Sd-oct图像的淡水无核珍珠珍珠质层缺陷识别方法

文档序号:10656902阅读:578来源:国知局
Sd-oct图像的淡水无核珍珠珍珠质层缺陷识别方法
【专利摘要】本发明公开了一种SD?OCT图像的淡水无核珍珠珍珠质层缺陷识别方法。对淡水无核珍珠的SD?OCT图像进行背景和目标的分离处理,获得背景和目标的分界线,根据分界线对图像依次进行拉平和散斑噪声去除的处理,对图像进行裁剪和压缩,计算像素点的纵向梯度,并提取获得缺陷层上下边界,计算纵向梯度均值,再通过上边界线阈值和下边界线阈值判断获得确定缺陷子层,从而获得缺陷的结果。本发明方法实现了淡水珍珠质层中缺陷子层的检测,并完成缺陷子层的自动标识和判别,对不同形态的缺陷子层具有较强的适应性,提高了检测效率,配合成像等外观检测方法,为淡水珍珠在线检测奠定技术基础。
【专利说明】
SD-OCT图像的淡水无核珍珠珍珠质层缺陷识别方法
技术领域
[0001] 本发明属于珍珠内部品质自动化检测领域,设及OCT图像处理方法,尤其是设及了 一种SD-OCT图像的淡水无核珍珠珍珠质层缺陷识别方法。
【背景技术】
[0002] 淡水珍珠是我们珍珠产品的主要品种,其珍珠质层的内部结构观测和分析是珍珠 产业发展面临的主要技术问题。淡水珍珠通常采用无核养殖,其珍珠质层主要由碳酸巧结 晶体和壳角蛋白呈年轮状垒积而成,在良珠中所有碳酸巧颗粒几乎全由文石组成,具有完 全一致的消光方位。劣质珠珍珠质层有一定空隙或者裂缝且厚度形状不均的棱柱层,棱柱 层中碳酸巧近一半W粗粒方解石形式存,呈放射状和梳状结构,或长轴垂直圆切线,棱柱结 构愈多,影响珍珠的光泽。
[0003] 在无损检测珍珠内部结构上,一般使用X光成像或X光显微成像,需要大型设备,耗 费工时,且对检测人员有一定福射伤害,经过多次X光照射将会损伤珍珠,使其失去光泽。谱 域光学相干层析成像(SD-OCT)通过测量物质的光学反射散射特性展现内部其结构形态和 分布,目前SD-OCT图像已经用于珍珠识别、定量测量、定性鉴定,报道表明图像可W清楚展 现珍珠的层次结构。目前OCT图像法的主要应用有:鉴别真假珍珠、区别海水有核珍珠与淡 水无核珍珠、测定珍珠层厚度,探讨珍珠生长动力学规律。在珍珠研究,该方法具有较广阔 的应用前景。
[0004] 由于在产业应用中,一个母贝可W出产数十棵淡水珍珠,珍珠 OCT图像的量非常 大,采用人工判别,效率十分低下,因此需对图像进行自动分析。在珍珠 OCT图像应用过程 中,主要研究点为OCT图像厚度测量算法及层次结构自动检测的算法,实现了海水珍珠的珍 珠质层厚度自动测量。但是对于淡水珍珠的内部检测,研究尚处于起步阶段。

【发明内容】

[0005] 针对于【背景技术】中存在的问题,本发明的目的在于提供了一种SD-OCT图像的淡水 无核珍珠珍珠质层缺陷识别方法,能够自动识别SD-OCT图像中珍珠质子层的缺陷,并完成 缺陷子层的自动标识和判别,提高了检测效率,配合成像等外观检测方法,为淡水珍珠在线 检测奠定技术基础。
[0006] 本发明采用的技术方案是包括W下步骤:
[0007] 1)采集淡水无核珍珠的SD-OCT图像;
[000引2)对SD-OCT图像进行背景和目标的分离处理,获得背景和目标的分界线;
[0009] 3)根据分界线对图像依次进行拉平和散斑噪声去除的处理;
[0010] 4)对图像进行裁剪和压缩;
[0011] 5)计算像素点的纵向梯度,并提取获得缺陷层上下边界:
[0012] 6)计算纵向梯度均值,再通过上边界线阔值和下边界线阔值判断获得缺陷的结 果:分别计算上边界上和下边界上所有像素的纵向梯度均值;对比上边界纵向梯度均值与 上边界线阔值,若上边界纵向梯度均值大于上边界线阔值,则认为边界下部产生缺陷;对比 下边界纵向梯度均值与下边界线阔值,若下边界纵向梯度均值小于下边界线阔值,则认为 边界上部产生缺陷;若边界上部和下部均产生缺陷,则认为淡水无核珍珠的珍珠质层存在 缺陷,否则不存在。
[0013] 所述步骤2)具体为:
[0014] 2.1)提取SD-OCT图像中前10行像素点,计算前10行像素点的均值巧日标准差0,采 用W下公式获得降噪阔值A:
[0015]
[0016] W降噪阔值对SD-OCT图像进行阔值降噪;
[0017] 2.2)使用化nny算子对降噪后的图像提取其图像边缘,进行二值化处理,使图像边 缘的像素灰度值为1,除图像边缘W外的图像其它像素灰度值为0;
[0018] 2.3)对二值化后图像中的每一列像素点,自上向下捜索该列出现第一个灰度值为 1的像素点并记录作为待拟合像素点;
[0019] 2.4)用二次多项式拟合方法对所有待拟合像素点进行拟合,得到背景和目标之间 的分界线,并获得分界线所对应的所有图像像素点,SD-OCT图像中W分界线W上部分作为 背景,分界线W下部分作为珍珠质层目标;
[0020] 所述步骤3)具体为:先W步骤2)获得分界线上沿图像纵向坐标的最高点作为拉平 变换后图像分界线的最高点,将SD-OCT图像中的每一列像素整体进行向上平移,使得原SD- OCT图像中的分界线变换为水平直线,每一列像素向上平移后上部超出图像外的部分剔除, 下部位于图像中缺失的部分用灰度值为0的像素填补;
[0021] 然后使用二维中值滤波和BM3D图像降噪算法对拉平后的图像进行降噪。
[0022] 所述步骤4)具体为:先裁剪掉占图像10%的左侧边缘、占图像10%的右侧边缘和 占图像20%的底部边缘;然后使用灰度均值偏差比较,将裁减后的图像W2X2窗口分为各 个块图像区域,对于每个块图像区域计算所有四点的灰度值均值,保留四点中与该灰度值 均值相差最大的一点,剔除其余S点,完成裁剪后图像的压缩。
[0023] 所述步骤5)具体为:计算压缩后图像中每个像素点的纵向梯度,根据像素点中纵 向梯度的极性,将所有像素点分离形成正梯度集合与负梯度集合,使用图方法分别对正梯 度集合和负梯度集合的所有像素点进行处理,分别获得缺陷层的上边界和下边界。
[0024] 所述步骤5)中纵向梯度数值为正值的像素点则归为正梯度集合,纵向梯度数值为 负值的像素点则归为负梯度集合。
[0025] 所述步骤5)中的图方法为:
[0026] 5-1)定义相连通的两个像素点之间存在关联权值,每个像素点与其相邻的各个像 素点之间相连通,相邻的像素点包括像素点周围形成九宫格的其余八个像素点;
[0027] 5-2)计算图像中每个像素点的纵向梯度并进行归一化处理,采用W下公式计算所 有相连通的两个像素点之间的关联权值Weightab:
[002引 Weightab = 2.01-g£i-gb
[0029] 其中,ga和gb分别为两个相连通的像素点a和b的纵向梯度;
[0030] 5-3)在图像的最左侧和最右侧各增加一列像素点,即增加了两列像素点,新增加 的最左列的所有像素点均相连通,新增加的最右列的所有像素点均相连通,最左列像素和 最右列像素中每两个相连通的像素点的关联权值均为1(T5;
[0031] 5-4) W最左列像素点的中间像素点为边界捜索的初始点,W最右列像素点的中间 像素点为边界捜索的终点,结合图像中各像素点的相连通情况及其关联权值采用Di Astra 单源最短路径捜索算法,获得缺陷层的边界。
[0032] 本发明具有的有益效果是:
[0033] 本发明使用SD-OCT图像检测淡水无核珍珠的内部缺陷,具有无损、快速、低成本的 优点。
[0034] 本发明方法采用了图分割手段,并提出了对应的权值策略,对不同形状、不同大 小、不同厚度的缺陷子层具有普适性,并能自动标记缺陷的位置,较其他方法具有更好定位 精度。
[0035] 本发明采用纵向梯度作何评价手段,结合图像拉平,检测效果具有一定的鲁棒性。
【附图说明】
[0036] 图1是本发明方法的流程图。
[0037] 图2是采集的淡水无核珍珠的OCT图像。其中(a)为正常无缺陷样本,(b)-(f)样本 存在各种形态的缺陷。
[0038] 图3是本发明的拉平步骤的效果图。(a)表示拉平前,(b)表示拉平后。
[0039] 图4是实施例正常无缺陷样本的缺陷层上下边界提取效果图。
[0040] 图5是实施例存在形态缺陷样本之一的缺陷层上下边界提取效果图。
[0041 ]图6是实施例存在形态缺陷样本之二的缺陷层上下边界提取效果图。
[0042] 图7是实施例存在形态缺陷样本之=的缺陷层上下边界提取效果图。
[0043] 图8是实施例存在形态缺陷样本之四的缺陷层上下边界提取效果图。
[0044] 图9是实施例存在形态缺陷样本之五的缺陷层上下边界提取效果图。
[0045] 图10是本发明的背景目标分离的边界提取效果图。(a)背景目标分离前的原始图 像;(b)原始图像的待拟合像素点及分界线。
【具体实施方式】
[0046] W下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的 具体实施例仅仅用W解释本发明,并不用于限定本发明。
[0047] 本发明的实施例如下:
[004引 (1)使用Iliorlabs公司生产的TELSTO 1300V2型SD-OCT成像仪采集淡水无核珍珠 的SD-OCT图像样本30个,其中15个含有珍珠质层缺陷,15个为正常样本;图2为其中6个典型 样本的OCT图像,其中(a)为正常无缺陷样本,(b)-(f)样本存在各种形态的缺陷。
[0049] (2)背景目标分离:
[0050] 2.1)提取SD-OCT图像中前10行像素点,计算前10行像素点的均值y和标准差0,采 用W下公式获得降噪阔值A:
[0化1 ]
[0052] W降噪阔值对SD-OCT图像进行阔值降噪;
[0053] 2.2)使用化nny算子对降噪后的图像提取其图像边缘,进行二值化处理,使图像边 缘的像素灰度值为I,除图像边缘W外的图像其它像素灰度值为0;
[0054] 2.3)对二值化后图像中的每一列像素点,自上向下捜索该列出现第一个灰度值为 1的像素点并记录作为待拟合像素点;
[0055] 2.4)用二次多项式拟合方法对所有待拟合像素点进行拟合,得到背景和目标之间 的分界线及分界线上的像素点;
[0056] 图10(a)给出了背景目标分离前的原始图像;图10(b)给出了原始图像的待拟合像 素点及分界线;
[0057] (3)图像拉平及散斑噪声去除:取步骤(2)设及的分界线上点的纵向坐标最高点, W此为拉平变换后图像的最高点,对采集的SD-OCT图像中的每一列进行向上平移,其中补 入的像素插入0;图3是给出了拉平步骤的效果图。使用二维中值滤波及BM3D图像降噪算法, 对拉平后的图像进行降噪;
[0058] (4)图像裁剪和压缩:对图像的上边界中点为基准,向左定位80%的尺寸,向右定 位80%的尺寸,向下定位80%的尺寸对图像进行保留和裁剪。
[0059] 本实施列中,图像尺寸为1024 X 1024,裁剪后的图像尺寸为820*820;使用灰度均 值偏差比较,W2X2模版,取4点灰度的均值,保留与该平均值相差最大的一点,剔除其余3 点,完成裁剪后图像的压缩;压缩后的图像尺寸为205X205;
[0060] (5)缺陷层上下边界提取:计算裁剪及压缩后图像每个像素点的纵向梯度;根据像 素点中梯度的极性,分离出正梯度集合与负梯度集合;使用图方法,使用正梯度集估计缺陷 层的上边界;使用图方法,使用负梯度集的绝对值估计缺陷层的下边界;
[0061] 5-1)定义相连通的两个像素点之间存在关联权值,每个像素点与其相邻的各个像 素点之间相连通;
[0062] 5-2)计算图像中每个像素点的纵向梯度并进行最大最小值归一化处理,采用W下 公式计算所有相连通的两个像素点之间的关联权值Weightab:
[0063] Weightab = 2.01-g£i-gb
[0064] 其中,ga和gb分别为两个相连通的像素点a和b的纵向梯度;
[0065] 5-3)在图像的最左侧和最右侧各增加一列像素点,新增加的最左列的所有像素点 均相连通,新增加的最右列的所有像素点均相连通,最左列像素和最右列像素中每两个相 连通的像素点的关联权值均为1(T5;
[0066] 5-4) W最左列像素点的中间像素点为边界捜索的初始点,W最右列像素点的中间 像素点为边界捜索的终点,结合图像中各像素点的相连通情况及其关联权值采用Di Astra 单源最短路径捜索算法,获得缺陷层的边界。
[0067] 实施例6个典型样本缺陷层上下边界提取效果分别如图4~图9所示,图4是正常无 缺陷样本,其余五张图是存在缺陷的样本。每张图中的左侧为OCT图像,右侧为OCT图像对应 的纵向梯度图,分别在OCT图像及其对应的的纵向梯度图中显示。每张图中,上方的线为上 边界,下方的线为下边界。
[0068] (6)阔值判断:计算如步骤(5)所述的上边界上所有像素对应的纵向梯度均值;计 算如步骤(5)所述的下边界上所有像素对应的纵向梯度均值。
[0069] 图4~图9显示OCT图像及其对应的纵向梯度图,表1显示了 15个正常样本和15个缺 陷样本的上边界所有节点的纵向梯度均值及下边界所有节点的纵向梯度均值。
[0070] 分别设立上边界阔值为180和下边界阔值为-240;对比上边界梯度均值与上边界 线阔值,若上边界梯度均值大于上边界线阔值,则判定边界下部产生缺陷;对比下边界梯度 均值与下边界线阔值,若下边界梯度均值小于下边界线阔值,则判定边界上部产生缺陷;实 验结果表面,对于30个样本中的缺陷识别率达到了 100%。
[0071] 表1.上下边界的平均梯度值
[0072]
[0073] 在本发明实施例中,本领域普通技术人员还可W理解,实现上述实施例方法中的 全部或部分步骤是可W通过程序来指令相关的硬件来完成,所述的程序可W在存储于一计 算机可读取存储介质中,所述的存储介质,包括R0M/RAM、磁盘、光盘等。
[0074] W上所述仅为本发明的较佳实施例而已,并不用W限制本发明,凡在本发明的精 神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
【主权项】
1. 一种SD-OCT图像的淡水无核珍珠珍珠质层缺陷识别方法,其特征在于包括以下步 骤: 1) 采集淡水无核珍珠的SD-OCT图像; 2) 对SD-OCT图像进行背景和目标的分离处理,获得背景和目标的分界线; 3) 根据分界线对图像依次进行拉平和散斑噪声去除的处理; 4) 对图像进行裁剪和压缩; 5) 计算像素点的纵向梯度,并提取获得缺陷层上下边界; 6) 计算纵向梯度均值,再通过上边界线阈值和下边界线阈值判断获得缺陷的结果:分 别计算上边界上和下边界上所有像素的纵向梯度均值; 若上边界纵向梯度均值大于上边界线阈值,则认为边界下部产生缺陷;若下边界纵向 梯度均值小于下边界线阈值,则认为边界上部产生缺陷; 若边界上部和下部均产生缺陷,则认为淡水无核珍珠的珍珠质层存在缺陷,否则不存 在。2. 根据权利要求1所述的一种SD-OCT图像的淡水无核珍珠珍珠质层缺陷识别方法,其 特征在于: 所述步骤2)具体为: 2.1) 提取SD-OCT图像中前10行像素点,计算前10行像素点的均值μ和标准差〇,采用以 下公式获得降噪阈值Α:以降噪阈值对SD-OCT图像进行阈值降噪; 2.2) 使用Canny算子对降噪后的图像提取其图像边缘,进行二值化处理,使图像边缘的 像素灰度值为1,除图像边缘以外的图像其它像素灰度值为〇; 2.3) 对二值化后图像中的每一列像素点,自上向下搜索该列出现第一个灰度值为1的 像素点并记录作为待拟合像素点; 2.4) 用二次多项式拟合方法对待拟合像素点进行拟合,得到背景和目标之间的分界 线,并获得分界线所对应的所有图像像素点。3. 根据权利要求1所述的一种SD-OCT图像的淡水无核珍珠珍珠质层缺陷识别方法,其 特征在于:所述步骤3)具体为: 先以步骤2)获得分界线上沿图像纵向坐标的最高点作为拉平变换后图像分界线的最 高点,将SD-OCT图像中的每一列像素整体进行向上平移,使得原SD-OCT图像中的分界线变 换为水平直线,每一列像素向上平移后上部超出图像外的部分剔除,下部位于图像中缺失 的部分用灰度值为〇的像素填补; 然后使用二维中值滤波和BM3D图像降噪算法对拉平后的图像进行降噪。4. 根据权利要求1所述的一种SD-OCT图像的淡水无核珍珠珍珠质层缺陷识别方法,其 特征在于:所述步骤4)具体为: 先裁剪掉占图像10 %的左侧边缘、占图像10 %的右侧边缘和占图像20 %的底部边缘; 然后使用灰度均值偏差比较,将裁减后的图像以2X2窗口分为各个块图像区域,对于 每个块图像区域计算所有四点的灰度值均值,保留四点中与该灰度值均值相差最大的一 点,剔除其余三点,完成裁剪后图像的压缩。5. 根据权利要求1所述的一种SD-OCT图像的淡水无核珍珠珍珠质层缺陷识别方法,其 特征在于:所述步骤5)具体为:计算压缩后图像中每个像素点的纵向梯度,根据像素点中纵 向梯度的极性,将所有像素点分离形成正梯度集合与负梯度集合,使用图方法分别对正梯 度集合和负梯度集合的所有像素点进行处理,分别获得缺陷层的上边界和下边界。6. 根据权利要求5所述的一种SD-OCT图像的淡水无核珍珠珍珠质层缺陷识别方法,其 特征在于:所述步骤5)中纵向梯度数值为正值的像素点则归为正梯度集合,纵向梯度数值 为负值的像素点则归为负梯度集合。7. 根据权利要求5所述的一种SD-OCT图像的淡水无核珍珠珍珠质层缺陷识别方法,其 特征在于:所述步骤5)中的图方法为: 5-1)定义相连通的两个像素点之间存在关联权值,每个像素点与其相邻的各个像素点 之间相连通; 5-2)计算图像中每个像素点的纵向梯度并进行归一化处理,采用以下公式计算所有相 连通的两个像素点之间的关联权值Weightab: We i ghtab = 2 · 01 -ga-gb 其中,gdPgb分别为两个相连通的像素点a和b的纵向梯度; 5-3)在图像的最左侧和最右侧各增加一列像素点,新增加的最左列的所有像素点均相 连通,新增加的最右列的所有像素点均相连通,最左列像素和最右列像素中每两个相连通 的像素点的关联权值均为10' 5-4)以最左列像素点的中间像素点为边界搜索的初始点,以最右列像素点的中间像素 点为边界搜索的终点,结合图像中各像素点的相连通情况及其关联权值采用Dijkstra单源 最短路径搜索算法,获得缺陷层的边界。
【文档编号】G06T7/00GK106023158SQ201610305719
【公开日】2016年10月12日
【申请日】2016年5月10日
【发明人】周扬, 刘铁兵, 王中鹏, 陈正伟, 施秧, 周武杰
【申请人】浙江科技学院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1