本发明属于地图学与地理信息系统技术领域,涉及一种结合poi数据的道路网自动选取方法。
背景技术:
地图自动综合一直是gis和制图界的一个具有挑战性的问题。在数字化环境中,利用地图综合技术将国家基础数据库中大比例尺地图导出小比例尺地图,仍然是空间信息科学理论研究的重点和难点。道路网作为基础地理数据,对国民经济、国家安全有着重要意义。道路网选取研究一直是地图综合研究的主要目标之一,虽然前期道路综合研究取得大量成果,但道路制图综合仍未得到完全解决。
目前,主要的道路网选取方法主要有:点选取与合并方法、mesh方法、stroke方法和mesh-stroke方法共计四类方法。第一类是点选取与合并方法,通过选择特征点,删除其他节点方式,这类方法简单,选取效果差;第二类是mesh方法,将道路网构造成网眼,通过合并网眼,进行道路网综合,这类方法选取结果难以顾及道路网的局部结构;第三类是stroke方法,根据良好连续性原理,生成道路stroke进行选取,这类方法选取结果难以保留道路网的整体结构;第四类是mesh-stroke方法,按照约束条件通过mesh方法和stroke方法分别对道路网中的面状结构和网眼周边的线状结构进行选取,这类方法在只适应于特殊类型道路网。
poi记录了地理信息城市内部重要设施的区位和属性信息,其中道路两侧设施信息与道路重要性认知存在关联。本文提出了一种改进的道路选取方法,在mesh模型中进入poi数据,弥补mesh模型选取结果在局部结构表现的不足。
综上所述,针对已有道路网选取方法的不足,以及poi数据的丰富语义信息。在mesh模型中进入poi数据,弥补mesh模型选取结果在局部结构表现的不足。本发明提出了一种结合语义信息的道路选取方法。
技术实现要素:
本发明针对现有的道路网选取方法的不足,提出了可以顾及语义信息的道路网选取方法,该方法选取结果能够保持道路网的拓扑结构、整体结构的同时,保留语义信息强的道路。
本发明方法包括道路网几何阈值选取和道路网语义阈值选取两部分,图1为本发明道路网选取方法的总体流程。
mesh模型是根据道路网的疏密程度划分出一系列小区域,通过确定密度阈值,利用几何等属性,对区域内的路段进行取舍,图2为mesh模型具体构建过程。在图2中,密度为0.0933的网格是所以网格中最大的,密度是0.0933的网眼与密度是0.0667的网眼进行合并,删除中间路段,生成密度为0.04的新网眼。按照这种迭代方法,直到所以网眼密度都小于阈值。
道路网选取是道路网综合的前提,图1为道路网选取主要过程,具体步骤如下:首先,将道路网生成道路网眼;然后,确定道路网网眼的密度阈值;随后建立poi数据与mesh模型的语义关系模型;最后将基于密度阈值选取结果与基于poi语义信息选取结果进行集成。
本发明方法通过实验表明在保留主要道路、以及保护道路连通性与区域性的同时,较好的顾及了道路的语义特性。为道路网选取的语义度量提供了一种新途径,同时poi数据具有时效性,本发明方法选取的道路网在实际应用中更具价值与科学性。
附图说明
图1基本框架
图2构建mesh模型过程
图3格网划分
图4选取结果
具体实施方式
为了详细说明本发明的技术内容、选取过程、所实现的目的及所达到的效果,以下结合具体实施方式详细说明。
step1:poi数据预处理。获取研究区域的poi数据,并对poi数据进行清洗、分类。
step2:构建道路网眼并确定网眼密度。根据道路网的稀疏程度划分一系列网格。通过确定密度阈值,利用几何等属性,对区域内的路段进行取舍。网眼密度计算公式如式(1)所示:
然而,肉眼最小分辨单位在0.5~0.7mm之间,所以网眼最大阈值在0.14~0.2(m/m2)之间。依据中国测绘标准中的规定,1:50000道路网制图规范要求地图上街区长不小于1.2mm,宽不小于1.0mm,道路宽度不小于0.5mm。据此可知,在道路网眼中,考虑到道路的中间线,网眼长宽应该分别不小于1.45mm和1.25mm。在1:50000比例尺道路网的最大网眼密度为:0.0743(m/m2)。基于理论分析和制图规范得到的网眼密度阈值,并不适合所有的类型网眼。不同类型道路网密度阈值不同。所以,本专利对1:10000比例尺道路和1:50000比例尺道路网眼密度进行统计,间距为0.002(m/m2),从图3可以发现,二者存在相关性,两种网眼密度分布相交与网眼密度范围(0.004-0.006m/m2),在1:10000比例尺道路和1:50000比例尺相交的网眼密度范围之前,1:10000比例尺道路网眼量小于1:50000比例尺道路网眼量,在1:10000比例尺道路和1:50000比例尺相交的网眼密度范围之后,1:10000比例尺道路网眼量大于1:50000比例尺道路网眼量,这是因为高密度网眼被合并成相对低密度网眼。因此,1:10000比例尺道路网选取1:50000比例尺道路网的合适密度阈值是0.004-0.006(m/m2)。
step3:根据道路网眼密度进行降序排序。之后,选择排序后最大的网眼判断网眼密度是否小于设定的阈值0.006(m/m2),如果小于阈值即选取出此网眼。
step4:如果道路网眼密度大于阈值0.006(m/m2),对网眼密度大于阈值0.006(m/m2)的网眼进行排序。选择排序集合中最大的网眼与相邻密度最大的网眼进行合并,判断合并后的阈值是否大于设定阈值0.006(m/m2),如果大于阈值则继续与相邻密度最大的网眼合并,直到合并后的阈值小于阈值0.006(m/m2)。
step5:对每个网眼中poi数量进行统计,并按照poi数据进行倒序排序,遵循开方根定量规定,进行网眼选取。
step6:判断道路网眼中是否包含重要设施点,如果包含即保留道路网眼。
step7:将按照网眼密度、poi数量、poi重要设施点三种规则选取结合进行合并,得到最终的选取结果,如图4所示。
综上所述,本发明是一种加入语义信息的道路自动选取方法。因语义信息的引入,相对于传统的基于mesh模型的道路网选取方法,本发明创新性的将语义信息与mesh模型建立关系模型,有效弥补了传统道路网选取方法对道路语义信息考虑的不足,具有较好的使用价值。
1.一种结合poi数据的道路自动选取方法,包括道路网几何阈值选取和道路网语义阈值选取两个部分:
道路网几何阈值选取步骤如下:
step1:构建道路网眼并确定网眼密度;
step2:依据网眼密度阈值选取道路网;
道路网语义阈值选取步骤如下
step3:获取研究区域的poi数据,并对poi数据进行清洗、分类;
step4:对每个网眼中poi数量进行统计,并按照poi数据进行倒序排序,遵循开方根定量规定,进行网眼选取;
step5:判断道路网眼中是否包含重要设施点,如果包含即保留道路网眼;
step6:将按照网眼密度、poi数量、poi重要设施点三种规则选取结合进行合并,得到最终的选取结果。
2.根据权利要求1所述的一种结合poi数据的道路自动选取方法,其特征在于,在step2中,运用step1步骤生成的道路网眼。
3.根据权利要求1或权利要求2所述的一种结合poi数据的道路自动选取方法,其特征在于,在步骤step6中,完成对道路网的选取,还包括:如顾及道路网的语义信息,可实现对道路网的科学选取。