学习场景分类记录方法和记录装置的制造方法

文档序号:10613215阅读:213来源:国知局
学习场景分类记录方法和记录装置的制造方法
【专利摘要】本发明涉及一种学习场景分类记录方法和记录装置,根据设定条件对脑波数据进行分段,把同一段脑波数据下的眼前场景分为同一类,如果当前脑波数据处于所述分段,启动摄像头拍摄眼前场景,把该场景照片记录在本段脑波数据特征值下。本发明对学生学习场景进行监测,把学习过程的大脑状态与学习场景融合记录,可以知道学生的学习内容,了解其兴趣偏好,及时发现问题,帮助其健康成长。通过分段记录的学习场景,简洁直观,数据量小,降低对硬件的要求,并易于后续处理分析。
【专利说明】
学习场景分类记录方法和记录装置
技术领域
[0001 ]本发明涉及一种学习场景分类记录方法和记录装置。
【背景技术】
[0002]脑电传感器采集输出多种波段的脑电信号,经计算处理又可以生成多种精神状态数据,脑电技术已在教育领域应用,记录学生在学习过程中的精神状态。对于同一种精神状态,可以出现在不同的环境条件,比如专注可能是学习中的专注,也可能是玩中的专注,仅仅依靠脑电数据,无法确定当前状态下的学习内容,对学习过程的记录不完整。穿戴设备受体积重量限制,存储能力有限,简化数据的记录,有利于穿戴设备使用体验,和后续的数据处理分析。

【发明内容】

[0003]本发明的目的是提供一种学习场景分类记录方法和记录装置,把学习过程的大脑状态与学习场景融合记录,明确各种大脑状态下的场景内容,使学习过程的记录完整直观。
[0004]本发明的一个技术方案,一种学习场景分类记录方法,根据设定条件对脑波数据进行分段,把同一段脑波数据下的眼前场景分为同一类,如果当前脑波数据处于所述分段,启动摄像头拍摄眼前场景,把该场景照片记录在本段脑波数据特征值下。
[0005]本发明根据设定条件对脑波数据进行分段,每段反映不同的大脑状态,每当脑波数据处于设定分段,启动摄像头拍摄眼前场景,随着时间延续,每种大脑状态下记录着不同时段的场景照片,通过大脑状态与场景照片的结合,可以知道使用者的兴趣爱好,了解使用者对什么感兴趣而呈现专注、兴奋的状态,对什么不感兴趣而呈现困倦、放松的状态,或是在什么场景下容易走神而呈现冥想状态,或是对什么事情感到压力而呈现紧张状态,或是不同事情出现的频率,如此等等。进一步的改进,记录照片的同时,记录一些附属信息,如发生的时间、该场景状态持续的时长等,可以发现使用者的时间安排特点,主要的精力分配等等。
[0006]所述分段方法可以根据单个脑波数据与设定条件的比较进行分段,或根据多个脑波数据与设定条件的比较进行分段;前者对单个数据进行实时划分,考虑每个数据的个性,后者根据一批数据特性进行划分,主要反映该批数据的共性。各段数据之间可以是连续的,也可以是不连续的,段与段之间连续,使分段范围覆盖全部数据;如果段与段之间存在间断,记录主要时段或区段数据,间断省略短暂异常数据,针对性强。
[0007]本发明的另一个内容,一种头戴式学习场景分类记录装置,包括头戴式框架,置于框架上的脑电传感器、摄像头、处理器和存储器,脑电传感器采集脑电信号传送处理器进行计算处理,摄像头设置方向与人眼方向一致,其特征是:处理器根据设定条件对脑波数据进行分段,把同一段脑波数据下的眼前场景分为同一类,如果当前脑波数据处于设定分段,启动摄像头拍摄眼前场景,存储器把该场景照片记录在本段脑波数据特征值下。
[0008]根据上述分段记录方法设置记录装置,把一个时段的场景和脑波数据数据缩小成一个时间点进行记录,节省了存储空间,降低了对硬件要求,更好的适应穿戴设备。
[0009]进一步的改进,记录装置可以设置数据传输接口,通过传输接口把记录数据传送到外部设备,所述数据传输接口为有线或无线方式;有线方式包括RS232或USB接口,无线方式包括蓝牙和射频和z igbee和wifi技术中的任一种。
[0010]进一步的改进,记录装置可以设置提醒模块,当所述脑波数据落入设定提醒段,处理器触发提醒模块进行提醒,所述提醒模块包括声、光、微电刺激、低频脉通刺激、震动、骨传导中的任一种。
[0011]本发明对学生学习场景进行监测,把学习过程的大脑状态与学习场景融合记录,可以知道学生的学习内容,了解其兴趣偏好,及时发现问题,帮助其健康成长。通过分段记录的学习场景,简洁直观,数据量小,降低对硬件的要求,并易于后续处理分析。
【附图说明】
[0012]图1是学习场景分类记录装置实施例的配置框图。
[0013]图2是脑电传感器电路连接原理示意图。
[0014]图3是学习场景分类记录实施例流程图。
【具体实施方式】
[0015]在图1所示的记录装置配置框图中,包括脑电传感器、摄像头、处理器和存储器,其中脑电传感器采集脑电信号传送处理器进行计算处理,摄像头设置方向与人眼方向一致,处理器根据设定条件对脑波数据进行分段,如果当前脑波数据处于设定分段,启动摄像头拍摄眼前场景,控制存储器把该场景照片记录在本段脑波数据特征值下。
[0016]脑电传感器包括单通道或多通道,采用单极或双极协议采集脑电信号;所述单通道是只监测头部一个区域如前额的脑电信号,如神念科技ThingkGear AM芯片为单通道;所述多通道是监测头部如前额、头顶、后枕等多个区域的脑电信号,如德州ADS1299芯片为8通道。脑电信号微弱不稳定,又受强背景噪声干扰,脑电传感器经过对脑电信号增强和对背景噪声的降噪处理,输出的各波段脑电信号可以直接用来做进一步的应用分析。
[0017]图2所示的是单通道EEG脑电采集传感器ThingkGearAM系列芯片电路连接原理示意图,图中显示了通信连接,未显示去耦和所有连接。处理器ADUC7024具有存储单元,通过UART进行编程,SWl是电源开关,SW2和SW3分别是复位和下载开关。处理器ADuC7024端口Pl.5与脑电传感器ThinkGear AM输入端RXD相连,用于对脑电传感器ThinkGear AM进行初始化等操作。与人脑接触的A、B、C三个金属电极分别与脑电传感器的采集电极EEG、比较电极REF和接地端GM)相连,脑电传感器每秒采集512个脑电信号数据点,提取八个波段(De Ita、Theta、LowAlpha、HighAlpha、LowBe ta、HighBe ta、LowGamma、Midd IeGamma)的脑电信号,和三个eSense参数:专注度、放松度和眨眼侦测,通过端口TXD输出。不同波段脑电信号反映不同的大脑状态,比如Delta(0.5Hz?3Hz)波反映的是睡眠状态,又称“深睡波”,Theta(3Hz?7Hz)波反映的是困倦状态,又称“浅睡波”,Alpha(7Hz?13Hz)波反映的是轻松状态,又称“放松波”,Beta(13Hz?30Hz)波反映的是意识活跃状态,又称“兴奋波”,GammaC30Hz?50 Hz)波反映的是紧张状态,又称“压力”波。
[0018]通过基于实验数据库的神经算法,使用上述波段的功率频谱数据进行分析计算,可以反映不同的精神状态,如入睡、困倦、疲劳、放松、冥想、专注、思考、焦虑、压力、兴奋、紧张、喜欢、高兴、沮丧等。根据频谱数据可以计算反映精神状态水平的指标,比如上述专注度和放松度就是通过脑电信号计算生成的精神状态指标,是范围在O—100的数值,专注度值越大,说明专注度越高,反之专注度越低;放松度值越大,说明越放松,反之,说明放松度越低;另外,根据频谱数据还可以建立精神状态判断标准,从而划分出不同的精神状态。脑电信号分析方法有:①时域分析,主要分析EEG波形的几何性质,如幅度、均值、方差、偏歪度、峭度等;②频域分析,主要是利用功率谱进行分析,如功率频谱分析、相干分析等;③时频分析,把时间和频率结合进行处理,如对睡眠纺锤波的匹配跟踪分析等。
[0019]以下实施例中所述脑波数据包括各波段脑电信号或根据脑电信号计算的精神状态,所述脑电信号包括频率、功率、振幅、功率谱、功率频谱。
[0020]在图3所示的分段记录方法基本步骤流程图中,首先根据脑波数据设置分段值,通过与分段值的比较,判断脑波数据所属分段,进而控制摄像头对眼前场景的拍摄,具体步骤如下:
〈步骤1>开机进行系统初始化,进入下一步;
〈步骤2>根据设定条件设置分段值,对脑波数据进行分段;
〈步骤3>采集脑电信号,传送处理器生成脑波数据,进入下一步;
〈步骤4>根据设定分段值,判断当前脑波数据所属分段;
〈步骤5>判断所属分段是否改变,如果是,表明当前脑波数据已转入新的分段,把照片记录在特征值下,转入步骤3,如果否,表明仍处入原分段,进入下一步;
〈步骤6>累计反映本段头部状态数据长度的持续值,进入下一步;
〈步骤7>如果该段场景尚未拍摄,而且该段脑波数据持续值大于拍摄阀值,启动摄像头拍摄一次,转入步骤3;如果该段场景尚未拍摄,但该段脑波数据持续值小于拍摄阀值,转入步骤3;如果已经拍摄,转入步骤3。
[0021]上述分段方法包括对脑波数据进行区段划分,把同一区段的脑波数据分为一段,或是对脑波数据进行时段划分,把一个连续时间段的数据分为一段。同一分段条件下的眼前场景分为一类,把照片记录在本段脑波数据的特征值下,所述特征值包括所述段的头部状态数据统计值、或所述段头部状态数据分段值、或所述段精神状态分类、或所述段的时段中的任一种。在〈步骤7>中的拍摄阀值是一个判断用户对当前场景关注时间长度的时间阀值,小于设定阀值说明当前场景停留时间短,说明是次要的短暂场景,可以不记录,对超过设定值、达到一定关注时间的场景进行拍摄。此外,如果在当前场景停留的时间很长,还可以设置一个拍摄间隔,当距离上次拍摄的时间长度超过该间隔,再次对眼前场景进行拍摄,依次对同一个场景进行多个时段拍摄,可以对该段状态进行持续记录。在〈步骤5>中还可以记录本段脑波数据的持续值,反映对当前场景的关注度,所述持续值包括所述段的持续时间长、或所述段开始时间与结束时间、或所述段脑波数据的累计频数、或所述段脑波数据的累计频率、或所述段持续时长占总时长的比率中的任一种。累计频率是本段脑波数据的累计频数占所有区段累计频数总和的比率,与之对应的是时间比率,是本段脑波数据的持续时间长占所有区段脑波数据采集时间总长的比率,在脑电传感器采集时间间隔不变的情况下,频数与采集间隔的乘积就是时间长,即频数比率与时间比率相同,频数比率或时间比率反映本段数据在总数据中占的比重,更加直观反映头部状态分布特征。
[0022]区段划分
根据脑波数据进行区段划分,是根据脑波数据的数值大小,按照设定的分段值进行分段,分段值作为特征值固定不变,即使是该区段数据的统计值,其变化也在分段值范围内,因此,根据区段划分的每段脑波数据状态已经明确,可以与精神状态相关联。区段划分包括根据脑波数据设置分段值,把同一区段的脑波数据分为一段;或是根据脑波数据中精神状态进行分类,把同一类精神状态下的脑波数据分为一段。
[0023](I)根据脑波数据设置分段值,包括根据脑波数据的大小、或差值、或比值、或波形参数中的任一种数值设置分段值,把同一区段的脑波数据分为一段。
[0024]根据脑波数据的大小设置分段值的一个优选例是分组,根据脑电波数据的大小范围进行分组,分组可以是等组距或异距分组。比如精神状态中的专注度是O?100的数值范围,可以等距分成五个组,组距为20,分别对应困倦、放松、平静、专注、兴奋五种精神状态。以[80,100)区段为例(“[”表示等于,“)”表述不等),当专注度数值大于或等于80落入该区间,表明当前大脑处于兴奋状态,控制摄像头拍摄眼前场景,把照片记录在兴奋状态下,或是记录在本组特征值下,特征值可以是分组的上限值或下限值或组中值中的任一种,或是本段脑波数据数据的统计值,统计值包括平均值、标准差、中位数、众数中的任一种。进一步的改进,在兴奋状态下,统计该段持续值,当持续值大于拍摄阀值时,控制摄像头拍摄眼前场景,记录照片及其持续值。持续值包括累计频数或持续时间长,如果采集间隔不变,累计频数与采集间隔的乘积就是本段数据的持续时长。如果采集间隔是变化的,以最新数据的采集时间点为两段记录的时间分界点,或是该时间点减去一个采集时间间隔作为时间分界点,记录上次时间分界点作为本段开始时间,本次分界点作为本段结束时间;或是记录两个时间点之差,作为本段数据的持续时长。如果在当前兴奋状态下停留时间较长,可以根据设定的拍摄间隔值进行多次拍摄,达到对兴奋状态的持续监测。一旦专注度数值小于80,表明本段兴奋状态结束,转入下一组专注状态,开始统计下一组的持续值。再比如以大脑状态中Beta波功率谱数据为例,其大小范围是O?20( X 105μν2),设置5、10、15三个分段值分成四组,可以划分入睡、困倦、清醒、兴奋四种精神状态,以该状态下的Beta波功率谱数据统计值作为特征值,或以分段值作为特征值,以Beta波采集累计频数或持续时长作为持续值,分别对每种状态下的眼前场景进行拍摄记录。
[0025]分段值的设置可以是一个到多个,其中,对于多个分段值,可以等距设置,或异距设置,缩小重点监测部分的间距,放大其余部分,做到重密轻疏,或采取间断方法,把次要区段数据间断省略掉。
[0026]在实际记录的脑电信号中,通常是一种以上不同节律的脑波同时存在,大脑不同状态,能使脑电信号的波形发生不同的变化。通常情况,当脑波数据中以高频低振幅的快波为主时,表明大脑皮层呈现兴奋状态;而当代之以低频高振幅的慢波时,则表明抑制过程增强,呈现困倦状态,通过比较不同脑波数据的强弱关系,可以划分对应的精神状态,弱化因佩戴或个体原因造成的信号差异。
[0027]多种脑波数据可以通过单项值进行比较,比如Θ波是低频波,主要反映困倦睡眠状态,β波是高频波,主要反映兴奋状态,如果低频波逐渐增强、高频波逐渐减弱说明精神状态由兴奋向困倦转变,即当Θ波与β波的功率谱差值或比值越大,则困倦程度越高。比如根据Θ、β大小计算差值Κ=β— Θ,当K值小于0,表明低频Θ波强于高频β波,呈现为入睡状态,当K值大于5Χ105μν2,表明以高频β波为主,呈现为兴奋状态;再比如计算比值Κ=θ/β,如果设置一个区段值如1.0,可以划分如困倦与清醒两个状态;如果设置0.5、1.0、1.9三个区段值,可以依次划分出兴奋(〈0.5)、清醒(0.5?1.0)、困倦(1.0?1.9)、入睡(>1.9)四个状态段。把同一差值或比值的Θ波数据或β波数据归为同一区段,统计每个状态下的持续值,把区段值作为特征值或用精神状态代替特征值,或是分别计算Θ或β波功率谱的统计值作为该状态下对应波段的特征值分开记录,即相同的区段有不同的波段数据,分别对每种状态下的眼前场景进行拍摄记录。
[0028]多种脑波数据还可以通过不同脑波数据的加和值或减差值进行比较,比如以Theta、LowAlpha、HighAlpha、LowBeta波为例子说明,计算比值K= (Theta+LowAlphaa) /(HighAlpha+LowBeta ),根据比值K设置0.3,0.7,1.5三个区段值,可以依次划分出兴奋(〈0.3)、清醒(0.3?0.7)、困倦(0.7?1.5)、入睡(>1.5)四个状态段。
[0029]再比如以一种脑波数据占数据总和的比值,仍以Θ波作为例子说明,对波段数据求频谱总量Σ=(δ+θ+α+β+ γ ),计算Θ波频谱分量占总量Σ的比值Κ=θ/ Σ,比值K范围是O?I,设置0.2和0.35两个区段值,划分清醒、困倦和入睡三种精神状态,统计每种状态下的持续值,记录在该状态下。或如计算β波频谱分量占总量Σ的比值Κ=β/ Σ,设置0.2和0.25两个区段值,划分困倦、清醒和兴奋三种精神状态。
[0030]又如以脑波数据中的精神状态数据占精神状态数据总和的比值,如专注度与放松度精神状态数据,求状态数据总量Σ=(专注度+放松度),计算放松度占总量Σ的比值K=专注度/Σ,比值K范围是O?I,根据专注度的大小范围设置分段值,可以等距分成五个区段,间距为0.2,对专注力的程度进行分段,划分出困倦、放松、平静、专注、兴奋五种精神状态。
[0031]诸如此类分段方法,可以根据需要组合应用,对某种精神状态采用更具代表性的计算方法,不同的应用场景选择不同脑波数据组合,优化分段计算方法。区段值的设置可以是一个到多个,其中,对于多个分段值,可以等距设置,或异距设置,缩小重点监测部分的间距,放大其余部分,做到重密轻疏,或采取间断方法,把次要区段数据间断省略掉。
[0032]根据波形参数进行分段,波形是大脑状态中脑波分布的几何形状,特殊精神状态下的脑电波,具有特殊的几何形状,如反映睡眠状态的纺锤波。波形参数分析是根据波形特征进行匹配跟踪,把同种波形的大脑状态分为同一段,比如把出现纺锤波形的大脑状态归为睡眠段。波形特征主要通过时域分析的方法提取几何性质,如过零截点分析、直方图分析、方差分析、相干分析等。根据波形参数设置的分段值是组合值,波形参数包括幅度、均值、方差、偏歪度、峭度等,不同的波形有不同的参数组合,把大脑状态几何形状分成匹配或不匹配,在匹配状态下拍摄眼前场景照片,计算匹配状态下的脑波数据数据统计值作为特征值,或把对应的精神状态作为特征值,以持续时长或累计频数作为持续值,或记录开始时间和结束时间。
[0033](2)根据脑波数据中精神状态进行分类,是直接通过精神状态进行区段划分,把同一种精神状态下的脑波数据分为一段,比如根据困倦、放松、平静、专注、兴奋五种精神状态的判断标准划分五个区段,把困倦下的脑波数据分为一段,拍摄该状态下的眼前场景,统计该状态数据的累计频数或持续时长作为持续值,以“困倦”精神状态作为特征值进行记录;同样拍摄记录放松、平静、专注、兴奋精神状态下照片数据。判断精神状态的一种方法是根据预存的脑电波频率范围或脑波数据特征表,判断所属精神状态,如果大脑状态数据与设定范围或特征相匹配,可以确定当前精神状态分类。此外,判断精神状态还可以通过神经算法计算得来,即根据脑电波频谱数据计算建立判断标准,不同的神经算法计算的精神状态会有偏差,通常结合实验数据进行,建立的判断标准可以是单个设定阀值,也可能是由多个数值组合的复合条件,不同算法依据的脑电波数据也各不相同,精神状态判断方法可以查阅相关技术资料。
[0034]时段划分
所述时段划分包括根据脑波数据的相对大小进行分段,把波动在设定范围的一个连续时间段的脑波数据分为一段,或是根据时间进行时段设定,把处于设定时间段的脑波数据分为一段。根据脑波数据进行的时段划分与根据时间条件进行的时段划分,都是按照时间顺序依次记录,但是两者反映的侧重点不同,根据脑波数据进行的时段划分,其持续值和特征值都在不断变化,反映的是每个时段的脑波数据的大小和持续性的长短,根据时间条件进行的时段划分,其特征值不断变化,而持续值是设定的,侧重反映的是每个时段的脑波数据的大小。
[0035](I)根据脑波数据相对大小进行时段划分,是把大小相近的脑波数据分为一段,通过脑波数据差值、或比值、或离散度设置分段值,把波动在设定范围的一个连续时段的脑波数据分为一个时段,拍摄当前时段下的眼前场景,以本时段脑波数据统计值作为特征值,以累计频数或持续时长作为持续值进行记录。
[0036]脑波数据差值是比较两个脑波数据之间的距离大小,根据差值法设置的一个分段值,把相距小于分段值的脑波数据分为同一段,即把波动变化在一定幅度范围的脑波数据分为同一段,当差值大于分段值时,说明波动变大,超出范围,把前一个数据归为当前时段,最新的数据归为下一时段统计,两段的时间分界点是最新数据的采集时间,或是该时间点提前一个采集时间间隔作为分界点。差值的计算方法有位置差值法和中心差值法。位置差值是对脑波数据按升序或降序进行排序,计算两个特定序位数值的差,即第N位数据与倒数第N位数据的绝对离差,比如最大值与最小值之差、或上四分位数与下四分位数绝对离差,根据位置差值设置的分段值反映的是数据波动的上下幅度范围,当其小于设定分段值,说明数值大小相近,归为同一时段。中心差值是计算脑波数据与中心数值的差,中心数值包括平均值、标准差、中位数和众数中的任一种,脑波数据与中心数值的差,反映该数据偏离中心的距离,中心差值分为上位差(大于中心值的数据与中心数值之差)和下位差(小于中心值的数据与中心数值之差绝对值),根据中心差值设定的分段值反映的是数据波动的上半幅或下半幅范围,中心差值的判定采用上下位差同时小于设定区段值。中心数值可以先通过位置差值判断建立,当同一段的数据个数大于N,计算中心数值,建议N不小于6。中心数值建立后,可以保持不变,也可以根据该段数据的增加而统计更新,或是变换新的脑波数据进行重新统计。
[0037]脑波数据比值反映的是数据相对偏离度,包括位置比值和中心比值。位置比值是计算两个特定序位数值的比,或计算两个特定序位数值的差,再除以中心数值、或上端位置数值、或下端位置数值中的任一数值,中心比值是计算脑波数据与中心数值的比,或计算脑波数据与中心差值后,再除以中心数值。根据比值设定的一个分段值,是把所述比值小于设定值的数据归为同一时段,具体方法同差值分段方法。
[0038]离散度反映脑波数据的差异性,是评判脑波数据离中心的趋势,是对数据个性的测度,离散度包括异众比率、四分位差、平均差、标准差、离散系数、标准化值中任一种。离散度作为一种统计值,应有N个数据统计得出,建议N不小于6。根据离散度设置的分段值是一个设定阀值,如果一批数据的离散度小于设定阀值,说明该批数据具有较强的共性,把该批数据分为同一段,一直持续统计下去,一旦离散度大于设定阀值,说明数据的差异性变大,把使离散度变大的最新数据分为下一时段,该数据以前的数据分为同一时段,计算不包括最新数据的这一段数据的统计值作为特征值,作为持续值的持续时间长或累计频数的结束点也在最新数据,该数据的采集时间是本时段结束时间点和新时段开始时间点。标准差在离散度计算中是一个关键值,当样本数量较大时,后续样本的对标准差的影响会减弱,建议根据脑波数据应用特点控制标准差的样本数量,即对同一时段统计标准差的数据再分段。
[0039](2)根据时间条件进行时段划分,是根据时间进行时段设定,把满足时间条件的一段连续脑波数据数据分为一个时段,拍摄当前时段下的眼前场景,以本时段脑波数据统计值作为特征值,以累计频数或持续时长作为持续值进行记录;或进一步对设定时间段的脑波数据进行区段划分,依次拍摄设定时段内的每个区段下的眼前场景,以该分段脑波数据数据统计值作为特征值,以累计频数或持续时长作为持续值进行记录。比如以学生上课场景为例,根据课堂时刻表设定时段进行划分,分别拍摄记录每堂课的学习场景和脑波数据信息,避免课间活动时段的无用记录;或是对堂课过程按时间进行分段记录,比如设定每1、或3、或5分钟作为一个时段拍摄记录一次,以每个时段的学习状态数据统计值作为特征值,持续值为设定时段长或累加频数,还可以记录每个时段开始时间;进一步的细化,还可以对堂课时段的学习状态数据进行区段划分,把同一区段下一个连续时段的状态数据分为一个时段,依次拍摄记录不同时段的学习场景和脑波数据信息,反映课堂学习过程中的场景内容、对场景关注度以及脑波数据特征。通过时段划分记录的数据,可以反映用户每堂课场景内容、兴趣偏好以及脑波数据特征随着上课时间的变化情况,再现课堂学习过程,对比不同课程的学习状态,并把课间活动时段间断省略掉。
[0040]前述根据脑波数据的分段方法是单个数据与分段值的实时进行比较,逐个判断每个数据所属分段,为避免异常数据的影响,可以根据一批M个脑波数据的平均值进行比较判断,当平均值满足分段要求,说明这M个数据相近,可以归为同一段,为了保持判断的连续性,在出现一个新数据后,把这M个数据的第一个数据归为该段统计,继续保持为M个数据,计算其平均值进行判断,如果平均值不满足分段要求,说明出现的新数据是另一段的数据,把最后一个数据归为下一段,再把其它数据全部归为前一段,并统计该段的持续值。
[0041]另一种多数据判断方法是当M个脑波数据中有N个数据满足分段要求,把这M个数据归为同一段,为了保持判断的连续性,在出现一个新数据后,把这M个数据的第一个数据归为该段统计,继续保持为M个数据,当满足分段要求的数据个数少于N个,说明出现的新数据是另一段的数据,把最后一个数据归为下一段,再把其它数据全部归为前一段,并统计该段的持续值。上述M个数据为连续数据,N个数据可以是连续或不连续数据。相同的方法还可以根据在设定时长内满足分段要求的时间总和来判断。
[0042]优选地,记录装置还可以设置提醒模块,当脑波数据落入某一设定区段,处理器触发提醒模块进行提醒,比如根据头部姿态设定的分段值,选择歪斜角度偏大的区段或设置一个歪斜角度提醒阀值,当头部姿态进入该区段或大于该阀值,处理器触发提醒模块提醒;或是根据用眼距离设定的分段值,设定不同提醒距离区段,并根据不同提醒区段采取不同提醒方法,比如较近距离区段轻微提醒,近距离区段稍重提醒,很近距离区段重度提醒等。另外,还可以在入睡到兴奋的几种精神状态中,选择某种精神状态,如放松状态、困倦状态、入睡状态的分段值或判断标准作为提醒阀值,当所述脑波数据值落入该段范围或呈现不良精神状态,处理器触发提醒模块进行提醒,并根据不同精神状态采用不同提醒程度或方式,比如放松状态下进行稍微提醒,困倦状态下进行稍重提醒,入睡状态下进行重度提醒。以图2中的LED灯为例,稍微提醒进行慢闪烁,稍重提醒进行快闪烁,重度提醒持续明亮。
[0043]本发明是把大脑状态与场景照片进行融合记录,以明确大脑状态下的场景内容,通过上述实施例对本发明的方法进行了阐述,不应理解为对本申请的限制。本方法不局限于学习状态,同样适用于其它需要了解大脑状态与场景内容的工作、生活场景。
【主权项】
1.一种学习场景分类记录方法,其特征包括以下步骤: (1)根据设定分段值对脑波数据进行分段,把同一脑波数据段下的眼前场景分为同一类; (2)如果当前脑波数据处于设定段,启动摄像头拍摄眼前场景; (3)把场景照片记录在本段脑波数据特征值下。2.根据权利要求1所述的记录方法,其特征是:所述分段包括对脑波数据进行区段划分,把同一区段的脑波数据分为一段,或是对脑波数据进行时段划分,把一个连续时间段的脑波数据分为一段。3.根据权利要求2所述的记录方法,其特征是:所述区段划分包括根据脑波数据设置分段值,把同一区段的脑波数据分为一段,或是根据脑波数据中精神状态进行分类,把同一类精神状态下的脑波数据分为一段。4.根据权利要求3所述的记录方法,其特征是:所述根据脑波数据设置分段值包括根据脑波数据的大小、或差值、或比值、或波形参数中的任一种数值设置分段值,把同一区段的脑波数据分为一段。5.根据权利要求2所述的记录方法,其特征是:所述时段划分包括根据脑波数据的相对大小进行分段,把波动在设定区段的一个连续时间段的脑波数据分为一个时段,或是根据脑波数据中精神状态进行分类,把同一类精神状态下的一个连续时间段脑波数据分为一个时段,或根据时间进行时段设定,把处于设定时段的头部状态分为一个时段。6.根据权利要求5所述的记录方法,其特征是:所述设定区段是根据脑波数据的差值、或比值、或离散度中的任一种数值设置分段值,把同一区段的一个连续时间段的脑波数据分为一段。7.根据权利要求1所述的记录方法,其特征是:所述特征值包括所述段的脑波数据分段值、或所述段的脑波数据统计值、或所述段脑波数据中的精神状态中的一种。8.根据权利要求1所述的记录方法,其特征是:所述记录方法还记录反映当前场景关注度的持续值,持续值包括所述段脑波数据的累计频数、或累计频率、或持续时间长、或持续时间长占总时间长的比率、或本段开始时间与结束时间中的任一种。9.根据权利要求1所述的记录方法,其特征是:如果脑波数据在本段的持续值大于设定拍摄阀值,启动摄像头拍摄眼前场景。10.—种头戴式学习场景分类记录装置,包括头戴式框架,置于框架上的脑电传感器、摄像头、处理器和存储器,脑电传感器采集脑电信号传送处理器进行计算处理,摄像头设置方向与人眼方向一致,其特征是: 处理器执行权利要求1?9所述方法步骤,根据设定分段值对脑波数据进行分段,把同一段下的眼前场景分为同一类;如果当前脑波数据处于设定段,启动摄像头拍摄眼前场景;存储器把场景照片记录在本段脑波数据特征值下。
【文档编号】G06K9/00GK105975900SQ201610120008
【公开日】2016年9月28日
【申请日】2016年3月3日
【发明人】胡渐佳
【申请人】胡渐佳
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1