专利名称::基于浮动车数据的宏观路网交通状态评价方法
技术领域:
:本发明属于宏观交通流领域,具体涉及一种宏观路网交通状态评价方法。
背景技术:
:经济的快速发展和出行观念的变化,使得城市交通系统运行中的不确定因素越来越多,矛盾越来越复杂,其中最突出的表现就是交通拥堵。交通拥堵直接导致了延误、燃料消耗、环境污染、车辆损耗以及交通事故等问题的增长,而这些问题将产生巨大的社会成本。当前,各大城市的交通拥堵已经成为困扰我国城市健康发展的重大难题,如何保证交通系统的健康运行,最大限度地发挥它的城市载体功能,是新形势下城市交通发展面临的一个严峻课题。不同频率和程度的交通拥堵会导致路网的运行状态产生巨大的差异,单纯的扩充容量和增加通行能力的方法已经被证明不能从根本上解决问题。目前国内外对交通状态的评价研究开展较多,但大都以城市道路网的各个组成部分作为研究对象,如快速路、主干道和交叉口等。交叉口、路段等交通设施的服务水平对实践有一定的指导作用,但仍有其局限性。城市交通系统是一个复杂的动态系统,由多个静态或动态的有机组成部分构成,状态随时间变化而变化,网络中不同的交叉口、路段交通运行状况差异很大。为了使路网得到充分的有效使用,指导交通管理和城市发展管理政策的制定,既需要了解交叉口、路段的交通状态,也要了解城市交通网络的整体运行状况。同时,虽然运行状况的评价方法一直在不断革新,但交通流运行状态评价指标的应用,如服务水平、延误、饱和度、可靠度等,往往受到已有的数据采集方式制约,很难对路网运行状况进行有效评价。总的来说,目前对于城市路网交通状态的评价还没有形成系统的评价方法和全面的评价指标体系,在评价指标的测度上也缺乏可靠的数据支持。现有的评价方法大多具有一定的局限性,已难以适应交通管理和规划等不同层次用户的需求。因此,必须利用定量分析的方法,深入研究交通状态的变化过程,找出内在的因果关系和规律,建立客观、实用的评价模型,确定路网是否适应现状及未来的各项需求,运行状况和适应程度如何,存在什么问题,发展方向如何等。
发明内容本发明的目的是提供一种基于浮动车数据的宏观路网交通状态评价方法,使得城市宏观路网交通状态评价更加完整、可靠。本发明的目的可以通过以下技术方案来实现基于浮动车数据的宏观路网交通状态评价方法,其特征在于,应用安装有全球卫星定位系统(GPS)设备的浮动车系统进行行程时间数据的采集,在利用地理信息系统技术进行数据处理,获得测度各项交通状态评价指标,然后利用宏观路网交通状态评价模块进行评价,其中宏观路网交通状态评价模块包括目标函数构造模块、指标向量构造模块、理想区间向量构造模块、评价指标权重值确定模块、评价等级确定模块;其具体步骤如下4(1)数据获取,以交通网格为单位将城市路网划分为若干个区域,应用安装有全球卫星定位系统(GPS)设备的浮动车系统采集行程时间数据,在地理信息系统(GIS)技术支持下,运用宏观交通流理论计算各评价指标;(2)构造评价目标函数,选用评价标准所控制的n个指标来综合评价城市路网交通状态,由此构造模型的目标函数,即F(x)=[f批f2(x),…fj(x),…,fn(x)]T(1)式中F(x)为目标函数,fj(x)为第j个指标,j=l,2,...,n;(3)构造指标向量,即代表评价区域的各项评价指标值Fk=[fu,f2,k,.…fj,k,….,fn,k]T(2)式中Fk为评价区域指标向量,k表示第k个评价区域,k=1,2,...,u,u为评价区域个数;(4)构造理想区间向量,利用每一等级各评价指标阈值构成理想区间向量,确定宏观路网交通状态评价等级划分标准,即巧*=[/1:i'/2:i'…力:i'…'/n:i]式中Fj为理想区间向量,i=1,2,...,m,m为等级个数,f」,J表示第i个」第j个标准指标所对应指标变化区间,aj,i,bj,i分别为第i个等级第j个标准指标所对应指标变化区间的下限值和上限值;(5)确定评价投影方向,在各标准等级理想区间内,利用均匀随机数产生若干个样本值,并对各指标进行无量纲化处理,利用投影寻踪法确定其一维投影值z(i);然后,用实数编码加速遗传算法(RAGA)推求最佳投影方向a*;用到的公式如下=S=1a(y')x(iJ)(4)式中:z(i)为一维投影值,{x(i,j)|i=1,2,...,m;j=l,2,...n}为利用均匀随机数产生若干个样本值,a=(a(1),a(2),,a(n))为投影方向。(6)建立基于Logistic曲线的等级评价模型,确定评价区域的交通状态评价等级;根据最佳投影方向的估计值^推求第i个样本的投影值z、i);按公式(5)求解等级计算值/(i),对/(i)取整数,即得到该评价区域交通状态宏观评价的等级;根据z*(i)和样本对应的标准等级y(i)的散点图建立基于Logistic曲线的等级评价模型;其中/(i)的计算公式如下y*(o=(5)她雖,/S)=I]f=1(y*(i)-y(O)2(6)式中y*(i)为第i个评级区域的等级计算值;最高等级N为该曲线的上限值;z*(i)为第i个样本的投影值;a、P为待定参数,其数值可由公式(6)确定。在上述基于浮动车数据的宏观路网交通状态评价方法中,所使用的评价指标为4个,分别是最小平均行程时间Tm、路网运行阻尼系数n、路网拥堵指数c和主干道交通状态参量S;其中,Tm和n为现有宏观交通流理论参数;C和S的计算方法如下<formula>formulaseeoriginaldocumentpage6</formula>式中,C网拥堵指数,S为主干道交通状态参量,Tm为最小平均行程时间,Tij为第i个车辆在第j个路段所用的行程时间,路段长度为Lj;Lengthi为第i条主干道道路长度;M为区域路网被采样到的路段数量,N为观测周期该路段的浮动车数量。在上述基于浮动车数据的宏观路网交通状态评价方法中,所用到的基于Logistic曲线的等级评价模型将区域路网的运行状态划分为畅通、基本畅通、轻微拥堵、拥堵、严重拥堵五个等级。本发明具有以下有益效果1.在宏观尺度上研究整体路网交通状态的变化,运用模型的方法揭示路网点、线、面的交通流特性及其相互联系,运用模型的方法揭示路网点、线、面的交通流特性及其相互联系,有效避免了过去只着眼于各个微观层面交通设施进行评价的缺陷。2.可应用于交通信息服务、交通诱导等系统中,以更合理的控制交通出行,缓解交通拥堵状况;本发明通过对路网运行状态的评价和定量分析,可为交通管理和交通控制效果评价提供理论支持,本发明提高城市机动性;可为路网布局或土地利用规划提供决策支持,为交通规划部门提供科学依据。图1城市宏观路网交通状态评价方法流程图;图2实例中样本点投影值和标准等级的散点图;图3实例中交通状态(五级)的三维显示图。具体实施例方式本发明以北京市朝阳区工作日早高峰时段的交通状态为例进行路网交通状态评价,实施步骤如下(1)计算评价指标,运用公式(1)和(2),结合宏观交通流理论求解选定区域评价指标Tm、n、C和S的计算值,计算结果见表2。(2)构造评价目标函数,本发明评价指标共有4个,为4维数据,故n=4,从而模型的目标函数构造如下F(x)=[4(x),f2(x),f3(x),f4(x)]t(3)构造指标向量,本案例选取朝阳区的20个分区为评价区域,故u=20,从而指标向量构造如下Fk=[fu,f2,k,f3k,f4,jTk=1,2,...,20。(4)本发明将城市路网交通状态等级分为五级畅通,基本畅通、轻微拥堵、拥堵和严重拥堵,通过公式(5)确定宏观路网交通状态评价等级划分标准,如表1所示。表1路网交通状态宏观评价指标阈值<table>tableseeoriginaldocumentpage7</column></row><table>(5)确定模型投影方向本发明采用Matlab7.3随机在各评价等级内产生100个样本及相应的等级,遗传算法优化过程选定父代初始种群规模n=400,交叉概率为0.80,变异概率为0.80,优秀个体数目选定为20个,a=0.05,加速次数为5,当最优个体的目标函数值小于0.0001时结束算法,得出最大投影指标值为0.9525。求得最佳投影方向为&*=(0.5894,0.5279,0.3783,0.4805),最佳投影方向各分量的绝对值大小实质上反映了各评价指标对路网交通状态等级的影响程度,各分量绝对值越大,则相应的评价指标对评价等级结果的影响程度就越大。(6)基于Logistic曲线的等级评价模型在交通状态各等级取值范围内随机产生若干个评价指标值,和对应交通状态标准等级组成样本系列,将最佳投影方向^代入式(5)计算得到第i个样本的投影值z*(i),如表2所示。z*(i)_y(i)的散点图反映出z*(i)和y(i)之间呈上下段有限、中间段变化迅速的单调递增关系,如图2所示。表2交通状态等级的标准值和投影寻踪等级评价计算值对比<table>tableseeoriginaldocumentpage8</column></row><table>采用式(7)来描述图2所示的z、i)和y(i)的关系,式中参数N为5,对(8)采用遗传算法求解得到a、|3分别为1.2204和-1.667,由此得到交通状态的投影寻踪等级评价模型为y*=1+el.22045,7(0至此,完成宏观路网交通状态评价的计算工作(如表2所示),y*(i)为第i个评价区域的交通状态宏观评价等级计算值;与之对应的y(i)第i个评价区域交通状态所在的宏观评价等级。模型的评价结果如图3所示。图中以不同色彩灰度表示交通状态的畅通与拥挤程度,最深颜色(黑色)表示严重拥堵,随着色彩灰度的不断变浅依次表示拥堵、轻微拥堵、基本畅通、畅通状态;以区块的高差表示交通状态的投影寻踪模型评价计算值,反映出处于同样的标准等级下的不同路网之间的交通状态差异。通过图3可以看出,朝阳区早高峰时段CBD区域的交通状态较为拥挤,需采取一定的管理与控制措施加以改进;其他区域的交通状态基本属于畅通或轻微拥堵状况,处于可接受范围。对比表2中的交通状态等级的标准值、计算值和表l,基于投影寻踪的等级评价模型是合理的,它进一歩刻画了各评价指标数量差异对交通状态等级判定的影响。y*(i)和y(i)的间的误差分析(见表3)结果表明本文模型能够较好的描述各交通状态评价指标和等级之间的关系,准确性较高。图3为根据等级评价结果得到的北京市朝阳区工作日早高峰时段的交通状态三维分级图。以不同色彩灰度表示交通状态的畅通与拥挤程度,最深颜色(黑色)表示严重拥堵,随着色彩灰度的不断变浅依次表示拥堵、轻微拥堵、基本畅通、畅通状态;以区块的高差表示交通状态的投影寻踪模型评价计算值,在表征各区域交通状态的同时,还能反映出了处于同样的标准等级下的不同路网之间的交通状态差异。表3交通状态等级的标准值和投影寻踪等级评价计算值对比误差绝对值落在下列区间的百分比<table>tableseeoriginaldocumentpage9</column></row><table>权利要求基于浮动车数据的宏观路网交通状态评价方法,其特征在于,应用安装有全球卫星定位系统(GPS)设备的浮动车系统进行行程时间数据的采集,再利用地理信息系统技术进行数据处理,获得测度各项交通状态评价指标,然后利用宏观路网交通状态评价模块进行评价,其中宏观路网交通状态评价模块包括目标函数构造模块(1)、指标向量构造模块(2)、理想区间向量构造模块(3)、评价指标权重值确定模块(4)、评价等级确定模块(5);利用前述所构建的评价模块进行宏观路网交通状态评价,基于浮动车数据的宏观路网交通状态评价方法的具体步骤如下1)数据获取,以交通网格为单位将城市路网划分为若干个区域,应用安装有全球卫星定位系统(GPS)设备的浮动车系统采集行程时间数据,在地理信息系统(GIS)技术支持下,运用宏观交通流理论计算各评价指标;2)构造评价目标函数,选用评价标准所控制的n个指标来综合评价城市路网交通状态,由此构造模型的目标函数,即F(x)=[f1(x),f2(x),...fj(x),...,fn(x)]T(1)式中F(x)为目标函数,fj(x)为第j个指标,j=1,2,...,n;3)构造指标向量,即代表评价区域的各项评价指标值Fk=[f1,k,f2,k,...fj,k,...,fn,k]T(2)式中Fk为评价区域指标向量,k表示第k个评价区域,k=1,2,...,u,u为评价区域个数;4)构造理想区间向量,利用每一等级各评价指标阈值构成理想区间向量,确定宏观路网交通状态评价等级划分标准,即式中Fi*为理想区间向量,i=1,2,...,m,m为等级个数,fj,i*表示第i个等级第j个标准指标所对应指标变化区间,aj,i,bj,i分别为第i个等级第j个标准指标所对应指标变化区间的下限值和上限值;5)确定评价投影方向,在各标准等级理想区间内,利用均匀随机数产生若干个样本值,并对各指标进行无量纲化处理,利用投影寻踪法确定其一维投影值z(i);然后,用实数编码加速遗传算法(RAGA)推求最佳投影方向a*;用到的公式如下式中z(i)为一维投影值,{x(i,j)|i=1,2,...,m;j=1,2,...n}为利用均匀随机数产生若干个样本值,a=(a(1),a(2),...,a(n))为投影方向;6)建立基于Logistic曲线的等级评价模型,确定评价区域的交通状态评价等级;根据最佳投影方向的估计值a*推求第i个样本的投影值z*(i);按公式(5)求解等级计算值y*(i),对y*(i)取整数,即得到该评价区域交通状态宏观评价的等级;根据z*(i)和样本对应的标准等级y(i)的散点图建立基于Logistic曲线的等级评价模型;其中y*(i)的计算公式如下式中y*(i)为第i个评级区域的等级计算值;最高等级N为该曲线的上限值;z*(i)为第i个样本的投影值;α、β为待定参数,其数值可由公式(6)确定。dest_path_FA20183078200910088917001C00011.tif,dest_path_FA20183078200910088917001C00012.tif,dest_path_FA20183078200910088917001C00021.tif,dest_path_FA20183078200910088917001C00022.tif2.根据权利要求1所述的基于浮动车数据的宏观路网交通状态评价方法,其特征在于,所述的评价指标为4个,分别是最小平均行程时间Tm、路网运行阻尼系数n、网拥堵指数C和主干道交通状态参量S;其中,Tm和n为现有宏观交通流理论参数;C和S的计算方法如下<formula>formulaseeoriginaldocumentpage3</formula>式中,C网拥堵指数,S为主干道交通状态参量,Tm为最小平均行程时间,为第车辆在第j个路段所用的行程时间,路段长度为Lj;Lengthi为第i条主干道道路长度;M为区域路网被采样到的路段数量,N为观测周期该路段的浮动车数量。3.根据权利要求1所述的基于浮动车数据的宏观路网交通状态评价方法,其特征在于,所述的基于Logistic曲线的等级评价模型将区域路网的运行状态划分为畅通、基本畅通、轻微拥堵、拥堵、严重拥堵五A」全文摘要基于浮动车数据的宏观路网交通状态评价方法,涉及宏观交通流领域。本发明应用安装有全球卫星定位系统(GPS)设备的浮动车系统进行行程时间数据的采集,再利用地理信息系统技术进行数据处理,获得测度各项交通状态评价指标,然后分别依次构造评价目标函数、指标向量、理想区间向量,确定评价指标权重值模,最后利用投影寻踪方法确定宏观路网交通状态的评价等级。本发明所使用的评价指标为4个,分别是最小平均行程时间Tm、路网运行阻尼系数η、路网拥堵指数C和主干道交通状态参量S。本发明实现了针对城市路网运行状态的宏观评价,为交通管理、交通规划和决策提供了有效的分析工具,使得城市宏观路网交通状态评价更加完整、可靠。文档编号G06Q50/00GK101794507SQ20091008891公开日2010年8月4日申请日期2009年7月13日优先权日2009年7月13日发明者周翔,翁剑成,荣建,邹文杰申请人:北京工业大学