本发明涉及一种图像分割方法,具体涉及一种糖尿病人视网膜血管图像分割方法,属于图像处理技术领域。
背景技术:
视网膜是人体中唯一可以以非创伤方式直接观察到较深层血管,而且视网膜血管是眼底图像中可见的最主要解剖结构,其结构特征变化直接反映糖尿病、高血压和动脉硬化等心血管疾病对血管网络形态结构的影响。有研究表明,通过周期性的眼底筛查以及早期诊断,可以极大地降低患心血管疾病的风险。考虑到眼底筛查结果客观性、可重复性、准确性以及大批量的需要,临床上对视网膜血管的自动检测以及定量分析提出了迫切的要求。因此,采取有效的方法分割视网膜眼底图像中的血管结构,有助于对心血管疾病的早期诊断、治疗跟踪以及术后评估,在临床上具有重要的应用价值。
图像分割是图像处理的基本内容之一,图像分割可以提高图像的视觉效果,也有利于对图像做进一步的处理。图像分割可以只强调或抑制图像中的某些细节,使它更加适合于某个具体的应用。图像分割处理的好坏直接影响后续的图像分析和模式识别,其应用价值得到了广泛重视。
现有的图像分割方法分为非监督方法和监督方法两大类,非监督方法主要包括局部滤波法、局部自适应阈值法和血管追踪法等。有监督的方法包括基于极薄的血管分割法和基于神经网络的像素分类法。但是,通过分析现有方法,发现现有方法存在分割精度低的问题,而且实时性较低,难于在对实时性有较高要求的临床中广泛应用。
技术实现要素:
在下文中给出了关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
鉴于此,根据本发明的一个方面,本发明旨在提出糖尿病人视网膜血管图像分割方法,来解决上述技术问题。
本发明所采取的方案为:糖尿病人视网膜血管图像分割方法,
具体方法为,
步骤1、按照预设的二值化阈值对经过预处理的眼底图像进行二值化处理,并提取二值化处理后的眼底图像中的中心线和边缘,得到血管树;
步骤2、对所述的血管树分叉处做断开处理得到血管段,并对各个血管段进行线分割得到血管,得到原始血管集;
步骤3、确定误分割血管,并从原始血管集中去除得到全局血管集。
本发明中对眼底图像进行小波变换以对眼底图像进行预处理。
进一步地:所述步骤1中,二值化阈值为二值化处理后为血管的像素点个数占整个眼底图像的像素点比例,通常取值为4~20%。二值化阈值越大,则越宽松。作为优选,所述的二值化阈值为14%。
进一步地:所述步骤三中,误分割血管包括分为两类,第一类误分割血管基于血管两侧的背景差异确定,第二类基于血管形状确定。
所述背景差异通过如下步骤确定第一类误分割血管:
(a1)针对每个血管,提取该血管两侧背景的特征向量;
任意一侧背景的特征向量根据该侧距离中心线5~10个像素点以内区域中所有像素点(即与中心线的距离小于5~10个像素点)的rgb三个通道上的颜色值得到。每侧的特征向量为一个三维向量,分别表示血管两侧背景的在rgb三个通道上的颜色值信息。具体实现时获取该侧距离中心线5~10个像素点的区域中的所有像素点在r、g、b三个通道上的颜色值并分别在每个通道上求平均,进而得到该侧的特征向量。
(a2)根据所述特征向量的采用聚类法将所有血管聚为两类,得到的小类即为视盘周围误分割血管。
针对每个血管,计算两侧特征向量的欧氏距离,然后对所有血管对应的欧式距离进行聚类,即完成对血管的聚类。由于k均值聚类(即k-means算法)不需要调整参数,且运行速度较快。作为优选,所述步骤(a2)中采用k均值聚类法将所有血管聚为两类。
本发明中所述的血管形状实际上指各个血管的连接关系,通过如下步骤确定第二类误分割血管:确定划分出原始血管集的眼底图像中的环状结构,针对各个环状结构,若该环状结构中长度最大的血管的长度小于预设的分割长度阈值,则认为该环状结构中所有血管均为第二类误分割血管,进一步进行如下操作:确定该环状结构的中心,并计算该中心到长度大于或等于分割长度阈值的血管的最短距离(即该中心到距离其最近的长度大于或等于分割长度阈值的血管的距离),认为以该中心为圆心、最短距离为半径的圆形区域内所有血管为第二类误分割血管。分割长度阈值的设定根据实际经验值设定,通常为分割长度阈值为α=x/60~x/45,x为眼底图像的横向大小,即眼底图像沿横轴的长度。未作特殊说明,本发明中对长度、距离、图片大小等参数进行衡量时统一以像素点为单位。
与现有技术相比,本发明在得到原始血管集后进一步还利用血管的背景和形状确定误分割的血管,可以有效去除因为拍照造成的环状反光、视盘周围的非血管的跃阶边缘、斑状病变以及出血病变等原因造成的误分割血管。
具体实施方式
在下文中将对本发明的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本发明公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发明,省略了与本发明关系不大的其他细节。
具体实施方式一、糖尿病人视网膜血管图像分割方法,具体方法为,
步骤1、按照预设的二值化阈值对经过预处理的眼底图像进行二值化处理,并提取二值化处理后的眼底图像中的中心线和边缘,得到血管树;
步骤2、对所述的血管树分叉处做断开处理得到血管段,并对各个血管段进行线分割得到血管,得到原始血管集;
步骤3、确定误分割血管,并从原始血管集中去除得到全局血管集。
虽然本发明所揭示的实施方式如上,但其内容只是为了便于理解本发明的技术方案而采用的实施方式,并非用于限定本发明。任何本发明所属技术领域内的技术人员,在不脱离本发明所揭示的核心技术方案的前提下,可以在实施的形式和细节上做任何修改与变化,但本发明所限定的保护范围,仍须以所附的权利要求书限定的范围为准。