,可以有两台或多台涂布设备。如果要在曝光前决定图案调整,那么需知道衬底计划要在哪个设备中涂布抗蚀剂。
一旦决定每个衬底或衬底的每一部分的处理条件,就修改图案数据。修改的目的是改变设定在单独可控元件阵列上的图案,使得考虑到将因改变处理条件发生的失真,在衬底上实际产生的图案是实际预定的图案或十分地接近,并且在衬底上形成的器件产率是可接受的(例如形成在衬底上的足够数量的器件的性能足够好)。这可通过改变单独可控元件阵列上设定的图案的图案特征尺寸来实现。例如,如果衬底的一部分的处理条件是这样的,即,对于设定在单独可控元件阵列上的给定图案,在衬底上形成的实际图案比预期的小,实际上设定在单独可控元件阵列上的图案比非这种情况下设定的大(例如,只利用预定图案化数据),使得一旦已经在衬底上产生图案,它就与预定尺寸一致。
在一个实例中,当利用带有单独可控元件阵列的设备时,所述元件能将图案化的辐射束的不同部分的强度设定为多个级别(例如灰阶)的任一级,可通过将单独可控元件阵列上的图案亮度设定成不同于单独利用预定图案数据所设定的来调整图案。例如,如果处理条件数据是这样的,即,在衬底上实际产生的图案化特征的尺寸比预定的(例如,只使用预定图案数据)小,在单独可控元件阵列上设定的图案特征的亮度被增强。因此,在衬底上的较大区域接收辐射阈值剂量且图案特征的尺寸相应增加,补偿了由处理条件导致的尺寸减小。可以理解,可以使用这些图案修改的结合,也就是说改变设定在单独可控元件阵列上的图案尺寸和亮度。
再参见图4,在这个实施例中,在衬底已经被曝光或处理后,可利用检查单元38检查。CD确定单元39能确定在衬底上实际产生图案的CD和/或在衬底上CD的改变。
在一个实例中,如果临界尺寸均匀性(CDU)是在要求的容差范围内,衬底被接受。否者,如果CDU不是在要求的容差范围内,利用处理单元40其可以被拒绝。
在任一情况中,所确定的衬底的CD分布可以用于更新用于修改图案数据的转换数据34。例如,如果图案修改不能对图案特征尺寸进行期望的补偿,则改变转换数据34。
在一个实例中,在设备被用于全面生产之前,可以曝光和检查带有变化的图案、变化的处理条件、及变化的图案修改数据的多个测试衬底,以便产生最初的转换数据34。例如,对于一组给定的处理条件数据,可将不同转换(例如,用转换数据表示)用于不同的曝光和/或曝光的不同部分,以便决定哪一个图案调整用于补偿一组给定的处理条件最有效。
在一个实例中,制造期间可以使用相似设置。例如,在衬底上的不同部分或在不同曝光期间,转换数据34的小的变化可以被用于调整图案。假设转换数据的这些变化导致的CD的变化足够小,这不会有害地影响全部的CDU。然而,这些变化足以决定转换数据34的哪一个变化是最有效的,并且随后存储最有效的一个作为新的转换数据34。以这种方式,转换数据34可以逐步地修改和最佳化。
在各种实例中,转换数据34可以以多种方式设置。例如,转换数据34可以表示对于每个处理条件的每个可能值对图案数据做的修改。在此情况中,图案完整的修改通过对所考虑的每一个处理条件连续应用转换数据34产生。或者,转换数据34可以对应于对一整套处理条件要求的图案修改。换句话说,转换数据34可以包含为所考虑的每个处理条件的每个可能值的每个可能组合设定的修改数据。也可以使用两个设置的组合。
结束语虽然上述已经描述本发明的各种实施例,但是应该理解它们只是通过实例来表示,而不是限制。对本领域的普通技术人员来说,不脱离本发明的精神和范围在形式和内容上作出各种变化是显而易见的。因此,本发明的宽度和范围不应该由上述的特殊实施例限制,而是应该仅根据以下的权利要求和它们的等同替换来限定。
权利要求
1.一种光刻设备包含照明系统,其提供辐射束;图案化射束的单独可控元件的阵列;投影系统,其将图案化的射束投影到衬底的目标部分上;控制器,其使用(a)对应于要曝光到衬底上的图案的预定图案数据,及(b)对应于至少一个衬底处理条件的处理条件数据,控制使用单独可控元件阵列形成的图案。
2.如权利要求1的光刻设备,其中,控制器基于处理条件数据,控制与由预定图案数据规定的图案尺寸相关的图案的至少一个特征的尺寸。
3.如权利要求1的光刻设备,其中图案化射束的强度被设定为至少三个强度等级中的任何一个;且控制器控制基于处理条件数据,控制图案化射束中图案的至少一个特征设定成该至少三个强度等级中的哪一个,以与为预定图案数据中的该至少一个特征规定的强度等级相关。
4.如权利要求1的光刻设备,其中处理条件数据包含对应于至少下述之一的数据涂敷到衬底的抗蚀剂的类型;将抗蚀剂涂敷到衬底的工艺条件;与至少两个处理操作相关联的时间段;在曝光后烘烤衬底的工艺条件;在烘烤衬底后冷却衬底的工艺条件;显影衬底的工艺条件;在光刻设备和在衬底上进行其它处理的设备之间衬底的转移;以及在随后的蚀刻、离子注入法、金属化、氧化、化学机械抛光、和/或清洗处理中的期望工艺条件。
5.如权利要求1的光刻设备,其中对应于至少一个工艺条件的处理条件数据在衬底上的两个或多个区域上是不同的;且当在单独可控元件阵列上设定图案以曝光衬底上的目标部分时,控制器选择和使用对应于所述目标部分的处理条件数据。
6.如权利要求1的光刻设备,其中,根据先前记录的并且与先前处理的衬底的处理过程中的工艺条件相对应的数据产生处理条件数据的至少一部分,所述工艺条件是已经对该衬底进行过处理的设备和计划要对该衬底进行处理的设备之一的工艺条件。
7.如权利要求1的光刻设备,其中,在衬底上图案层曝光开始之前,对于衬底上图案层的曝光的每一部分,确定要被设定在单独可控元件阵列上的图案。
8.如权利要求1的光刻设备,其中,在衬底上图案层曝光期间,对于衬底上图案层的曝光的至少一部分,确定要被设定在单独可控元件阵列上的图案。
9.如权利要求1的光刻设备,其中,控制器包含存储器,其对于给定的处理条件数据,存储对应于在预定图案数据中规定的图案数据和要由单独可控元件阵列设定的图案之间区别的转换数据。
10.如权利要求9的光刻设备,其中,基于要在衬底上产生的至少一个特征的比较和在衬底上随后产生的相应的至少一个特征的检查,更新转换数据。
11.权利要求10的光刻设备,其中,衬底上图案层曝光期间,控制器在衬底上的多个位置处使用给定处理条件数据的转换数据的一个或多个修改版本。
12.权利要求10的光刻设备,还包含探测器,其检测在衬底上产生的至少一个图案特征,其中,控制器将至少一个被检查的图案特征与相应的至少一个预定图案特征比较,并且更新转换数据。
13.一种器件制造方法,包含利用(1)对应于要曝光在衬底上的图案的预定图案数据,以及(2)对应于衬底的至少一个处理条件的处理条件数据,使用单独可控元件的阵列形成图案;利用在单独可控元件阵列上形成的图案来图案化辐射束;且将图案化的射束投影到衬底的目标部分上。
全文摘要
提供一种光刻设备,其使用单独可控元件阵列图案化辐射束。通过调整提供给单独可控元件的图案数来补偿工艺变化,使用该设备图案化的衬底的临界尺寸均匀性得到改善。
文档编号G06F17/50GK1737691SQ20051010989
公开日2006年2月22日 申请日期2005年7月25日 优先权日2004年7月26日
发明者A·J·布里克, W·T·特 申请人:Asml荷兰有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1