一种基于双策略和声搜索算法的柚子图像分割方法

文档序号:8488401阅读:192来源:国知局
一种基于双策略和声搜索算法的柚子图像分割方法
【技术领域】
[0001] 本发明涉及图像分割领域,尤其是涉及一种基于双策略和声搜索算法的柚子图像 分割方法。
【背景技术】
[0002] 柚子是一种公认滋补效果非常好的水果。它营养丰富,富含钙、磷、铁、胡萝卜素、 硫酸素、核黄素、尼克酸、抗坏血酸等。它不仅具有开胃、促进消化的功效,而且它含有生理 活性物质皮苷,能够在一定程度上降低血液的粘滞度,降低形成血栓的风险,因此能够预防 心脑血管疾病。由此可知,柚子产业是一个很有潜力的现代农业发展项目。
[0003] 要实现柚子产业的规模化发展就必须首先实现柚子产业的自动化、智能化,提高 生产效率,降低人力成本,并在一定程度上解放柚子产业劳动者的双手。柚子机器视觉技术 是实现柚子产业自动化、智能化的核心技术之一,而柚子图像分割又是柚子机器视觉技术 的关键基础支撑技术。柚子图像分割问题可以归结成为一个优化问题,而和声搜索算法是 一种有效的现代智能优化算法,它已经在很多实际工程应用中获得了很成功的优化结果。 例如,王灵等在2011年发明一种基于和声搜索算法的工业无线传感器网络部署的方法(专 利号:201110049025. 7),依玉峰等在2012年提出了利用和声搜索算法及聚类分析来对图 像进行分割的方法,李阳阳等在2012年发明了一种基于和声搜索算法并融合共邻矩阵谱 信息的多目标社区检测方法(专利号=201210066846. 6)。虽然和声搜索算法在很多工程领 域中获得了成功的结果,但传统和声搜索算法在分割柚子图像时往往存在着分割速度慢, 分割精度不高的缺点。

【发明内容】

[0004] 本发明的目的是提供一种基于双策略和声搜索算法的柚子图像分割方法,它能够 加快柚子图像的分割速度,提高分割精度。
[0005] 本发明的技术方案:一种基于双策略和声搜索算法的柚子图像分割方法,包括以 下步骤:
[0006] 步骤1,利用摄像机采集一幅柚子图像AI,然后将采集到的柚子图像AI转换成为 YCrCb色彩空间的柚子图像BI;
[0007] 步骤2,提取柚子图像BI中每个像素的Cb颜色分量值作为聚类数据,将提取到 的聚类数据按像素在柚子图像BI中的行列坐标存储到矩阵Data中,这样就可以建立起矩 阵Data的每个元素与柚子图像AI中每个像素之间的行列坐标的--对应关系,其中矩阵 Data的大小为DHXDW,并且DH的值等于柚子图像AI的高度,DW的值等于柚子图像AI的 宽度;
[0008] 步骤3,用户初始化参数,所述初始化参数包括分割类别数目D,和声库大小 Popsize,记忆库学习率HMCR,音调调整率PAR,最大评价次数MAX_FEs;
[0009] 步骤4,当前演化代数t= 0,当前评价次数FEs= 0 ;
[0010] 步骤5,随机产生初始和声库
【主权项】
1. 一种基于双策略和声搜索算法的柚子图像分割方法,其特征在于:包括以下步骤: 步骤1,利用摄像机采集一幅柚子图像AI,然后将采集到的柚子图像AI转换成为YCrCb 色彩空间的柚子图像BI; 步骤2,提取柚子图像BI中每个像素的Cb颜色分量值作为聚类数据,将提取到的聚类 数据按像素在柚子图像BI中的行列坐标存储到矩阵Data中,这样就可以建立起矩阵Data 的每个元素与柚子图像AI中每个像素之间的行列坐标的--对应关系,其中矩阵Data的 大小为DHXDW,并且DH的值等于柚子图像AI的高度,DW的值等于柚子图像AI的宽度; 步骤3,用户初始化参数,所述初始化参数包括分割类别数目D,和声库大小Popsize, 记忆库学习率HMCR,音调调整率PAR,最大评价次数MAX_FEs; 步骤4,当前演化代数t= 0,当前评价次数FEs= 0 ; 步骤5,随机产生初始和声库
其中:个体下标i= l,...,PopsiZe,并且
一 和声库Pt中的第i个个体,其随机初始 化公式为:
其中维数下标j= 1,...,D,并且D表示把图像分割成多少个类别;劣为在和声库Pt 中的第i个个体,存储了D个分割类别的聚类中心,rand(0, 1)为在[0, 1]之间服从均匀分 布的随机实数产生函数; 步骤6,计算和声库Pt中每个个体化的适应值仰?),其中个体下标i= 1,. . .,Popsize,计算个体3丨的适应值/^(化)的方法为:首先计算矩阵Data中每个元素 0&七&1^分别与个体《中存储的D个分割类别的聚类中心的距离,Data%#哪个聚类中心 的距离最小,则令Datam,Jl于哪个类,然后计算矩阵Data中所有元素Datam,n与它所属个体 #中分割类别的聚类中心的距离之和作为个体< 的适应值,其中适应值越小则表明个体 越优秀,并且矩阵行下标m= 1,. . .,DH,列下标n= 1,. ..,DW; 步骤7,当前评价次数FEs=FEs+Popsize; 步骤8,保存和声库pt中适应值最小的个体为最优个体Best% 步骤9,采用双策略操作算子产生一个的试验个体U%并计算试验个体Ut的适应值Fit(U%具体步骤如下: 步骤9. 1,按以下公式计算当前和声库的搜索下界CA,上界CBj:
其中个体下标i= 1,? ??,Popsize;维数下标j= 1,? ??,D;min为取最小值函数,max为取最大值函数; 步骤9. 2,令计数器j= 1 ; 步骤9. 3,在[0, 1]之间随机产生一个实数rl,如果rl小于记忆库学习率HMCR,则转到 步骤9. 4,否则转到步骤9. 11 ; 步骤9.4,在[l,Popsize]之间随机产生一个正整数RI1,并令 步骤9. 5,在[0, 1]之间随机产生一个实数r2,如果r2小于音调调整率PAR,则转到步 骤9. 6,否则转到步骤9. 12 ; 步骤9. 6,在[0, 1]之间随机产生一个实数r3,如果r3小于0.5,则转到步骤9. 7,否则 转到步骤9. 9 ; 步骤 9. 7,令% +rand(-l,l)xabs(汾.、?< - (_/;),其中rand(-l,1)为在[-1,1]之间 服从均匀分布的随机实数产生函数,abs为取绝对值函数; 步骤9. 8,转到步骤9. 12 ; 步骤9. 9,在[1,Popsize]之间随机产生一个不等于RI1的正整数RI2 ; 步骤 9. 10,令〇'丨+nind(-l,l)xabs(~2,然后转到步骤 9. 12 ; 步骤 9.11,令0 +(/-i)x(c^ -cw/o+randaiMca?, -C4)/D); 步骤9. 12,令计数器j=j+1,如果计数器j小于或等于D,则转到步骤9. 3,否则转到 步骤9. 13 ; 步骤9. 13,计算试验个体U1的适应值Fit(U,转到步骤10 ; 步骤10,令当前评价次数FEs=FEs+1,并找到当前和声库中适应值最差个体的下标WorstI; 步骤11,按以下公式在当前和声库中的最差个体与个体ut两者之间选择出更优 个体进入下一代和声库:
步骤12,随机选择出一个个体,然后对选择出来的个体执行精英混沌搜索操作得到个 体EU%具体步骤如下: 步骤12. 1,在[1,Popsize]之间随机产生一个正整数RI3 ; 步骤12. 2,随机产生一个[0. 05, 0. 2]之间的实数r4 ; 步骤 12. 3,精英个体数量BestN=max(2,PopsizeXr4); 步骤12. 4,令中间变量ct为在[0, 1]之间随机产生的一个实数,如果ct等于0. 25, 0. 50或0. 75,则再重新产生直到ct不等于0. 25,0. 50或0. 75 ; 步骤12. 5,令计数器i= 1,并令精英混纯搜索最大次数SLN=max(5,D/5),其中max为取最大值函数; 步骤12. 6,如果计数器i小于或等于SLN,则转到步骤12. 7,否则转到步骤13 ; 步骤 12. 7,令混沌因子ck= 4.OXctX(1-ct); 步骤12. 8,令计数器j= 1 ; 步骤12. 9,如果计数器j小于或等于D,则转到步骤12. 10,否则转到步骤12. 13 ; 步骤12. 10,从当前和声库中的前BestN个精英个体中随机选择出一个个体; 步骤12. 1A,令.E-U j = Bmj +ckx(BpBestLj - Bmj); 步骤12. 12,令计数器j=j+1,转到步骤12. 9 ; 步骤12. 13,计算精英混纯搜索操作得到的个体Elf的适应值,并令当前评价次数FEs=FEs+1 ; 步骤12. 14,如果个体EC的适应值比个体的适应值更优,则在当前和声库中用个 体EC替换个体,并转到步骤13,否则转到步骤12. 15 ; 步骤12. 15,令中间变量ct=ck; 步骤12. 16,令计数器i=i+1,转到步骤12. 6 ; 步骤13,保存和声库Pt中适应值最小的个体为最优个体Best% 步骤14,当前演化代数t=t+1 ; 步骤15,重复步骤9至步骤14直至当前评价次数FEs达到MAX_FEs后结束,执行过程 中得到的最优个体Best1*D个分割类别的聚类中心,利用优化得到的D个分割类别的聚 类中心对矩阵Data中的所有元素进行划分类别,在确定了Data中的所有元素的类别后,再 利用矩阵Data中每个元素与柚子图像AI中每个像素之间的行列坐标一一对应关系,就可 以确定柚子图像AI中的每个像素的类别,即得到最终分割的结果。
【专利摘要】本发明公开了一种基于双策略和声搜索算法的柚子图像分割方法,主要解决传统和声搜索算法应用于柚子图像分割时存在着分割速度慢,分割精度不高的问题。本发明在和声搜索算法分割柚子图像的音调调整过程中融合了最优个体导向的调整策略和随机个体导向的调整策略,从而实现收敛速度与种群多样性之间的平衡,提高柚子图像的分割精度;此外,利用精英混沌搜索策略来提高算法的局部搜索能力,加快柚子图像的分割速度;与同类方法相比,本发明能够加快柚子图像的分割速度,提高分割精度。
【IPC分类】G06T7-40, G06T7-00
【公开号】CN104809737
【申请号】CN201510242661
【发明人】郭肇禄, 岳雪芝, 谢霖铨, 尹宝勇, 杨火根, 叶坤涛, 吴志健
【申请人】江西理工大学
【公开日】2015年7月29日
【申请日】2015年5月13日
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1