一种用于表征织物纹理的Sobel算子滤波概貌与分形细节混合特征向量提取方法

文档序号:6508305阅读:553来源:国知局
专利名称:一种用于表征织物纹理的Sobel算子滤波概貌与分形细节混合特征向量提取方法
技术领域
本发明属于数字图像处理和模式识别领域,特别涉及一种用于表征织物纹理的 Sobel算子滤波概貌与分形细节混合特征向量提取方法。
背景技术
借助织物纹理表征技术能够实现织物纹理参数估计、纹理分类、织物外观评价、瑕 疵检测等等目的。任何织物纹理都包含两方面的重要信息,即概貌信息和细节信息。概貌 信息为人眼或机器视觉提供总体的粗略的结构和灰度印象,而细节信息则提供局部的精细 的结构和灰度印象。因此,要全面和细致地表征纹理结构,最大限度地反映纹理特点,在特 征提取时就必须兼顾纹理的概貌和细节信息。为了便于表述,本申请拟将那些主要反映概 貌信息的特征称为概貌特征,而将那些主要反映细节信息的特征称为细节特征。显然,概貌 特征和细节特征各有侧重,具有极大的互补性。本发明旨在讨论基于Sobel算子滤波概貌 特征和分形细节特征的织物纹理表征方法。较之欧氏几何,分形几何在描述或生成具有自相似性的自然事物或类自然事物时 能够提供更好的方法,因而被广泛用在模式识别、图像的模拟和仿真等等诸多领域。自相似 性是分形理论的中心概念之一,它与维数的概念密切相关。分形几何描述的对象具有统计 意义上的自相似,自相似性用分形维来表征分形维是用分形理论进行图像分析时最常使用 的特征参数之一。分形特征特别是分形维数能够较好地刻画纹理粗糙度和复杂度,因而在 纹理分类、识别等实践中作为度量特征是合理的。其中盒维数由于概念简单、计算简便而成 为使用最普遍的一种分形维数。为便于说明发明要点,有必要对盒维数以及Sobel算子滤波的基本原理作简单介 绍。设尸091"为任意非空有界集,用Ν(δ,F)表示覆盖集F所需直径最大为δ的的集 的最少数目,则F的盒维定义为ΠΛη^^ψψ
在—0 -IogJ注意,定义中所用的δ -覆盖仍是一个一般的集类,在本专利中集F特指为织物 图像向纵、横向投影时,通过各行、各列像素灰度累加并取均值所得的图像灰度一维时间序 列,也即一条表示图像各行各列像素灰度均值变化的曲线,Ν( δ,F)表示覆盖F所需的边长 为δ的最少方格数,简记为Ν(δ)。Db(F)简记为D。实际估算一个时间序列的计盒维时,由于该序列为一条曲线,横坐标为序列中各 点的位置,纵坐标为各点对应的序列值,需要用尺寸为SX δ的方格去完全覆盖该曲线并 统计Ν( δ )。从盒维数的定义可知,IogN( δ ) -Dlogd/ δ ),这表明,若干点对(log(l/ δ ), IogN(S))在δ — O时的渐近线是直线,其斜率即为D。改变δ大小从而可以得到多个上 述点对,然后通过最小二乘法拟合出相应直线。该直线的斜率即为所求的盒维数。
考虑到机织物是由经纬纱相互垂直交织而成,其图像是一种典型的纹理图像,因 此可用分形特征来表征织物纹理。Conci等人(1998)采用差分计盒法提取了织物纹理的分 形维及其标准差作为特征参数用来表征织物纹理并检测织物疵点。徐增波等人(2000)在 织物纹理图像进行Wold模型分析的基础上,以求取分形维过程中的的整个分形特征曲线 作为表征织物纹理的特征,进行了织物疵点检测。Wen等人(2002)采用基于分形布朗运动 的傅立叶频域最大似然估计算子来估计织物图像的Hurst系数这一分形参数,以此作为表 征织物纹理的特征参数来检测疵点。杨艳等人(2007)从绉织物图像中提取了一个全局分 形维特征来实现对织物绉效应的客观评价。步红刚等人(2007)为了克服单一分形特征的 局限性,提出了一种多分形特征向量提取方法,该方法在疵点检测效果上较以往相关的研 究有了大幅度的改善,但由于所提取的多个分形特征向量均是反映全局信息的概貌特征, 因而不适于检测很多局部疵点。在“基于矩和分形的纹理分类方法”的专利中(2006),研究 者首先计算图像的二阶矩,产生矩特征图像,再对原图像块和矩特征图像估计其分形维数, 最后将原图像块和六个矩特征图像的分形维数形成特征向量,作为支持向量机的输入进行 织物纹理分类。Sobel算子是图像处理中的算子之一,主要用作边缘检测。在技术上,它是一离散 性差分算子,用来运算图像亮度函数的梯度之近似值。在图像的任何一点使用此算子,将会 产生对应的梯度矢量。Sobel算子有两个,一个检测水平边缘,另一个检测垂直边缘。Sobel 算子在图像空间利用两个3X3的方向模板或者说卷积核与图像中每个点进行邻域卷积来 完成边缘检测,这两个方向模板其中一个通过近似垂直方向梯度而增强图像的水平方向边 缘,另一个则通过近似水平方向梯度而增强图像的垂直方向边缘。Sobel水平和垂直边缘增 强模板分别为
权利要求
一种用于表征织物纹理的Sobel算子滤波概貌与分形细节混合特征向量提取方法,其特征是所述的混合特征向量由两个Sobel算子滤波概貌特征和四个分形细节特征共同组成;概貌特征提取织物原图像首先同步分别经Sobel算子水平滤波和垂直滤波处理,得到两幅对应的滤波图像,然后分别从中提取计算方式一致的各一个灰度统计量组成表征织物纹理概貌信息的特征向量;细节特征提取首先采用一维快速傅里叶变换求出织物纹理图像的基本横向和纵向循环周期大小,然后依据遍历法原理计算图像中每一个包含一个横向基本循环周期的子窗口的分形维数和每一个包含一个纵向基本循环周期的子窗口的分形维数,最后从中选取两个反映横向细节信息的分形维数极值即横向最大分形维数和横向最小分形维数,和两个反映纵向细节信息的分形维数极值即纵向最大分形维数和纵向最小分形维数,作为表征织物纹理的细节特征;其中所述的包含一个横向基本循环周期的子窗口是以一个横向基本循环周期为长和织物纹理图像的宽为宽的矩形窗口,所述的每一个横向基本循环周期的子窗口的分形维数是在该子窗口中的图像像素灰度值沿横向累加而成的相应一维时间序列基础上计算得到的;所述的包含一个纵向基本循环周期的子窗口是以一个织物纹理图像的长为长和纵向基本循环周期为宽的矩形窗口,所述的每一个纵向基本循环周期的子窗口的分形维数是在该子窗口中的图像像素灰度值沿纵向累加而成的相应一维时间序列基础上计算得到的;所述的用于表征织物纹理的由Sobel算子滤波概貌特征和分形细节特征组成的混合特征向量的提取过程如下首先采集数字化织物纹理图像,记为W,W为矩形,其尺寸长×宽为L1×L2,即横向和纵向长度分别为L1和L2,而其沿横向的基本周期即列周期为P1个像素,沿纵向的基本周期即行周期为P2个像素,行周期和列周期均指取整后的像素数,P1通过计算W的任一行图像像素灰度值集合的基本循环周期得到,P2通过计算W的任一列图像像素灰度值集合的基本循环周期得到;对原图像同步分别实施索贝尔算子水平滤波和垂直滤波处理,记经索贝尔算子水平滤波后的图像为Wh,经索贝尔算子垂直滤波后的图像为Wv;选择一种灰度统计量,然后直接计算出Wh的该灰度统计量,作为水平边缘纹理概貌灰度统计量特征,记为Sh;选择与计算Wh时一致的灰度统计量,直接计算出Wv的灰度统计量,作为垂直边缘纹理概貌灰度统计量特征,记为Sv;在织物纹理图像W中,选取一个横向基本循环周期P1为长和织物纹理图像的宽L2为宽的矩形窗口作为包含一个横向基本循环周期的子窗口,记为W1;选取一个织物纹理图像的长L1为长、纵向基本循环周期P2为宽的矩形窗口作为包含一个纵向基本循环周期的子窗口,记为W2;对于某一W1,计算其沿行方向的图像像素灰度投影,即将该子窗口各行的图像像素灰度值沿横向叠加,得到一个一维时间序列,从该时间序列中可计算得到一个分形维数,然后将W1以固定步长水平地滑移以遍历整个W,共有L1 P1+1个W1,从而可相应求得L1 P1+1个分形维数,分别记其中的最小者和最大者为E1和E2,即为横向最小分形维数和横向最大分形维数,此两者反映纹理的横向极端细节信息;对于某一W2,计算其沿列方向的图像像素灰度值投影,即将该子窗口各列的图像像素灰度值沿纵向叠加,得到一个一维时间序列,从该时间序列中可计算得到一个分形维数,然后将W2以固定步长垂直地滑移以遍历整个W,共有L2 P2+1个W2,从而可相应求得L2 P2+1个分形维数,分别记其中的最小者和最大者为E3和E4,即为纵向最小分形维数和纵向最大分形维数,此两者反映纹理的纵向极端细节信息;最终得到表征织物纹理的Sobel算子滤波概貌与分形细节混合特征向量[ShSvE1E2E3E4]。
2.如权利要求1所述的一种用于表征织物纹理的Sobel算子滤波概貌与分形细节混合 特征向量提取方法,其特征在于,所述的织物为机织物。
3.如权利要求1所述的一种用于表征织物纹理的Sobel算子滤波概貌与分形细节混合 特征向量提取方法,所述织物的图像的横向与纬纱方向一致,所述织物的图像的纵向与经纱方向一致。
4.如权利要求1所述的一种用于表征织物纹理的Sobel算子滤波概貌与分形细节混合 特征向量提取方法,其特征在于,所述的灰度统计量为仙农熵、灰度均值或灰度标准差。
5.如权利要求1或4所述的一种用于表征织物纹理的Sobel算子滤波概貌与分形细节 混合特征向量提取方法,其特征在于,所述的灰度统计量首选仙农熵。
6.如权利要求1所述的一种用于表征织物纹理的Sobel算子滤波概貌与分形细节混合 特征向量提取方法,其特征在于,所述的分形维数是指盒维数。
7.如权利要求6所述的一种用于表征织物纹理的Sobel算子滤波概貌与分形细节混合 特征向量提取方法,其特征在于,所述的盒维数估算时所用的δ尺寸序列为2 6像素。
8.如权利要求1所述的一种用于表征织物纹理的Sobel算子滤波概貌与分形细节混合 特征向量提取方法,其特征在于所述的固定步长指1 3个像素。
9.如权利要求1所述的一种用于表征织物纹理的Sobel算子滤波概貌与分形细节混合 特征向量提取方法,其特征在于,所述的矩形子窗口 W1每次的水平滑移固定步长与W2每次 的垂直滑移固定步长不必相同。
10.如权利要求1所述的一种用于表征织物纹理的Sobel算子滤波概貌与分形细节混 合特征向量提取方法,其特征在于,所述的基本循环周期P1和P2的计算借助一维快速傅里 叶变换实现。
全文摘要
本发明涉及一种用于表征织物纹理的Sobel算子滤波概貌与分形细节混合特征向量提取方法。首先在对原织物图像分别进行水平和垂直Sobel算子滤波处理的基础上,从中各自计算方式一致的一组灰度统计量作为概貌特征;同时依据遍历法原理计算原图像中每一个包含一个横向基本循环周期或纵向基本循环周期的子窗口的分形维数,最后从中选取两个反映横向细节信息的分形维数极值和两个反映纵向细节信息的分形维数极值作为表征织物纹理的细节特征;将上述两个Sobel算子滤波概貌特征与四个分形细节特征组成混合特征向量。这种混合特征向量各特征间具有高度的互补性,兼顾纹理的概貌信息和细节信息,也兼顾纹理的横向信息和纵向信息,能够全面和细致地刻画织物纹理特点。
文档编号G06T7/00GK101976441SQ201010536900
公开日2011年2月16日 申请日期2010年11月9日 优先权日2010年11月9日
发明者周建, 步红刚, 汪军, 黄秀宝 申请人:东华大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1