一种加工质量影响因素敏感性分析和质量控制方法

文档序号:6622268阅读:304来源:国知局
一种加工质量影响因素敏感性分析和质量控制方法
【专利摘要】本发明公开了一种加工质量影响因素敏感性分析和质量控制方法:(1)加工质量和影响因素关系模型的建立,用于分析影响因素对加工质量的影响效应,为后续的加工质量敏感性分析和质量控制做准备;(2)加工质量影响因素敏感性分析,通过对加工质量与影响因素关系模型进行敏感性分析,计算灵敏度和贡献率,识别出影响加工质量较大的因素;(3)加工质量稳定性控制,根据敏感性分析结果,利用灵敏度对可控影响因素进行一定规律的控制,减少加工质量的波动,提高加工质量的稳定性。
【专利说明】一种加工质量影响因素敏感性分析和质量控制方法

【技术领域】
[0001]本发明属于产品质量控制领域,涉及一种加工质量影响因素敏感性分析和质量控制方法。

【背景技术】
[0002]产品的市场占有率和竞争力由加工质量的好坏直接决定,一个产品的质量往往受多个因素的影响,加工质量的波动是由其中几个比较重要的因素引起,加工质量的波动会直接造成经济上的损失。找出对加工质量影响较大的因素和对加工质量的波动进行控制就显得尤为重要。
[0003]现在对产品质量影响因素的分析方法主要有单因素方差分析、正交试验、相关分析、敏感性分析。其中,单因素方差分析,正交试验,相关分析都是基于统计学的方法,需要大量的数据,计算复杂,只能事后分析,不能实时在线分析。单纯的敏感性分析虽然分析简单,容易实现,但是需要事先知道加工质量和影响因素之间的关系。同时对于质量波动的控制,也大多利用SPC控制图进行,利用SPC控制图进行质量控制,一般是先判别加工过程的异常模式,再离线查找原因。所以,上述这些方法并不适合于现代产品加工的实时性和动态性。因此,为了适应现代产品加工的实时性和动态性,亟需一种新的加工质量影响因素敏感性分析和质量控制方法,能够实时、快速地进行产品质量影响因素的敏感性分析和质量波动的控制,减少质量波动带来的损失。


【发明内容】

[0004]本发明目的在于提供一种加工质量影响因素敏感性分析和质量控制方法,通过实时、快速的产品质量影响因素敏感性分析,找出对加工质量影响较大的因素,并对加工质量进行控制,减少质量波动带来的损失。
[0005]为达到上述目的,本发明采用了以下技术方案:
[0006](I)加工质量和影响因素关系|旲型的建立:基于最小_■乘支持向量机建立加工质量和影响因素的关系模型;
[0007](2)加工质量影响因素敏感性分析:利用建立的加工质量和影响因素的关系模型计算各影响因素的灵敏度和贡献率,根据灵敏度或贡献率识别出影响因素中影响加工质量较大的因素;
[0008](3)加工质量稳定性控制:根据敏感性分析的结果,通过对影响因素中的一个或者多个可控因素进行控制,对加工质量的波动进行反方向的补偿,从而减少加工质量的波动。
[0009]所述步骤(I)包括以下具体流程:
[0010]①确定加工质量及其影响因素:确定与产品的某一个加工质量存在关系的影响因素,该关系表示为F = f (X1, X2,…,xn),其中F为加工质量,X1?Xn为加工质量F的η个影响因素,f (.)为待求的关系1?型;
[0011]②样本数据获取:根据步骤①确定的加工质量及影响因素获取最小二乘支持向量机的m组训练样本和q组测试样本,第j组训练样本表示为集合的形式(Xy Fj),Xj =(Xlj, X2j, *.., xnJ),j = 1,2,...,m ;
[0012]③关系模型建立:对于m组训练样本,将加工质量和影响因素的关系模型的求解转换为求解以下最优化问题:

IV Jn,
[0013]min= —|w| +—工
[0014]s.t.(I)
[0015]
/,'(Iril ) + fr) = 1- , j = 1,2,,.,..,, ι?
[0016]式(I)的拉格朗日函数为:
[0017]
HwHa) = F?,々τφ(Χ Α + +(2)



?-?


j腿%
[0018]其中a」为拉格朗日乘子,ξ」为松弛变量,辦.)为低维空间向高维空间映射的核函数,Y为惩罚因子,j = 1,2……,m,式⑵的KKT条件为:
[0019]
QTm
—=O w - Τ?* α -Ρ-ψ( ΧΛ =() dwj^JJ J
PiTm
- = Q^Ya-Fj=Q db
I(3).= OH=O
0^J
SL
~— = 0 Fj (m, <p()+bj — I + = 0, _/ = 1,2,,,,,,,,λ
CO j
[0020]将式(3)转化为矩阵的形式:
[0021]
]◎ O -zr l[w]「O"
0 0 0 —FT b O
—/ Λ\
O O γΙτ -f ξ O
ZFlO LoJ Ia
[0022]其中Z = [Ρ]φ( X,), F,^( Ar2), -..* *, Ρηφ(ΧΛ))];,F = [F1, F2,......, Fjτ, I =
[I, I,......,1]Τ, ξ = [I1, I2,......,ξ JT, a = [a1; a2,......,am]T,则通过求解式⑷的方程组得到w和b ;
[0023]加工质量F和影响因素之间的关系模型表示为F = f (X) = wX+b,其中w为η维向量,X = (X1, X2,…,χη)为影响因素向量。
[0024]所述m以及q的取值范围为彡50,q彡m。
[0025]所述步骤⑵包括以下具体流程:
[0026]计算影响因素的标准值,…,X;),影响因素的标准值是设计的理论值或统计的平均值;
[0027]将影响因素的标准值,…4:)代入加工质量和影响因素的关系模型F
=f(xi, X2,…,Xn),求出加工质量的平衡=/ (λΚ ,...,<)?其中F为加工质量,X1?Xn为加工质量F的η个影响因素;
[0028]令每个影响因素在标准值的基础上单独变化相同的百分比,得到各影响因素单独变化后的加工质量Fi,计算各影响因素的灵敏度Si;i = 1,2,…,η:
[0029]
C — (Pi^ F')/F* = AFi/F*
' (.T- - X*) / X* Axj / x]
[0030]计算各影响因素单独变化相同百分比对加工质量影响的贡献率:
[0031]
C5=具(6)
^ 1 4 TmI
/ ^ AFi
1=1
[0032]根据影响因素对于加工质量的影响程度与灵敏度或贡献率呈正相关,确定影响因素中影响加工质量较大的因素。
[0033]所述百分比的取值范围为-1 %?I %,且不等于O。
[0034]利用一个影响因素控制加工质量的波动,包括以下具体流程:
[0035]①假设加工质量的波动由影响因素X1, X2,…,Xn中的X1引起,X1在标准值;^的基础上按照一定的规律变化,则X, = X* + Ax1 ?对加工质量进行泰勒级数展开,并忽略高阶项,得到加工质量的波动, =.Δχ1;根据加工质量的波动得到Ax1 ;
[0036]②利用影响因素中的某个可控因素进行加工质量波动的控制,假设该可控因素为X2,根据步骤①分析得到的X1的变化规律Λ X1,令X2的变化规律
Δ%=」.'.?叹))1“和((?)丨分别用萬.务.和
5:.近似计算,仏:2 = -(5>1..^).
[0037]利用多个影响因素控制加工质量的波动,包括以下具体流程:
[0038]①假设加工质量的波动由影响因素X1, X2,…,Xn中的X1引起,X1在标准值JC1*的基础上按照一定的规律变化,则^ = + Δ.χ-,,对加工质量进行泰勒级数展开,并忽略高阶项,得到加工质量的波动= ^%x)lrA ;
[0039]②利用影响因素中的多个可控因素进行加工质量波动的控制,假设多个可控因素为X2?xp,η彡P > 2,令Xi的变化规律
(df / Sxl) 1./_ ,f
Δα.,.= -/{df ?δχ.) I ,.‘.Δ& ? i = 2 ?ρ,其中 Ai 为
X2?Xp抵消X1引起的波动的比例,文/I, = I ? (?-)I,^,*用St.^'近似计算,

Jm41 1/ (αι 、I/
δα,- /(5,..01,,
[0040]本发明与现有技术相比,其优点在于:
[0041]I)本发明为加工质量影响因素敏感性分析和质量控制提供了完整的参考解决方案以及清晰的控制流程。
[0042]2)本发明提出了一种基于最小二乘支持向量机(LS-SVM)的加工质量影响因素敏感性分析和质量控制方法,该敏感性分析和质量控制方法包括:①利用LS-SVM建立加工质量和影响因素关系模型;②加工质量影响因素敏感性分析:包括灵敏度和贡献率的计算;
③加工质量稳定性控制:包括利用一个影响因素控制加工质量的波动和利用多个影响因素控制加工质量的波动。
[0043]3)本发明不仅可以利用加工过程中的实时动态数据实时建立加工质量和影响因素的关系模型,进行敏感性分析,还能实时的对加工质量的波动进行控制,克服了传统方法只能离线进行的缺点,减少质量波动带来的损失。

【专利附图】

【附图说明】
[0044]图1是本发明的整体流程框图;
[0045]图2是图1中加工质量和影响因素关系模型的建立的流程框图;
[0046]图3是图1中加工质量影响因素敏感性分析的流程框图;
[0047]图4是图1中加工质量稳定性控制的流程框图;
[0048]图5是弧面凸轮应用实例的运行结果图,其中(a)为弧面凸轮tanP预测值和真实值的对比图;(b)为弧面凸轮tan β预测值和真实值的误差图;(c)?(e)为单因素变化对加工质量的影响图:(C)单因素正弦规律影响图;(d)单因素线性规律影响图,(e)单因素指数规律影响图;(f)?(h)为双因素变化对加工质量的影响图:(f)两个因素同时按正弦规律变化对加工质量的影响图;(g)两个因素同时按线性规律变化对加工质量的影响图;(h)两个因素同时按指数规律变化对加工质量的影响图;(i)?(k)为利用一个因素控制质量波动的效果图:(i)正弦规律波动的控制效果图;(j)线性规律波动控制的效果图;(k)指数规律波动控制的效果图;(I)为混合规律波动的多因素控制效果图。

【具体实施方式】
[0049]下面结合附图和实施例对本发明做进一步说明。
[0050]如图1所示,一种加工质量影响因素敏感性分析和质量控制方法包括三个部分:加工质量和影响因素关系模型的建立、加工质量影响因素敏感性分析和加工质量稳定性控制。为了实现敏感性分析和质量控制,首先要获取加工质量和影响因素的关系模型,加工质量和影响因素关系模型的建立如图2所示;然后通过关系模型,令各影响因素单独变化相同的百分比,求影响因素的灵敏度和贡献率,分析对加工质量影响较大的因素,具体流程如图3所示;最后根据敏感性分析结果,分析引起加工质量波动的因素及其变化规律,利用影响因素中的可控因素对加工质量进行控制,减少加工质量波动,具体流程如图4所示。以下对本发明的各步骤予以分述。
[0051]步骤(I)加工质量和影响因素的关系模型的建立
[0052]用行业经验和历史数据获得训练样本和测试样本,根据最小二乘支持向量机(LS-SVM)建立加工质量和影响因素的关系模型,用于分析影响因素对加工质量的影响效应,模型的建立方法如图2所示,具体包含以下流程:
[0053]①确定加工质量及其影响因素:产品的一个加工质量会受多个因素影响,它们之间存在一定的关系,用数学的方法表示为F = f (Xl, X2,…,xn),其中F为产品加工质量,X1?Xn为加工质量的η个影响因素,f(.)为待求的关系模型;
[0054]②样本数据的获取:根据①中确定的加工质量及其影响因素获取LS-SVM的训练样本和测试样本,训练样本和测试样本可以来源于产品加工历史数据、仿真数据或者行业经验数据,对于第j组训练样本可以表示为Fj, Xj = (Xlj, x2j, -,xnJ),写成集合的形式为(X」,F」),j = I, 2,…,m, m表示总共有m组训练样本;
[0055]③关系模型的建立:用训练样本训练最小二乘支持向量机,获得影响因素和加工质量之间的关系模型。对于m组训练样本,将LS-SVM模型(即基于最小二乘支持向量机的影响因素和加工质量关系模型)的求解转换为下面这个最优化问题:

I’ γ m
[0056]mjn= j\\nf + ξ;
[0057]s.t.(I)
[0058]
f j (vv!, (p(X iy、— I _ ζI ^ j — I,3,--*--*,λ?
[0059]其拉格朗日函数为:
[0060]
L(w,b,i,a) =α][Ρ](πτφ(Χ j ) + b)-l +(2)


j^l
[0061]其中aj(j = I, 2……,m)为拉格朗日乘子,ξ」为松弛变量,炉?.)为低维空间向高维空间映射的核函数,Y为惩罚因子,其KKT (Karush-Kuhn-Tucker Condit1ns,卡罗需-库恩-塔克条件)条件为:
[0062].*****■ O Vi*"' Τα/^(^) = ο
OWJ-1
--JL.◎ Π —s S? /> F _ A
?—Hmmiftr Jf ?‘.g , -*-* \f
Jft1.JmmmA J J
00;=ι
&L(3)
-=O => γζι — a, =O
δξ,'
PJ,
= 0=>F.(w Γφ(Χj)+b)-1.¥ξ, =0,/ = 1,2,,,..,,,*
[0063]转化为矩阵的形式:
[0064]
7 0 0 -Zt Irw]「0~

mJbl
0 0 0 —Fr b O
=(Λ\
OO rfξ OU
ZFI O」UJ IL
[0065]其中Z=PXAW2f(I2),……,fXH F = [F1, F2,……,FJM =
[I, I,......,1]τ,I = [ I I, I2.......,ξ m]T,a = [a1; a2,......,am]T,则通过求解方程组(式
(4))就能求出w和b,T表示矩阵的转置;
[0066]加工质量F和影响因素X之间的关系模型可以表示为F = f (X) =wX+b,其中w和X为η维向量,X= (x1; X2,..., χη)为影响因素向量。
[0067]步骤(2)加工质量影响因素敏感性分析
[0068]利用建立好的加工质量和影响因素的关系模型进行敏感性分析,计算灵敏度和贡献率,找出对加工质量影响较大的因素,分析过程如图3所示,具体包含以下流程:
[0069]①在获得训练好的加工质量和影响因素的关系模型F = f(Xl, X2, -,xn) = f (X)=wX+b之后,利用F = f (x1; X2,...,xn)进行后续分析;
[0070]②计算影响因素的标准值K, X; ,χ:),影响因素的标准值是设计的理论值或统计的平均值;
[0071]③将影响因素的标准值,…,<)代入训练好的模型F = f(xi,x2^..,Xn),求出加工质量的平衡点r =/ Cif5X2*,…,O;
[0072]④令每个影响因素在标准值的基础上单独变化相同的百分比,当一个因素变化时,其余的因素保持不变,如
(x* X (I + A), Xj ,.*.,X9u) , (χι,χ? X (I + Δ) ,.■., X*) ? ……,
(χ^,χΙ ,…,X* X (I + Δ)),代入F = f (X1, χ2,…,χη)中,得到各影响因素单独变化后的加工质量Fi,根据式(5)计算各影响因素的灵敏度,i = 1,2,…,η:
[0073]Ρ — ('F1-F-)"? — AFi / F"
(-Xi — -T- ) / X1 Δλ?/ Xi
[0074]⑤计算各影响因素单独变化相同百分比对加工质量影响的贡献率:
[0075]
^ AF.(’ _I
i ~ J?(K\
YjAFi()
1-3
[0076]⑥根据影响因素对于加工质量的影响程度与灵敏度或贡献率呈正相关,确定影响因素中影响加工质量较大的因素。灵敏度和贡献率最大的影响因素就是加工质量最敏感的因素。
[0077]步骤(3)加工质量稳定性控制
[0078]对于某些因素引起加工质量的波动,采用对可控因素进行一定规律控制的方法,最终减少加工质量的波动,质量波动的控制包括利用单个影响因素控制加工质量的波动和利用多个影响因素控制加工质量的波动,提高加工质量的稳定性,如图4所示,具体包含以下流程:
[0079]单个影响因素控制加工质量的波动包含以下流程:
[0080]①分析弓I起加工质量波动的因素的变化规律,加工质量的波动往往由影响因素中的某个敏感因素引起,假设加工质量的波动由影响因素X1, X2,…,Xn中的X1引起的,X1在标准值JC*的基础上按照一定的规律变化,也就是△ X1按照一定的规律变化,变化规律包括正弦、线性、指数等,则X1 = xl + Ax1 ,利用泰勒级数展开,忽略高阶项,则加工质量的波动可以表示成^ = > I,=*; ? 5
[0081]②利用影响因素中的某个可控因素进行加工质量波动的控制,假设利用X2进行控制,根据步骤①分析得到的X1的变化规律Λ X1,令X2的变化规律
Co/" ^ C'X ) I /
A q /OXl s^f/ar,)jx r 将代入加工质量的泰勒展开式
[0082]AF = (~^~~) IΔα? +:.”-4 _ + …+ C^?~) 1^*4 ^Xfs
I2η
[0083]得:AF=.Δλ, + 句人'.Ax2 = — C:fy(^ ).Al., = 0 ’ 利用 χ2 对加工质量进









蓋.;、.行控制后,加工质量的波动为零,根据式(5),)|.和>|.可以分别用晃和

/VX1 ’ 丨/VX1Xi
j—.*
S2 近似计算,S1和S2分别为X1和X2在标准值的基础上单独变化相同的百分比所对应
Λ
的的灵敏度,所以X2的变化规律也可以写成Δχ2 = -(5| *X2j/fs./)λΑχι ;
[0084]③计算质量波动控制前后的平均质量损失,产品质量损失计算:
[0085]L = K (F-F*)2(7)
[0086]对质量损失取期望,得到平均质量损失为:
[0087]E(L) = K(D(F)+ [E(F)-F*]2} = Κ[ σ 2+( μ-F*)2] (8)
[0088]其中K为质量损失系数,σ 2为加工质量F的方差,μ为加工质量F的均值。它们分别按以下公式计算:
[0089]
I?
μ = -T Pi(9)

[0090]
I η
CJi=^(F1-μ?(10)
/? -1 Ti
[0091]多个影响因素控制加工质量的波动包含以下流程:
[0092]①分析弓I起加工质量波动的因素的变化规律,加工质量的波动往往由影响因素中的某个敏感因素引起,假设加工质量的波动由影响因素X1, X2,…,Xn中的X1引起的,X1在标准值X1*的基础上按照一定的规律变化,也就是△ X1按照一定的规律变化,变化规律包括正弦、线性、指数等,则X1 = xl + Ajc1 ,利用泰勒级数展开,忽略高阶项,则加工质量的波动可以表不成^' = (IV|_v(* *^.'ι.
[0093]②利用影响因素中的多个可控因素进行加工质量波动的控制,假设利用X2?Xp这P-1个影响因素对加工质量的波动进行控制,令
Of /e.x,) 1./斗丄、,
Axi = -' /{df / dx ) I ,?為.Δχ, ?其中 i = 2 ?p,Ai 为 X2 ?Xp 抵消 X1
引起的波动的比例,Σ = 1 *当X2?Xp抵消的比例平均分配时,Ai = I/(p-ι)。将ΔχρΔ Xi代入加工质量的泰勒展开式
[0094]Ai7 =(蒼、ΛΓΛ: Δλ,t'—x' Δλ\ +...+ {^L) Axn
[0095]得:
AF = °丨.人'.Δλ., I £ A1.Δ_?, = (^Υ) -.Σ Α> >.Δλ., = - <1:(/ζΧι).Axl = ? * 利用&?\对加工质量进行控制后,加工质量的波动为零,根据公式(5),可以用
S,.;近似计算,Si为Xi在标准值的基础上单独变化相同的百分比所对应的灵敏度,所以用来控制质量波动的影响因素Xi的变化规律也可以写成Axi =-(5>| *.^.《产■,
[0096]③计算加工质量控制前后的平均质量损失,产品质量损失计算:
[0097]L = K (F-F*)2(11)
[0098]对质量损失取期望,得到平均质量损失为:
[0099]E(L) = K(D(F)+ [E(F)-F*]2} = Κ[ σ 2+( μ-F*)2] (12)
[0100]其中K为质量损失系数,σ 2为加工质量F的方差,μ为加工质量F的均值。它们分别按以下公式计算:
[0101]
I
I "V ^ |**?/1 I \
μ = — > Pi(U)
η
[0102]
I Λ
er2 =— "Y" (F(.— /I)204、
λ -1' 7
[0103]加工质量影响因素敏感性分析和质量控制方法应用实例
[0104]弧面分度凸轮是一种间歇机构,它由类似于蜗杆的凸轮和带滚子的分度盘组成,凸轮和分度盘的轴线成交错方向布置。弧面凸轮是一种精密传动机构,接触角β会影响分度的精度,它是一个重要的参数,它的关系式可以表示为:
[0105]

{I *4- h、
tm β = ±-^--(15)
[C-(l + h)m% BlIi
[0106]
(π.6π I , 24π、ΓΛ 5 ^ 1-(—t—SlI1-1)t ?.10,-)
15(4 + ;?) 5 4 548
(9 — j π 「2+6露| ^+
1 ^ 15(4 +T + Tf"4 J + T J ieL48!48^ |(16)
π ?Λ 6π I , 24π、Γ35 5, ?
-(4 ^--1—sin-?)—?—I ;
[5(4 + !) 5 4 548.6 j
[0107]其中,I为分度盘中心到滚子上端面距离;h为滚子长度;C为中心距;Θ i为分度盘转动角度;i = ω2/CO1为传动比。
[0108]为了验证本发明的可行性和有效性,利用本发明所述的方法对弧面凸轮接触角的正切值进行敏感性分析和质量控制。
[0109]步骤(I)加工质量和影响因素关系模型的建立:
[0110]设弧面凸轮的标准设计尺寸Γ = 44mm,滚子长度h* = 1mm,中心距C* = 120mm,
l、h和C为影响因素,tani3为加工质量。凸轮匀角速度转动,角速度ω 2 = 2rad/s,当t =
5/12时,由公式(16)计算出分度盘转角仏=5^4^:yJ(T+ 2) = °.31416 md 1 --
=1.3267rad/s, i = ω2/ω ι = I.5075。根据公式(15)在 mat lab 中按正态分布产生 100组数据,50组训练LS-SVM模型,另外50组用来测试。测试结果如图5 (a)和图5 (b)所示,可知模型误差在IX 10_5范围之内。
[0111]步骤(2)加工质量影响因素敏感性分析:
[0112]利用训练好的LS-SVM模型,分别令各因素(l,h,C)单独变化-0.2%、-0.1 %、
0.1%>0.2%,计算灵敏度和贡献率,计算结果如表1所示。
[0113]表1各因素单独变化对接触角正切值影响的关系
[0114]

【权利要求】
1.一种加工质量影响因素敏感性分析和质量控制方法,其特征在于:包括以下步骤: (1)加工质量和影响因素关系模型的建立:基于最小二乘支持向量机建立加工质量和影响因素的关系|吴型; (2)加工质量影响因素敏感性分析:利用建立的加工质量和影响因素的关系模型计算各影响因素的灵敏度和贡献率,根据灵敏度或贡献率识别出影响因素中影响加工质量较大的因素; (3)加工质量稳定性控制:根据敏感性分析的结果,通过对影响因素中的一个或者多个可控因素进行控制,对加工质量的波动进行反方向的补偿,从而减少加工质量的波动。
2.根据权利要求1所述一种加工质量影响因素敏感性分析和质量控制方法,其特征在于:所述步骤(I)包括以下具体流程: ①确定加工质量及其影响因素:确定与产品的某一个加工质量存在关系的影响因素,该关系表示为F = f (x1; X2,…,xn),其中F为加工质量,X1?Xn为加工质量F的η个影响因素,f(.)为待求的关系模型; ②样本数据获取:根据步骤①确定的加工质量及影响因素获取最小二乘支持向量机的m组训练样本和q组测试样本,第j组训练样本表示为集合的形式(Xy Fj), Xj = (Xlj, X2j,…j Xnj),J I,2,* * * j Π1 ; ③关系模型建立:对于m组训练样本,将加工质量和影响因素的关系模型的求解转换为求解以下最优化问题:
min 1^(\ν,δ,ξ) = —IIHtIi' + —"?" ξ';
2 2s.t.(I)妒(Λ、)十 = ?-ξη]:、工”… 式(I)的拉格朗日函数为:L(w,b^,a) = F{w,b,ξ)-Ydaj[FJ(wτφ{X ^ + h)-! +(2)


/—I 其中a]为拉格朗日乘子,ξ j为松弛变量,f(.)为低维空间向高维空间映射的核函数,Y为惩罚因子,j = 1,2……,m,式(2)的KKT条件为: —=0=> a ,-Ff-Pl Art-) = O dwhi 掃m ——=O^yvjF'=O db ^ J 1'(3) ——=O^ ^af =0 0c,J ( ^ = (wV(Z;) + d) -1.+ A = 0, i = 12”.Baj 将式(3)转化为矩阵的形式:7 ο o -Z7 Irw] Γο'OOO-FT 6—0OO γΙτ -Ιτ ξ = Q(4>Z Fl O JUJ U— 其中Z =---",/=XU' F = [F1, F2,......,FiJt, I = [I, I,......,I]Τ, I = [ I I, 12.......,€m]T,a= [a1; a2,......,am]T,则通过求解式⑷的方程组得到w和 b ; 加工质量F和影响因素之间的关系模型表示为F = f (X) = wX+b,其中w为η维向量,X= (X1, X2,…,χη)为影响因素向量。
3.根据权利要求2所述一种加工质量影响因素敏感性分析和质量控制方法,其特征在于:所述m以及q的取值范围为> 50,Q^m0
4.根据权利要求1所述一种加工质量影响因素敏感性分析和质量控制方法,其特征在于:所述步骤(2)包括以下具体流程: 计算影响因素的标准值(A.,,…,<),影响因素的标准值是设计的理论值或统计的平均值; 将影响因素的标准值(xf,x2.,…,X:)代入加工质量和影响因素的关系模型F =f(Xi, X2,…,Xn),求出加工质量的平衡点^: f ( xl, Xt2,…,Y),其中F为加工质量,X1?Xn为加工质量F的η个影响因素; 令每个影响因素在标准值的基础上单独变化相同的百分比,得到各影响因素单独变化后的加工质量Fi,计算各影响因素的灵敏度Si, i = 1,2,…,η:
? F — F *、/ F * AF / Fmg _ V ' i ' > ' 1 _ l^kt j > 1 —(X1- -Τ;)/-Τ; Δχ; IΛ-;1 j 计算各影响因素单独变化相同百分比对加工质量影响的贡献率:P AF1c, = —^ (6) tAFi
I ? I 根据影响因素对于加工质量的影响程度与灵敏度或贡献率呈正相关,确定影响因素中影响加工质量较大的因素。
5.根据权利要求4所述一种加工质量影响因素敏感性分析和质量控制方法,其特征在于:所述百分比的取值范围为-1%?1%,且不等于O。
6.根据权利要求4所述一种加工质量影响因素敏感性分析和质量控制方法,其特征在于:利用一个影响因素控制加工质量的波动,包括以下具体流程: ①假设加工质量的波动由影响因素X1, X2,…,Xn中的X1引起,X1在标准值X;的基础上按照一定的规律变化,则= % + Ax1 ,对加工质量进行泰勒级数展开,并忽略高阶项,得到加工质量的波动AF =*Δ?1;根据加工质量的波动得到Ax1 ;②利用影响因素中的某个可控因素进行加工质量波动的控制,假设该可控因素为X2,根据步骤①分析得到的X1的变化规律ΛΧι,令X2的变化规律(of / dx ) I ¥ //rY/FiF*~ 1 X^/(pflvxJ\__ ,?紅P )k~4 和分别用 & 和 & 9了近似计算,&2=-( 1 2/{S.x* ^ ^x'1
M Iο
7.根据权利要求4所述一种加工质量影响因素敏感性分析和质量控制方法,其特征在于:利用多个影响因素控制加工质量的波动,包括以下具体流程:①假设加工质量的波动由影响因素Xl,X2,…,Xn中的X1引起,X1在标准值^的基础上按照一定的规律变化,则= X1* + Ajt1 ,对加工质量进行泰勒级数展开,并忽略高阶项,得到加工质量的波动AF: (ydx、) Iw ?知s②利用影响因素中的多个可控因素进行加工质量波动的控制,假设多个可控因素为


(df I dx,) 1./X2 ?xp,n > P > 2,令 Xi 的变化规律Aii = —Λ? /(cf / cx ) | ?為.Δι!,i= 2?ρ,其中AiSx2?χρ抵消X1引起的波动的比例,f烏=I,用S 近

1=2/ 1..Xi似计算,Δχ,=' ]/ 条.Axi
【文档编号】G06F17/50GK104166757SQ201410377440
【公开日】2014年11月26日 申请日期:2014年8月1日 优先权日:2014年8月1日
【发明者】要义勇, 陈虹任, 赵丽萍 申请人:西安交通大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1