一种分布式自适应肺结节计算机检测方法及系统的制作方法

文档序号:6480991阅读:374来源:国知局
专利名称:一种分布式自适应肺结节计算机检测方法及系统的制作方法
技术领域
本发明涉及一种分布式自适应肺结节计算机检测方法,尤其涉及基于蚁群算法的特征选 择以及基于遗传算法的分布式自适应肺结节检测。
背景技术
目前,人们在肺结节检测方面做了大量的工作。 一些学者从图像增强、滤波、配准等方 面检测肺结节。S.Yamamoto等人使用一种可变N环滤波器应用于二维和三维常规图像检测 肺结节。魏颖等人提出结合全局区域均值和局部边界信息的水平集改进算法,应用于肺结节 检测。Brown等人用先验的模糊模型来描述肺结节的解剖学结构,采用图像基元配准的方法 寻找肺结节。此外,还有一些学者从肺结节的特征提取、分类方面来检测肺结节。Lilla Boroczky 等人采用遗传算法对特征子集进行选择,再利用支持向量机构造的分类器进行分类检测肺结 节。Arimea等人使用多阈值技术初选结节,再使用基于规则、神经网络等方法除去假阳性结 节。但是,这些肺结节检测方法都是基于感兴趣区域ROI(Regions of Interest)样本自身的特征, 没有考虑ROI样本总体的特征。而且,这些算法都是基于单一节点的肺结节检测,处理的图 像资源非常有限,无法利用分布式网络的图像资源来达到更好的检测效果。
本发明描述一种分布式自适应肺结节计算机检测方法,其核心内容包括基于蚁群算法的 特征选择、基于遗传算法的分布式参数寻优。使用蚁群算法选择有代表性的肺结节特征能够 有效的减少分类检测的工作量、工作时间。在分布式ROI分类中,各个节点使用蚁群算法进 行分类,这样既考虑ROI的个体特征,又考虑ROI样本总体的特征,会提高检测的漏诊率。 同时,各个节点中的参数由中心管理器通过遗传算法寻优获得之后进行统一设置,而不是系 统开发者根据自己的测试数据凭经验设置,这就有效降低了参数设置的局限性。分布式系统 能够综合不同的数据来不断调节这些参数,会大大改善参数设置的合理性,从而提高检测性 能。

发明内容
本发明提供一种分布式肺结节检测方法。 具体技术方案如下
5一种分布式自适应肺结节检测方法,其特征在于,包括
A、 中心管理器确定肺结节特征,所述确定肺结节特征具休包括-Al、中心管理器根据初始的实验数据,使用蚁群算法确定分类规则;
A2、通过计算规则集合中各个肺结节特征之间的相关度,对规则集合进行修改; A3、使用特征变量表示规则集合中选定的肺结节特征;
B、 中心管理器对肺结节检测代理进行感兴趣区域的特征变量以及分类参数的初始化,初 始的参数通过遗传算法获得,所述分类参数满足适应度凼数值最大的条件;
C、 肺结节检测代理进行肺结节检测,所述肺结节检测具体包括 Cl、对肺部CT图像进行分割,获得肺实质图像;
C2、根据感兴趣区域形状特征,使用基于Hessian矩阵的多尺度增强以及梯度熵的选择 来完成感兴趣区域的提取; —C3、计算感兴趣区域的特征值,根据所述感兴趣区域的特征值,使用蚁群算法对感兴趣 区域进行分类,输出肺结节检测结果;
D、 根据输出的检测结果,计算作为检测指标的敏感性以及假阳率,将检测指标反馈给中 心管理器,如果检测指标满足要求,则所述肺结节检测代理使用原有的分类参数继续调节; 如果检测指标不满足要求,则使用遗传算法寻找更加理想的分类参数,使用蚁群算法对感兴 趣区域重新进行分类,输出新的肺结节检测结果,将所述更加理想的分类参数反馈给所述肺 结节检测代理。
还包括使用圆形肿块征、分叶征、棘状突起征、结节征、空泡征、空洞征、支气管征、 毛刺征、尖角征、索条征、模糊征、充血征、胸膜凹陷征、血管束集中征和卫星病灶征这I-五个特征构成分类规则中的初始集合;
对于一组实验数据,计算规则的偏好值,将偏好值最大的规则依次移入到当前规则集合 中,同时将此组实验数据中符合规则的训练实例依次移出,直到剩余的训练实例少于最大未 训练实例时,结束当前规则集合的构建,在当前规则集构建完成时,根据分类的敏感性和准 确性增加集合中规则的信息素,模拟信息素的增加,由信息素的持久性系数决定集合外信息 素的残留程度,模拟信息素的挥发;
计算完所有组实验数据训练实例后,信息素的大小决定规则集合的构建,信息素较大的 规则在集合中,根据规则集合中元素的相关性,除去相关元素,确定分类特征;
根据肺结节的三维空间特征,设置特征变量球形度,表示肺结节的圆形肿块征;根据特 征点以及特征点的凸凹性,设置特征变量Na,,表示肺结节的分叶征;根据肺结节与胸膜相连接的点以及肺结节附近的胸膜的曲率,设置特征变量Nw^,,表示肺结节的胸膜凹陷征; 根据增强前后肺结节周长与面积的比,设置特征变量N崎钟征,表示肺结节的血管集中征。
进一歩,在各个肺结节检测代理进行工作前,中心管理器根据数据库中己有的实验数据, 使用遗传算法确定分类的最优参数,并使用选定的特征变量以及该所述最优参数初始化各个 肺结节检测代理。
进一步,在梯度熵选择时,根据切比雪夫不等式确定肺结节梯度熵分布区间,除去增强 获得的感兴趣区域中的血管交叉形成的区域;根据感兴趣区域的特征变量值,肺结节检测代 理使用基于蚂蚁堆积尸体模型的LF算法对数据进行分类,从生成的类中选出结节类和血管干 扰区域类,并使用这两类中数据的均值表示结节和血管干扰区域;使用基于蚂蚁找寻食物模 型的分类算法对数据进行分类时,将选出的两类视为"食物",每个数据被分类后,类的中心 发生变化,蚁群算法中的参数由中心管理器统一设定。
一种分布式自适应的肺结节检测系统,所述系统包括中心管理器和肺结节检测代理装置, 所述中心管理器通过网络与所述肺结节检测代理装置相连接,其特征在于,包括
肺结节检测代理装置,使用最优阈值分割方法获得肺实质图像,使用基于Hessian矩阵的 多尺度增强以及梯度熵选择来提取感兴趣区域,计算感兴趣区域的特征值,根据所述特征值, 使用基于蚂蚁堆积尸体模型以及蚂蚁找寻食物模型的数据分类算法进行分类;
中心管理器,根据初始的实验数据,使用蚁群算法确定分类规则,通过计算规则集合中 各个肺结节特征之间的相关度,对规则集合进行修改,使用特征变量表示规则中选定的肺结 节特征;
所述中心管理器对肺结节检测代理装置进行感兴趣区域的特征变量以及分类参数的初始 化,初始的参数通过遗传算法获得,所述分类参数满足适应度函数值最大的条件;
所述中心管理器在肺结节检测过程中,根据各个肺结节检测代理装置反馈的肺结节检测 的敏感性与假阳率,使用遗传算法调节分类算法中的参数。
还包括使用圆形肿块征、分叶征、棘状突起征、结节征、空泡征、空洞征、支气管征、 毛刺征、尖角征、索条征、模糊征、充血征、胸膜凹陷征、血管束集中征和卫星病灶征这十 五个特征构成分类规则中的初始集合;
对于一组实验数据,计算规则的偏好值,将偏好值最大的规则依次移入到当前规则集合 中,同时将此组实验数据中符合规则的训练实例依次移出,直到剩余的训练实例少于最大未 训练实例时,结束当前规则集合的构建,在当前规则集构建完成时,根据分类的敏感性和准 确性增加集合中规则的信息素,模拟信息素的增加,由信息素的持久性系数决定集合外信息
7素的残留程度,模拟信息素的挥发;
计算完所有组实验数据训练实例后,信息素的大小决定规则集合的构建,信息素较大的 规则在集合中,根据规则集合中元素的相关性,除去相关元素,确定分类特征;
根据肺结节的二维空间特征,设置特征变量球形度,表示肺结节的圆形肿块征根据特 征点以及特征点的凸凹性,设置特征变量N分喷,表示肺结节的分叶征;根据肺结节与胸膜相 连接的点以及肺结节附近的胸膜的曲率,设置特征变量N胸鹏陷征,表示肺结节的胸膜凹陷征; 根据增强前后肺结节周长与面积的比,设置特征变量NM^ffi,表示肺结节的血管集中征。
进一步,在各个肿结节检测代理装置进行工作前,中心管理器根据数据库中已有的实验 数据,使用遗传算法确定分类的最优参数,并使用选定的特征变量以及该所述最优参数初始 化各个肺结节检测代理装置。
进一歩,在梯度熵选择时,根据切比雪夫不等式确定肺结节梯度熵分布区间,除去增强 获得的感兴趣区域中的血管交叉形成的区域;根据感兴趣区域的特征变量值,肺结节检测代 理装置使用基于蚂蚁堆积尸体模型的LF算法对数据进行分类,从生成的类中选出结节类和血 管干扰区域类,并使用这两类中数据的均值表示结节和血管干扰区域;使用基于蚂蚁找寻食 物模型的分类算法对数据进行分类时,将选出的两类视为"食物",每个数据被分类后,类的 中心发生变化,蚁群算法中的参数由中心管理器统一设定。
一种分布式自适应的肺结节检测方法,其特征在于,所述方法包括
使用最优阈值分割方法获得肺实质图像;
使用基于Hessian矩阵的多尺度增强以及梯度熵选择来提取感兴趣区域; 计算感兴趣区域的特征值;
根据所述特征值,使用基于蚂蚁堆积尸体模型以及蚂蚁找寻食物模型的数据分类算法进 行分类;
根据初始的实验数据使用蚁群算法确定分类规则,通过计算规则集合中各个肺结节特征 之间的相关度,对规则集合进行修改,使用特征变量表示规则中选定的肺结节特征;
所述中心管理器对肺结节检测代理进行感兴趣区域的特征变量以及参数的初始化,初始 化参数为使遗传算法中适应度函数值最大的参数值;
所述中心管理器在肺结节检测过程中,根据各个肺结节检测代理反馈的肺结节检测的敏 感性与假阳率,使用遗传算法调节分类算法中的参数。
一种分布式自适应的肺结节检测系统,其特征在于,包括
用于使用最优阈值分割方法获得肺实质图像的装置;用于使用基于Hessian矩阵的多尺度增强以及梯度熵选择来提取感兴趣区域的装置; 用于计算感兴趣区域的特征值的装置;
用于根据所述特征值,使用基于蚂蚁堆积尸体模型以及蚂蚁找寻食物模型的数据分类算 法进行分类的装置;
用于根据初始的实验数据使用蚁群算法确定分类规则,通过计算规则集合中各个肺结节 特征之间的相关度,对规则集合进行修改,使用特征变量表示规则中选定的肺结节特征的装 置;
所述中心管理器对肺结节检测代理装置进行感兴趣区域的特征变量以及参数的初始化, 初始化参数为使遗传算法中适应度函数值最大的参数值;
所述中心管理器在肺结节检测过程中,根据各个肺结节检测代理装置反馈的肺结节检测 的敏感性与假阳率,使用遗传算法调节分类算法中的参数。


图1为本发明的分布式肺结节检测系统的结构图; 图2为本发明的特征选择算法的流程图; 图3为本发明的计算特征变量N ^ff的流程图。
具体实施例方式
本发明提出一种分布式自适应肺结节计算机检测方法及系统。
具体实施方案如下
1中心管理器的特征选择
特征选择由中心管理器根据数据库中原有的数据确定,特征选择算法的流程如图2所示。 实验表明,随着实验数据的增加,特征选择的变化情况不大,所以在分布式肺结节检测系统 中,特征变量初始化之后就不再改变。
1.1规则构建
根据肺结节的CT影像学特点,初选圆形肿块征、分叶征、棘状突起征、结节征、空泡征、
空洞征、支气管征、毛刺征、尖角征、索条征、模糊征、充血征、胸膜凹陷征、血管束集中
征、卫星病灶征十五个特征作为初始特征。分类规则应具有如下形式
If〈条件land条件2......> then<class>
每一个条件元素由A产Vy表示,Ai代表第i个特征,Vg代表A冲的第j个值。在进行规则 构建之前要对各个特征值进行离散化假设特征值=1时,表示该特征存在;特征值=0时, 表示各个特征不存在。
9初始规则集合N为空集,初选的15个特征构成规则集合M,将数据分成m份,每隔一段时 间,取出一份数据作为训练实例。根据训练实例计算规则偏好值,将M中规则偏好值最大的 规则从M中移出,添加到N中,将符合规则的训练实例移出。重复刚才的工作,直到剩余的训 练实例少于最大未训练实例max uncovered case为至,结束当前规则集合构建,更新信息素。 对于当前规则集合内的规则,其信息素根据分类检测的效果进行聚集增加。对于当前规则集 合外的规则,其信息素根据设定的信息素的持久性系数p挥发减少。当m份训练实例都被计算
后,取信息素最大的前minnile(最小规则数)条规则,构建规则集合。
对于初始规则集合的所有条件元素的不同属性的初始信息素相同,设第i个特征中第j个特
征值被选择的初始信息素为^.^ = 0) = ^—。其中,a是特征的总数量,b,是能够被特征Ai采
用的可能值数量。第i个特征菊个特征值(temiij)被添加到当前规则集合的概率为
a , 一 ("
i二l 乂=1
若特征A被添加当前规则集合中,则Xi为l,否则为0。此概率可以简化为规则偏好值为
d (2)
如果termij的规则偏好值越大,则其越先被添加到当前规则集合中。%为tern^与规则提取
相关的启发式函数。启发函数是基于信息理论的,对于term,j的^值包含元素信息熵的测量, 每个满足Ai-V,j的term,j的信息熵为-
|4=。 = —4 = ^>log2 *| 4 = K》 (3)
式中,W是类的特征,k是类的数目,p(wlAi-V。是Ai二Vij的出现的概率。"信息熵"的 概念是在1948年由香农提出的,熵越大,类的确定性越小,termij被添加到规则集合中的可能 性越小。由于k^2,贝1」0<//(『|4 =。^1,为了便于在公式(2)中使用,%定义为
",,=-1- (4)
增加当前规则集合中每一个条件元素的信息素量,就相当于增加蚂蚁所访问路径上的信 息素。在规则发现的过程中,增加了term,j未来被其他蚂蚁选择的可能性,当前规则集合中temiij 的信息素可以被更新为.-<formula>formula see original document page 11</formula>(5) 当前规则集合外termi」的信息素可以被更新为
<formula>formula see original document page 11</formula> (6)
P为信息素的持久性系数,Q为规则的质量函数,表示本次循环term,」信息素的增量,根据 使用当前规则集合中的特征对训练数据进行分类的结果构建规则质量函数Q:
。=(or"eMW'ri"vrty).Oocrarac:v) = ( --~^-) (7)
式中,sensitivity为敏感性,accuracy为准确性,TP为真阳性结节数、FP为假阳性结节数, TN为真阴性结节数,FN为假阴性结节数,《、 -为敏感性以及准确性的控制参数,由于医生
更关注敏感性,所以a比P大一些。
1.2规则修改与特征选择 规则修改的主要目标是去除无关的元素,提高规则的质量。这里计算规则集合中,各个temii 之间的相关度,即在肺结节巾,temip发生同时,teraiq发生的经验概率P(qlp)。如果该经验概率 大于预先设定的相关度最大值maxcon,则这两个条件元素相关,将temiq移出规则集合,除去 相关元素的影响,达到简化规则集合的目的。而且,在规则构建时,向当前规则集合中添加 新的规则,将符合规则集合中条件元素的训练实例移出,这样可以在一定程度上避免了元素 相关的问题。
初步确定的分类规则为:If <圆形肿块征=1、分叶征=1、毛刺征=1、胸膜凹陷征=1、空泡 征=1、血管集中征=1> then <该1101为肺结节>
李惠民等人认为除了圆形肿块征的肺癌提示性中等,血管集中征的提示性较强以外,其余 特征的肺癌提示性强。考虑到检测规则将产生的误差,将maxcon设得大一些。通过计算可知, 各个temii之间的相关度小于预先设定得maxcon。所以,规则集合不改变。确定最终的选定特 征为圆形肿块征、分叶征、毛刺征、胸膜凹陷征、空泡征、血管集中征。 1.3使用特征变量表示选定肺结节特征 *肺结节的圆形肿块征 在二维图像中,圆形肿块征表现为病灶趋圆形,可以使用类圆度来表示。在三维图像中, 圆形肿块征表现为趋于类球形,3D后处理技术能立体、直接而有效地描述,但这样会大大增 加算法的计算量,这里定义了不需三维重建就可以得出的三维特征变量。
类圆度S-Ri/Rc, R,为区域内切圆的半径,Re为区域外接圆的半径,类圆度越大,表示圆形肿块征越明显<
定义i球形度=^7^。
其中,a,b,c为一组肺结节在X,Y,Z三个坐标轴投影长度的最大值、中间值以及最小值。对 于肺结节的球形度的计算,首先对肺结节进行分组,重心都在半径较小的圆的范围内的一些 肺结节被归为一组。组的概念是肺结节重建的基础,也是提取球形度特征的基础。 *肺结节的分叶征
分叶征是指二维图像上结节边缘明显高低不平的弧形,在本专利中定义变量N训.ffi描述肺 结节的分叶征。
定义2 N似......
其中,肺结节边缘相邻的凸凹性为凹凸凹的三个特征点构成一个向量,i为向量的个数。
Ch为三个点中两个凹点的距离,d2为肺结节重心到两个凹点构成的直线的距离。
由此可以看出,边缘特征点的检测是计算N^tH的关键问题。特征点的检测方法主要有两
类,即角检测法和多边形逼近法,这里将这两种方法综合获得特征点。首先,顺时针计算边
缘各点的曲率,曲率大于"的点构成初始集合M。在44+1(4、 4+,eM)上,到44+1距离最大
的点为B,最大距离为maxd。如果maxc/〉/ ,则将B点放入集合M中。否则,将《,从集合中 除去,确定最终的特征点集合。
特征点被确定后需要确定特征点的凸凹性,设特征点为pi,p2, ... ,pn,pn+1=Pl,引入函数
为AA+l有向面积的两倍。当特征点是顺时针走向时,如果
xi+1义+1 1
S(p,—lPlPi+1)<=0,贝(Jp,点就是凸的;如果S(pwPipw)》0,则pi点就是凹的。
判断特征点的凸凹性之后,就可以根据定义2计算N^ffi, N^tffi越大,肺结节的分叶征越 明显,计算N洲-tt的算法流程如图2所示。
肺结节的毛刺征
肺结节的毛刺征表现为肺结节边缘向周围伸展的、放射状的、无分支的、直而有力的细短 线条影,本发明中使用傅立叶描述子来表示毛刺征。将ROI轮廓放在复平面上研究,轮廓上的每个点可以写成Z, = 、 =0,1,......,/V-l),傅立叶
系数定义为力(幻=丄gz, exp(-^),k=-M,...,-l,0,l,...,2-l 。
先进行傅立叶快速变换,然后计算归一化的傅立叶系数NFD(k)c -0; * = 0;
WFO = j ^(A)小(l);l A = l,2,...,W/2;
、牟+ A = -1,-2,…,-7V/2 + 1;
S ll腳("ll小l
傅立叶描述子FF-^^-,傅立叶描述子越大,肺结节的毛刺征越明显。
艺ll腦("ll
*肺结节的胸膜凹陷征 胸膜凹陷征表现为肺内结节与邻近胸膜之间的一条或几条线状影,定义变量Nws,ffi描述 肺结节的胸膜凹裕fc--------
i=0
$-义3 ^V胸膜ta陷征=J 0, <i > p并ilr, g p/ewra/
Xi为肺结节边缘像素点,d为肺结节重心到肺实质边缘的最小距离。《,为肺结节附近胸膜
像素点的曲率,肺结节在与d垂直的方向上的投影与胸膜边缘相交的像素点为肺结节附近胸
膜像素点,m为这些点的集合。/9j为肺结节边缘与胸膜相接,相邻像素点构成的集合中点的

数,n为集合数。Wl、 "2为胸膜凹陷征控制系数,肺结节与胸膜相接时,胸膜凹陷征明显,
且"、/ 在不同的数量级,所以M,9t w2, Ml、 ^通过实验获得。N胸,瞎越大,肺结节的胸
膜凹陷征越明显。
參肺结节的空泡征
空泡征表现为肺结节内的类圆形含气腔,在肺窗上呈低密度影,使用变量空泡面积比(R) 来描述。
i =^L 。其中,Gl为使用最优阈值分割算法得到肺结节内空泡的面积,G2为肺结节内(不
包括空泡区域)的面积。如果R越大,空泡征越明显<
13当空泡灰度值到肺结节灰度值的变化比较缓慢时,G,的计算会产生一定误差。在本专利 中,使用图像的一些纹理特征来补充检测肺结节的空泡征。
统计距向量// (z) = ^(z,—W7)"p(z,),其中/M^f^户(z,) 。 z为灰度级,P (z,), i二0,l,2,…,L-l,为对应的直方图,L是灰度级数冃。均值附gz,p(z,)为平均亮度。标准方差
(T-7^-V^为平均对比亮度。平滑度^ =1-1/(1+^)为区域中亮度的相对平滑度。三阶
距A (Z) = -m)^(Z,)为度量直方图的斜率。
一致性f/ = U /720,)为度量一致性。统计距
向量乂=(>7,0",及,//3, 7)7 。
不变矩向量图像f(x,y)的二维(p+q)阶矩为Ww^ZZxW(x,力。相应的中心矩定
X 少
义为 ^ZS(x —;)"(>' —^/",力,其中'^ = ~, ; = ~,归一化(P+q)阶中心矩
-r y 附oo 附oo
定义为H^-^f ,其中^ = , + 1。对平移、縮放、镜像和旋转都不敏感的二维不变矩的向
Am 2
量G=(g1; g2)T,其中gl=W20+W20, g2-(W20-W2。)2+4Wu2 肺结节的血管集中征
肺结节的血管集中征表现为周围的血管向结节聚集,或血管在结节边缘中断或贯穿结节,
血管集中征有助于肺癌的诊断被大多数医生所认同。在本专利中,定义变量N^射,ffi表示肺结
节的血管集中征。
3Qfc/一per/mefer 定义4 A/=~a of c/一area
入 'v逾麥种征 P6厂/V776^厂
s res
其中,perimeter为原始图像巾肺结节的周长、area为原始图像中肺结节的面积。对含肺结 节的正方形区域进行小波增强,增强后的肺结节周长与面积为addj)erimeter、 add—area。如果
W,管^征越大,则血管集中征越明显。
2检测代理的肺结节检测
肺结节检测包括肺实质分割、增强提取ROI、 ROI的特征提取及分类三部分工作。在肺实 质分割过程中,首先使用中值滤波除去噪声,然后使用最优阈值分割算法获得初步的肺实质 图像,最后除去干扰区域并修补肺实质图像。在增强提取ROI过程中,先使用基于Hessian矩
14阵的多尺度增强算法进行增强提取,再根据肺结节的梯度熵的分布区间来除去血管交叉形成 区域的影响。最后,计算ROI的特征值,根据这些特征值使用蚁群算法对ROI进行分类。 2.1肺实质分割
对中值滤波处理后的图像,采用最优阈值算法进行分割,获得肺实质。在所得的二值图 像中,肺实质、气管、躯干外区域都显示为黑色,使用Sobd算子检测出躯干,将躯干外区域 像素置反,除去躯干外区域影响,将周长小于指定阈值的黑色区域像素置反,除去气管影响。 在修补肺实质过程中,本发明使用3x3的圆形模板进行开闭运算,采用滚球算法,完成校正。
2.2增强提取ROI
在本发明中,使用基于Hessian矩阵多尺度增强滤波器来提取不同大小的ROI,提取的ROI 中包含-些交叉血管形成的区域,根据由切比雪夫不等式确定圆形肺结节的梯度熵分布区间, 除去交叉血管区域的影响。
2.2.1基于Hessian矩阵的多尺度增强算法
在使用高斯函数进行滤波时,不同的尺度参数针对不同大小的肺结节有最优的增强效果。 在本发明中,使用高斯滤波以及基于Hessian矩阵的增强滤波器对不同大小的肺结节进行增强, 提取ROI。
*高斯函数的增强算法
作为一种时频域内的线性平滑滤波器,高斯滤波器被广泛应用于图像处理领域。高斯滤 波器最重要的性质是高斯滤波器的宽度(决定着滤波平滑程度)由尺度参数a表征。在设计高斯 滤波器时,"的选择是一个非常重要的问题。
对于肺部CT图像而言,肺结节为圆形,其灰度值呈Ganssian分布,尺度为 ,可以表示为
J(x,力"xp(-41^)。在CT图像中,如果肺结节的半径为3cx。,则肺结节占了99.54%的高 2cr。
斯函数的面积。所以,对于半径为r的肺结节,用尺度为a。 =〃/3的高斯函数来近似表示。肺 结节与二维高斯函数G(x,y;ov)二 二 exp(-^^)巻积响应在(0, O)处,i (0,0,cr》响应
最强。当 为定值,并且朋^,0,"/、。时,R取极大值。此时,(7f^ 为肺结节增强提取
的最佳尺度。
*基于Hessian矩阵滤波器的提取算法/C^)为二维的图像,则在点(x,y)处的Hessian矩阵可以表示为H
,其中,fxx, fxy,
fvx,
yx, iyy
表示图像的二阶导数,由二阶导数构成的Hessian矩阵的特征值和特征向量表示图像
的本质特征。对于给定的圆形肺结节模型构造的Hessian,其特征值为斗=^ = -^ 。对于给
定的线状血管模型/U,w-exp(-4)构造Hessian矩阵,其特征值为一-冉,^ = 0。在暗色背景
下的亮色区域,二阶偏导数的符号是负的,在设计圆形ROI滤波器时特征值的符号需要考虑
」41
在内,据此构造圆形肺结节的滤波器为《=
Wl2 0,其它
,当^<0, 4<0时
(w丰l)。
多尺度增强提取方案
由于病人的病情以及CT成像时位置情况不同,在CT图像上肺结节的大小是不同的,肺
结节的半径范围为[r。,d,则高斯滤波器的尺度范围为
3 "3
。为了增强提取在这个范围内
的所有对象,应该先在这个范围内应用高斯滤波器增强,然后再应用前面设计的滤波器进行 增强。这两个步骤要重复N次,得到N张不同尺度增强后的图像。通过实验得知N-5比较合
适,在
3 、
范围内,这W个不连续的平滑尺度设计为q=i, W^,
+ ,其中,r = (voL
、ww-1)。多尺度滤波器在每一个像素的输出取W个滤波器输
出的最大值,为了使滤波器在不同尺度下的输出响应可比较,要将输出乘以C7/。
2.2.2除去血管交叉区域影响
二阶的Hessian矩阵仅用主曲率,无法区分肺结节和血管交叉区域,这里使用梯度熵来除 去Hessian矩阵增强后,ROI中的血管交叉区域。 *梯度熵
在本发明中,将梯度熵作为判断是ROI还是血管形成的交叉区域的度量。经过Hessian 矩阵滤波器提取处理后,血管的交差区域也被当作ROI提取。为了除去这样的区域,计算增 强后圆形区域对应的原始图像中相应区域灰度图像的梯度熵。如果是类圆形肺结节区域,各 个方向梯度相同,梯度熵值较小;如果是血管的交叉形成的类圆形区域,各个方向的梯度有 较大差别,梯度熵值较大。计算增强后得到的所有类圆形结构的梯度熵
16<formula>formula see original document page 17</formula>(8)
其中,选定的圆形区域中共有k个梯度级,P(i)是第i个梯度级出现的概率。 *由切比雪夫不等式确定ROI梯度熵分布区间
由于肺结节的梯度熵值较小,而线状血管交叉形成的圆的梯度熵值较大,可以根据熵的 大小找出肺结节的ROI区域。将增强后的区域在原始灰度图像中相应区域的梯度熵与由切比雪 夫不等式学习到的肺结节的熵值区间进行对比,如果当前的梯度熵值在学习到的熵值区间内, 那么就认为该圆形区域为肺结节,保留该区域。否则,除去该区域。
切比雪夫不等式给出了在随机变量.Y的分布未知的情况下,只利用x的数学期望和方差
即可对义的概率分布进行估值的方法。在训练阶段,对于肺结节熵值&^2...、,用样本的均 值r和方差一来估计总体的均值和方差。在检测增强后的圆形ROI(熵值为y)时,可以设定一
个阈值《。如果/7-#^>^// +《,则该ROI为肺结节的概率大于等于l-;,这样指定了置
信概率就可以得出肺结节梯度熵的分布区间。 2.3基于蚁群模型的分类算法检测肺结节
在提取完ROI之后,计算ROI的特征值。由于特征值有不同的数量级,所以需要对各特 征值进行规一化处理,使用规一化后的ROI特征值进行分类。目前,大多数的ROI分类算法 都是针对肺结节自身的特性,没有考虑ROI总体的特性。如果是肿癌等疾病发病率高的地区, 检测出的ROI多为肺结节;如果是肺癌等疾病发病率低的地区,检测出的ROI为假阳性结节 的可能性就大。本发明采用基于蚂蚁堆积尸体模型及蚂蚁找寻食物模型的蚁群分类算法对 ROI进行分类,考虑ROI的总体特性,能提高ROI分类的性能。本发明首先用基于蚂蚁堆积 尸体模型的数据分类(LF)算法获得分类中心,再用基于蚂蚁觅食模型的分类算法进行分类。
2.3.1使用LF算法获得分类中心
在LF分类算法中,首先将待分类数据随机放置在一个二维网格中,每一个数据有一个随机 的初始位置,每一只蚂蚁能够在网格上移动,并测量背负的数据在局部环境的群体相似度, 通过概率转换函数将群体相似度转换成蚂蚁搬动数据的概率,蚂蚁以这个概率拾起或放下数
据,以达到分类的目的。但是,这样的LF算法存在两个致命的问题。 一是,在蚂蚁算法结束 时还有一些数据没有指定到某个堆中,同时还存在一些小堆。二是,如果数据被放置在一个 错误的数据堆中,它就需要很长时间才能被蚂蚁移动到正确的数据堆中。本发明提出使用LF 算法获得分类中心,分类的工作由2.3.2中的算法完成,该方法避免了上述两个问题。2.3.2基于蚂蚁找寻食物模型的分类
从已经分好的堆中选出能代表肺结节与干扰区域的特征值(肺结节类与干扰区域类特征值 的均值),将其视为"食物",将其它数据视为"蚂蚁"。那么数据分类过程就可以看作是不同蚂 蚁找寻不同食物的过程。在每个搜索周期,蚂蚁根据到达不冋"食物"的信息素的多少来计算 转移概率,决定下一次的转移位置。在第t次分类过程中,数据x,到第j个分类中心的状态转移 概率
<formula>formula see original document page 18</formula>
其它
0,
初始时刻各个路径上的信息素量相等,^切表示在第t次分类中数据Xi到第j个中心的 残留信息素的多少。",,(0为路径(i,j)的可见度,反映蚂蚁在运动过程中的一种先验性,一 般取为1/dij,其中<formula>formula see original document page 18</formula> p为数据的维数。"为路径相 对重要性因子(一般取2),反映蚂蚁在运动过程中积累的信息素的相对重要程度。-路径可见
度因子(一般取2),反映蚂蚁在运动过程中路径可见性的重要程度。U为可选择路径的集合。
在每只蚂蚁完成一次分类之后,两类的特征值发生变化,每个数据到分类中心的信息素 的量按照下列规则进行调整,即
<formula>formula see original document page 18</formula>
其中,P为信息素的持久性,表示信息素的残留程度,Q为常量,A^o表示本次循环数
据i分到第类j的信息素增量。 3中心管理器的参数调节 3.1分布式系统中的参数调节
在对检测结果进行评价时,根据敏感性(sensitivity=TP/(TP+FN))、假阳率(FPs-FP/scans, scans为CT扫描的总组数)来衡量检测结果。当各个肺结节检测代理检测的敏感性大于等于",
FPs小于等于p时,检测的结果可以接受。由于医学诊断更看重的是敏感性指标,有类似"宁 可错杀也决不放过"的思想,所以对敏感性的要求较为苛刻。
对于使用蚁群算法进行分类,参数户、Q的设定直接影响检测的敏感性以及假阳率。将"肺结节"视为"食物r',如果其信息素公式中的两个参数/v a越大,则其信息素影响越大,待
分类的ROI被分到肺结节类的可能性越大,敏感性越高,假阳率越高。将"非结节"视为"食物 2",如果其信息素公式屮的两个参数/v g,越大,则其信息素影响越大,待分类的ROI被分
到非结节类的可能性越大,则敏感性越低,假阳率越低。根据医生对肺部CT图像的最终诊 断意见,判定肺结节检测代理检测的敏感性以及假阳率。如果这两个指标在可以接受的范围 内,则不调节ROI分类算法中的参数。否则,将该时间段内该节点检测的数据提交给分布式 系统中的自适应参数调节节点,其将使用遗传算法获得最优的参数反馈给这个结节检测节点。
在本发明提出的肺结节检测算法中,使用的是基于蚁群模型的分类算法。但是还有许多分 类算法,如非线性分类算法、支持向量机分类算法、神经元网络分类算法等。在这些算法中, 都存在有些决定分类效果的参数,如非线性分类算法中的阈值,支持向量计算法中的惩罚因 素等,这些参数的选择都是通过测试数据根据经验得到。但是,如果在这些算法中,应用本 发明的自适应分布式思想,就能构成自适应的分布式肺结节检测系统,大大提高参数设置的 合理性以及肺结节检测的效果。
3.2基于遗传算法的自适应参数确定
遗传算法是模仿自然界生物进化机制发展起来的随机全局搜索和优化方法,它借鉴了达 尔文的进化论和孟德尔的遗传学说。其本质是一种高效、并行、全局搜索的方法,它能在搜 索过程中自动获取和积累有关搜索空间的知识,并自适应地控制搜索过程以求得最优解。在 遗传算法的每一代中,根据个体在问题域中的适应度值和从自然遗传学中借鉴来的再造方法 进行个体选择,产生一个新的近似解。这个过程导致群中个体的进化,得到的新个体比原个 体更能适应环境,就像自然界中的改造一样。
本发明使用遗传算法获得最优参数。当各个代理检测的结果不满足敏感性或假阳率的条 件要求时,将这些检测数据发送到中心管理器。中心管理器通过对当前反馈的数据以及中心 管理器存储的数据进行计算,使用遗传算法获得最优参数。首先,随机生成M个参数个体构 成初始种群。接着,根据由分类的敏感性、假阳率构成的适应度函数,经过选择、交叉以及 变异,生成新的个体。如果新个体数达到M,则说明已形成一个新的群体,进行下一代的遗 传。否则,继续本代的繁殖、交叉和变异操作,直至新个体数达到M。最后,当遗传到指定 的一代时,从中选择出适应函数值大的个体,作为最优的参数,使用这个参数进行分类。在 这代中,个体的适应函数值较第一个父代大很多,这体现了遗传算法的寻优能力。
3.2.1初始种群的生成利用随机函数产生M个个体组成初始群体,也可以根据专家经验选出M个个体作为初 始群体,后者寻优速度更快,收敛到最优个体的时间短。 一般来说,初始群体素质都很差, 但是,在先验知识不多的情况下也不失为一个不错的选择,同时还能保证个体的多样性。所 以,本发明初始种群为随机生成的。
3.2.2评估函数(适应度函数)的确定
适应度函数是度量群体中各个个体在优化计算中能达到或者接近于有助于找到最优解的 优良程度。适应度较高的个体遗传到下一代的概率就较大;而适应度较低的个体遗传到下一
代的概率就相对小一些。在本专利中,适应度函数选为/(/v 0,、 a、 a):
/Go、 0、 p、 0)=——i——=-^- (12)
《、/>为使用当前参数对中心管理器中的所有数据进行分类获得的漏诊率、误诊率,Pt二l
—TP/(TP+FN) = 1 — sensitivity, P产FPscans/scans(FP十TN) = FPs [scans/(FP+TN)] 。 a 、 / 为漏诊
率、误诊率调节参数,这里取"=2,/ = 1。 3.2.3遗传算子设计
遗传算法中主要有三个算子选择算子、交叉算子以及变异算子,每一个算子都有一些 不同的策略算法。本发明从中计算量、计算时间两方面考虑,选择了轮盘选择算子、多点交 叉算子、基本位变异算子进行计算。
20
权利要求
1.一种分布式自适应肺结节检测方法,其特征在于,包括A、中心管理器确定肺结节特征,所述确定肺结节特征具体包括A1、中心管理器根据初始的实验数据,使用蚁群算法确定分类规则;A2、通过计算规则集合中各个肺结节特征之间的相关度,对规则集合进行修改;A3、使用特征变量表示规则集合中选定的肺结节特征;B、中心管理器对肺结节检测代理进行感兴趣区域的特征变量以及分类参数的初始化,初始的参数通过遗传算法获得,所述分类参数满足适应度函数值最大的条件;C、肺结节检测代理进行肺结节检测,所述肺结节检测具体包括C1、对肺部CT图像进行分割,获得肺实质图像;C2、根据感兴趣区域形状特征,使用基于Hessian矩阵的多尺度增强以及梯度熵的选择来完成感兴趣区域的提取;C3、计算感兴趣区域的特征值,根据所述感兴趣区域的特征值,使用蚁群算法对感兴趣区域进行分类,输出肺结节检测结果;D、根据输出的检测结果,计算作为检测指标的敏感性以及假阳率,将检测指标反馈给中心管理器,如果检测指标满足要求,则所述肺结节检测代理使用原有的分类参数继续调节;如果检测指标不满足要求,则使用遗传算法寻找更加理想的分类参数,使用蚁群算法对感兴趣区域重新进行分类,输出新的肺结节检测结果,将所述更加理想的分类参数反馈给所述肺结节检测代理。
2. 如权利要求l所述的方法,其特征在于,还包括使用圆形肿块征、分叶征、棘状突起 征、结节征、空泡征、空洞征、支气管征、毛刺征、尖角征、索条征、模糊征、充血征、胸 膜凹陷征、血管束集中征和卫星病灶征这十五个特征构成分类规则中的初始集合;对于一组实验数据,计算规则的偏好值,将偏好值最大的规则依次移入到当前规则集合 中,同时将此组实验数据中符合规则的训练实例依次移出,直到剩余的训练实例少于最大未 训练实例时,结束当前规则集合的构建,在当前规则集构建完成时,根据分类的敏感性和准 确性增加集合中规则的信息素,模拟信息素的增加,由信息素的持久性系数决定集合外信息 素的残留程度,模拟信息素的挥发;计算完所有组实验数据训练实例后,信息素的大小决定规则集合的构建,信息素较大的 规则在集合中,根据规则集合中元素的相关性,除去相关元素,确定分类特征;根据肺结节的三维空间特征,设置特征变量球形度,表示肺结节的圆形肿块征;根据特 征点以及特征点的凸凹性,设置特征变量N^tf,表示肺结节的分叶征;根据肿结节与胸膜相 连接的点以及肺结节附近的胸膜的曲率,设置特征变量N u,Bffi,表示肺结节的胸膜凹陷征; 根据增强前后肺结节周长与面积的比,设置特征变量N 巾征,表示肺结节的血管集中征。
3. 如权利要求1所述的方法,其特征在于,在各个肺结节检测代理进行工作前,中心管 理器根据数据库中已有的实验数据,使用遗传算法确定分类的最优参数,并使用选定的特征 变量以及该所述最优参数初始化各个肺结节检测代理。
4. 如权利要求l所述的方法,其特征在于,在梯度熵选择时,根据切比雪夫不等式确定 肺结节梯度熵分布区间,除去增强获得的感兴趣区域中的血管交叉形成的区域;根据感兴趣 区域的特征变量值,肺结节检测代理使用基于蚂蚁堆积尸体模型的LF算法对数据进行分类, 从生成的类中选出结节类和血管干扰区域类,并使用这两类中数据的均值表示结节和血管干 扰区域;使用基于蚂蚁找寻食物模型的分类算法对数据进行分类时,将选出的两类视为"食 物",每个数据被分类后,类的中心发生变化,蚁群算法中的参数由中心管理器统设定。
5. —种分布式自适应的肺结节检测系统,所述系统包括中心管理器和肺结节检测代理装 置,所述屮心管理器通过网络与所述肺结节检测代理装置相连接,其特征在于,包括肺结节检测代理装置,使用最优阈值分割方法获得肺实质图像,使用基于Hessian矩阵的 多尺度增强以及梯度熵选择来提取感兴趣区域,计算感兴趣区域的特征值,根据所述特征值,使用基于蚂蚁堆积尸体模型以及蚂蚁找寻食物模型的数据分类算法进行分类;中心管理器,根据初始的实验数据,使用蚁群算法确定分类规则,通过计算规则集合中 各个肺结节特征之间的相关度,对规则集合进行修改,使用特征变量表示规则中选定的肺结节特征;所述中心管理器对肺结节检测代理装置进行感兴趣区域的特征变量以及分类参数的初始 化,初始的参数通过遗传算法获得,所述分类参数满足适应度函数值最大的条件;所述中心管理器在肺结节检测过程中,根据各个肺结节检测代理装置反馈的肺结节检测 的敏感性与假阳率,使用遗传算法调节分类算法中的参数。
6. 如权利要求5所述的系统,其特征在于,还包括使用圆形肿块征、分叶征、棘状突起 征、结节征、空泡征、空洞征、支气管征、毛刺征、尖角征、索条征、模糊征、充血征、胸 膜凹陷征、血管朿集中征和卫星病灶征这十五个特征构成分类规则中的初始集合;对于一组实验数据,计算规则的偏好值,将偏好值最大的规则依次移入到当前规则集合 中,同时将此组实验数据中符合规则的训练实例依次移出,直到剩余的训练实例少于最大未训练实例时,结束当前规则集合的构建,在当前规则集构建完成时,根据分类的敏感性和准 确性增加集合中规则的信息素,模拟信息素的增加,由信息素的持久性系数决定集合外信息 素的残留程度,模拟信息素的挥发;计算完所有组实验数据训练实例后,信息素的大小决定规则集合的构建,信息素较大的 规则在集合中,根据规则集合中元素的相关性,除去相关元素,确定分类特征;根据肺结节的三维空间特征,设置特征变量球形度,表示肺结节的圆形肿块征;根据特 征点以及特征点的凸凹性,设置特征变量Nw,表示肺结节的分叶征;根据肺结节与胸膜相 连接的点以及肺结节附近的胸膜的曲率,设置特征变量N w ,表示肺结节的胸膜凹陷征; 根据增强前后肺结节周长与面积的比,设置特征变量N皿钟ff,表示肺结节的血管集屮征。
7. 如权利要求5所述的系统,其特征在于,在各个肺结节检测代理装置进行工作前,中 心管理器根据数据库中已有的实验数据,使用遗传算法确定分类的最优参数,并使用选定的 特征变量以及该所述最优参数初始化各个肺结节检测代理装置。
8. 如权利要求5所述的系统,其特征在于,在梯度熵选择时,根据切比雪夫不等式确定 肿结节梯度熵分布区间,除去增强获得的感兴趣区域中的血管交叉形成的区域;根据感兴趣 区域的特征变量值,肺结节检测代理装置使用基于蚂蚁堆积尸体模型的LF算法对数据进行分 类,从生成的类中选出结节类和血管干扰区域类,并使用这两类中数据的均值表示结节和血 管干扰区域;使用基于蚂蚁找寻食物模型的分类算法对数据进行分类时,将选出的两类视为"食物",每个数据被分类后,类的中心发生变化,蚁群算法中的参数由中心管理器统一设定。
全文摘要
本发明涉及一种分布式自适应肺结节计算机检测方法及系统,该分布式肺结节检测系统由肺结节检测代理和中心管理器两部分组成。肺结节检测代理完成肺实质分割、增强提取感兴趣区域、感兴趣区域的特征提取及分类三部分工作。中心管理器使用特征变量表示选定的肺结节特征,并根据这些特征变量对肺结节检测代理进行感兴趣区域的特征变量初始化,同时进行分类参数的初始化。在肺结节检测过程中,根据反馈的肺结节检测的敏感性与假阳率,使用遗传算法调节分类算法中的参数。
文档编号G06K9/62GK101556650SQ200910010968
公开日2009年10月14日 申请日期2009年4月1日 优先权日2009年4月1日
发明者周翰逊, 薛定宇, 薇 郭, 颖 魏 申请人:东北大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1