一种利用bp神经网络与nsga2实现油田抽油机采油节能增产优化方法

文档序号:6587205阅读:413来源:国知局
专利名称:一种利用bp神经网络与nsga2实现油田抽油机采油节能增产优化方法
技术领域
本发明属于抽油机抽油过程的控制技术,特别涉及一种利用BP神经网络与NSGA2实现油田抽油机采油节能增产优化方法。
背景技术
抽油机采油作为一种机械采油方式,主要由电动机、地面传动设备和井下抽油设备三部分组成。抽油机采油的整个过程主要为上下两个冲程:上冲程时驴头悬点需提起抽油杆柱和液柱,在抽油机未进行平衡的条件下,电动机需付出很大的能量,这时电动机处于电动状态;下冲程时抽油机杆柱转拉动对电动机做功,使电动机处于发电机的运行状态。抽油机在采油过程各个环节中的能量损失很大,如电动机大马拉小车的情况,这使得抽油机存在载荷率低、系统效率低和能耗大等缺点。目前,抽油机在我国油田的占有量很高,但系统效率低,能耗大,其增产节能是当前急需解决的一个重要问题。抽油机采油的工艺参数是否工作在最优化状态是实现增产节能的一中简单、有效的方法,而抽油机模型的建立又是优化最理想工艺参数的关键。抽油机工作过程是一个复杂非线性系统,其输入参数集包括:冲次;最大载荷;最小载荷;有效冲程;计算泵效;动液面;电动机电枢采样电流值;电动机电枢采样电流积分值;冲程;有功功率;功率因素;回压;套压;油压;电压;电流;转速;频率;含水率;井口温度等。而输出结果主要看两个指标:耗电量和产油量。如此复杂的系统,很难用一个准确的数学模型去描述它,

发明内容
本发明表述一种利用BP神经网络与NSGA2实现油田抽油机采油节能增产优化方法,能确定工艺参数的最优值;根据优化后的工艺参数最优值进行实际生产指导。其关键在于按如下步骤进行:步骤一:统计所有对耗电量、产油量有影响的原始变量S,并从中确定在油田抽油机采油过程中对耗电量、产油量影响非常大的SI个决策变量X ;步骤二:采集时间T内决策变量和对应着的耗电量、产油量Y的样本,得到一个样本矩阵;步骤三:以决策变量X作为输入,以耗电量、产油量Y作为输出,运用BP神经网络算法,对样本进行训练、检验,建立抽油机采油的过程模型;步骤四:以BPNN模型为基础,以BPNN的两个输出值作为适应度函数F(i)i=l,2,运用NSGA2多目标进化算法,对决策变量在各自的上下限范围内,进行优化;步骤五:将优化后的SI个决策变量X优化值带入BPNN模型,计算此时的模型两个输出值耗电量、产油量Y,与样本值平均值进行比较,如果耗电量降低、产量提高,则带入油田,对实际生产进行指导,否则,返回步骤一,人为更换SI个决策变量X,重新筛选决策变量X;步骤六:如果所有设定的Si个决策变量X组合都没有使耗电量降低、产量提高,则S1=S1+1,再返回步骤一。所述步骤三抽油机采油的过程模型建立步骤为:第一步:设置变量和参量:Xk= [xkl, xk2,...,XkJ (k=l, 2,..., N)为输入矢量,或称训练样本,N为训练样本个数,
权利要求
1.一种利用BP神经网络与NSGA2实现油田抽油机采油节能增产优化方法,其特征在于按如下步骤进行: 步骤一:统计所有对耗电量、产油量有影响的原始变量S,并从中确定在油田抽油机采油过程中对耗电量、产油量影响非常大的SI个决策变量X ; 步骤二:采集时间T内决策变量和对应着的耗电量、产油量Y的样本,得到一个样本矩阵; 步骤三:以决策变量X作为输入,以耗电量、产油量Y作为输出,运用BP神经网络算法,对样本进行训练、检验,建立抽油机采油的过程模型; 步骤四:以BPNN模型为基础,以BPNN的两个输出值作为适应度函数F (i) i=l, 2,运用NSGA2多目标进化算法,对决策变量在各自的上下限范围内,进行优化; 步骤五:将优化后的SI个决策变量X优化值带入BPNN模型,计算此时的模型两个输出值耗电量、产油量Y,与样本值平均值进行比较,如果耗电量降低、产量提高,则带入油田,对实际生产进行指导,否则,返回步骤一,人为更换SI个决策变量X,重新筛选决策变量X ;步骤六:如果所有设定的SI个决策变量X组合都没有使耗电量降低、产量提高,则S1=S1+1,再返回步骤一。
2.根据权利要求1所述一种利用BP神经网络与NSGA2实现油田抽油机采油节能增产优化方法,其特征在于:所述步骤三抽油机采油的过程模型建立步骤为: 第一步:设置变量和参量:
3.根据权利要求1所述一种利用BP神经网络与NSGA2实现油田抽油机采油节能增产优化方法,其特征在于:所述步骤四的优化过程为: 第一步:初始化种群P,种群大小为O ; 第二步:计算每个个体的非劣级别值、拥挤距离和改进排序适应度值; 第三步:进入循环迭代i=2 ; 第四步:对每个子种群依据每个个体的非劣级别值、拥挤距离和改进排序适应度值,运用轮盘赌方法进行设定阈值选择操作; 第五步:使用算术交叉算子进行变异操作,得到O个后代; 第六步:对变异操作之后的每个个体计算适应度值; 第七步:收集第i代和第i+Ι代所有个体,得到规模为20的种群Q ; 第八步:计算种群Q内每个个体的非劣级别值、拥挤距离和改进排序适应度值,使用按需分层策略选择较好的O个个体作为最优种群P ; 第九步:如果满足停机条件则停机;否则,i=i+l,转第四步; 弟十步:输出结果。
全文摘要
一种利用BP神经网络与NSGA2实现油田抽油机采油节能增产优化方法,其特征在于步骤一确定决策变量X;步骤二采集耗电量、产油量Y,得到样本矩阵;步骤三以决策变量X作为输入,以耗电量、产油量Y作为输出,建立抽油机采油的过程模型;步骤四运用NSGA2多目标进化算法,对决策变量进行优化;步骤五将优化后决策变量X优化值带入BPNN模型,对实际生产进行指导。本发明的有益效果是能搜索增产节能最好的理想点,确定工艺参数的最优值;根据优化后的工艺参数最优值进行实际生产指导。
文档编号G06N3/02GK103198354SQ20131006243
公开日2013年7月10日 申请日期2013年2月28日 优先权日2013年2月28日
发明者李太福, 辜小花, 廖志强, 易军 申请人:重庆科技学院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1